US010104008B1

a2 United States Patent 10) Patent No.: US 10,104,008 B1

Patel et al. 45) Date of Patent: *Oct. 16, 2018
(54) ALLOCATING PROCESSOR RESOURCES (358) Field of Classification Search
BASED ON A TASK IDENTIFIER CPC G06Q 30/00; G06Q 30/06; HO4L 12/1403;
HO4L 47/70; HO4L 6°7/325; HO4L 47/76;
(71) Applicant: Amazon Technologies, Inc., Secattle, GO1R 31/2801
WA (US) See application file for complete search history.
(72) Inventors: Rahul Gautam Patel, Austin, TX (US); (56) Reterences Cited
Wlllli-lm John Earl, Burien, WA (US); U.S PATENT DOCUMENTS
Nachiketh Rao Potlapally, Arlington,
VA (US) 5,437,047 A 7/1995 Nakamura
5,581,463 A * 12/1996 Constant GO1R 31/2801
(73) Assignee: Amazon Technologies, Inc., Secattle, 222/638
WA (US) 5,742,792 A 4/1998 Yanai et al.
(Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 OTHER PUBIICATIONS
U.S.C. 154(b) by O days.
U.S. Appl. No. 14/502,891, filed Sep. 30, 2014, Titled: Allocation

This patent 1s subject to a terminal dis- of Shared System Resources.

claimer. (Continued)
(21) Appl. No.: 15/345,341 Primary Examiner — Tuan Vu
_ (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
(22) Filed: Nov. 7, 2016 Stockton LI P
(37) ABSTRACT
Related U.S. Application Data Techniques are described for accumulating unused comput-
(63) Continuation of application No. 14/566,648, filed on ing resources. The techniques may involve associating, with
o a task, a baseline amount of a computing resource for each

Dec. 10, 2014, now Pat. No. 9,491,112. .) . : .
time 1nterval of a predetermined number of time intervals,

(51) Int. CL. and monitpring a copsumption of the computing resource by
the task in each time interval. Resource credits can be

GO6F 9/455 (2018.01) |
HO4L 12/911 (2013.01) accumulated‘based on an unused amount ‘of the computing
GO6F 9/50 (2006.01) resource during at least some of the time intervals. When a
HO4TL 12/801 (2013.01) workload of the task consumes more than the baseline
(52) U.S. Cl. amount of the computing _resource, the accum}l}ated
CPC HO4L 47/70 (2013.01); GO6F 9/45558 resource credits can be applied to allocate an additional

(2013.01); GO6F 9/5005 (2013.01); GO6F amount of the computing resource to the task. A proportion-
§/50}6 (2013.01); GO6F 2'009’/45 593 ate additional amount of a memory resource can also be

(2013.01); HO4L 47/39 (2013.01); Ho4f, ~ Alocated to the task.

|] |]
47/826 (2013.01) 20 Claims, 19 Drawing Sheets
1700
RECEIVE A REQUEST TO EXECUTE A TASK e
1702
1400 l
o ASSIGN A TASK IDENTIFIER TO THE TASK
1704
RECEIVE A RECUEST TC EXECUTE A TASK FOR ATENANT CON l
SHARED HARDWARE RESCURCES
1402 DETERMIME A BASELINE RESCURCE CREDIT PER TIME INTERVAL CF A
COMPUTING RESOURCE
l 1706
| DETERMINE A SET OF COMPUTING RESCURCES FOR ALLQCATION | l
TO THE TASK BASED ON A SERVICE LEVEL AGREEMENT ASSOCIATED r 1
WITH THE TENANT MONITOR A PERFORMANCE METRIC ASSOCIATED WITH THE COMPUTING
1404 ‘ RESOURCE TO DETERMINE A UTILIZATION AMOUNT OF THE COMPUTING
RESOURCE DURING A FIRST TIME INTERVAL
l i 1708
DETERMINE A SET OF ONE OR MORE RESOURCE USAGE " l
CONSTRAINTS TO BE APPLIED TO THE SET OF COMPUTING
RESOURCES BASED ON THE SERVICE LEVEL AGREEMENT DETERMINE AN UNUSED AMOUNT OF THE COMPUTING RESOURCE IN
ASSOCIATED WITH THE TENANT THE FIRST TIME INTERVAL
1406 1710
ALLOCATE THE SET OF mmme RESOLIRCES TO THE TASK (NCREMENT A RESOURCE CREDIT BALANCE ASSOCIATED WITH THE TASK
l IDENTIFIER BY THE UNUSED AMOUNT OF THE COMPUTING RESOURCE
1712
[MONITOR ONE OR MORE PERFORMANCE METRICS ASSOCIATED | l
WITH ONE OR MORE OF THE COMPUTING RESOURCES TO
DETERMINE UTILZATION OF THE ONE OR MORE COMPUTING ')
DETERMINE THAT A WORKLOAD OF THE TASK DURING A SECOND TIME
RESOURCES DURING EXECUTION OF THE TASK INTERVAL DEMANGS AN ADDITIONAL AMOUNT OF THE COMPUTING
1410) RESOURCE IN ADDITION TO THE BASELINE RESOURCE CREDIT
l L 1714
ENFORCE, IN HARDWARE, THE SET OF ONE OR MORE RESOURCE l
USAGE CONSTRAINTS DURING EXECUTION OF THE TASK. ALLOCATE AN ADDITIONAL AMOUNT OF THE COMPUTING RESOURCE TG
1412 THE TASK

1716

:

[BECREMENT THE RESOURCE CREDIT BALANCE BY THE ABDITIONAL]

AMOUNT OF THE COMPUTING RESOURCE
1718

US 10,104,008 B1

455/406

Page 2
(56) References Cited 2015/0067673 Al 3/2015 Wang et al.
2015/0128142 Al 5/2015 Fahim et al.
U.S. PATENT DOCUMENTS 2015/0052614 Al 10/2015 Crowell et al.
2015/0277949 Al 10/2015 Loh et al.
7,036,002 Bl 4/2006 Ugon 2016/0092677 Al 3/2016 Patel et al.
7,054,883 B2 5/2006 Heasley et al.
8,146,078 B2 3/2012 Bennett et al.
8,583,467 Bl 11/2013 Morris et al. OLTHER PUBLICALIONS
. _ .
8,012.989 B1* 1272013 Richards ook 1;/138%32 U.S. Appl. No. 14/509,984, filed Oct. 8, 2014, Titled: Noise Injected
8,738,860 Bl 5/2014 Joyce et al. Virtual Timer.
8,856,400 B1 10/2014 Davidson et al. U.S. Appl. No. 14/509,980, filed Oct. 8, 2014, Titled: Microarchitectur-
8,972,637 Bl 3/2015 Hushon, Jr. et al. ally De]ayed Timer.
9,026,694 B1* 52015 Davidson GO6F 9/505 .S, Appl. No. 14/566,642, filed Dec. 10, 2014, Titled: Allocating
0378 363 B /2016 Patel et al 710/38 Processor Resources Based on a Service-Level Agreement.
378, 1 atel et al. G .
90491112 Bl 11/2016 Patel of al Izjo?ﬁAzpzpl No. 14/566,648 , “Final Oflice Action”, dated Apr. 29,
2003/0061262 Al 3/2003 Hahn et al. » £ PABES. | |
7003/0084336 Al 5/2003 Anderson et al. U.S. Appl. No. 14/566,648 , “Non-Final Oflice Action”, dated Oct.
2005/0097556 Al 5/2005 Code et al. 22, 2015, 18 pages.
2007/0136531 Al 6/2007 Liu et al. U.S. Appl. No. 14/566,648 , “Notice of Allowance”, dated Jul. 19,
2008/0040481 Al 2/2008 Joshi et al. 2016, 10 pages.
2008/0126820- A1~ 5/2008 Fraser et al US. Appl. No. 15/190,045, filed Jun. 22, 2016, Titled: Noise
2008/0148269 Al* 6/2008 WONG w..vvoovvrore.. GOGF 9/5072 2> APPL 0. TR, oo ’ ‘
Injected Virtual Timer.
718/104 . y . .
2009/0080564 A1 4/2009 Brickell et al Acucmez et al.,, “On the Power of Simple Branch Prediction
2011/0010461 Al* 1/2011 Lassilaccoco........ HO04L 12/14 Analysis”, International As Soc I At I On for Cryptologic Research,
709/231 Oct. 2006, pp. 1-106.
2011/0055479 Al 3/2011 West et al. Agosta et al., “Countermeasures for the Sumple Branch Prediction
2011/0145657 Al 6/2011 Bishop et al. Analysis”, International Association for Cryptologic Research, Dec.
2011/0238919 Al 9/2011 GGibson et al. 21, 2006, pp. 1-4.
2012/0131593 AL* ~ 5/2012 DePetro G06F7?; 5/ (1)(8)2 Page , “Partitioned Cache Architecture as a Side-Channel Defence
2012/0137075 Al 57012 Vorbach ef al Mechamsm , Internet Citation, Available online at http:/./uteiseer.
2012/0224482 Al* 9/2012 Gramling GO6Q 30/06 1st.psu.edu/cache/papers/cs2/433/http:zSzzSzeprint.1acr.
370/231 orgzSz2005z8z280.pdt/page05partitioned.pdf, 2005, 14 pages.
2012/0331464 Al 12/2012 Saito et al. Percival , “Cache mussing for fun and profit”, Internet Citation,
2013/0080641 Al 3/2013 Lu et al. Available online at www.daemonology.net/papers/htt.pdf, May 2005,
2013/0304903 A1 11/2013 Mick et al. pp. 1-13.

383///8822?% i ?/383 Ié_manesail | Yarom et al., “Flush+Reload: a High Resolution, Low Noise, L3
1 1 1 1swas et al. : . : :
5014/0080511 Al* 32014 Mcl ean GOGT 9/5061 Cache Side-Channel Attack”, IACR Cryptology ePrint Archive,

709/276 448, 2013, 14 pages. o
2014/0201303 Al 719014 Dalal et al Zhou et al., “Side-Channel Attac.ks: Ten Years After Its Publlcatlon
2014/0201402 Al 7/2014 Dalal et al. and the Impacts on Cryptographic Module Security Testing™, Inter-
2014/0372786 Al 12/2014 Wohlgemuth et al. national Association for Cryptologic Research, Oct. 2005, pp. 1-34.
2014/0378094 Al* 12/2014 Gillick HO04M 15/7652

* cited by examiner

U.S. Patent Oct. 16, 2018 Sheet 1 of 19 US 10.104.008 B1

VM 2

TASK 1 TASK 2

ER - - - - R - - B R - T N N - - B - B R - - - R - N R - B - B -

- - I -

SOR (

LI - - I - - D D - D - T B - R - - I

I I I N IR R R R EREEEEREEREEREEREBEEREREREREREREEEREEREEREEEREEREEREEEREEBEEEREEBEEEREEEREEEREEEREEREEEEREBEEREEREEEEREEREEEREEEREEREREEREREREEEREEEREEREEEREEREEEREEREREREREEREBEREBEEREENERIENRIENRIEIDIDEIIEIN.]
L A A A A I RS

I I 2L B B R R R -

R

-

C-JC- T T B - B DK Y- RO L - IO -

o
<
A
183

C- - - K- - DA K- - B K- - BB -

L A A L R R R R R I T I I R A I I R R I R R T R R R

FIG. 1

S. Patent ct. 16, 2018 Sheet 2 of 19 S 10.104.008 B1

VM 2

TASK 1 TASK 2

sirTete e e e e e e e e e e e T e e e e T e T e T e e

-

-

-

-
-

-
- +

-
" +

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-
-

-
-

-
-

-

-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-
.-ﬂ-_-ﬂ-.-ﬂ-.-ﬂ-_-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-_-ﬂ-.-ﬂ-.-ﬂ-.‘ﬂ-.‘ﬂ-.-ﬂ-.#liﬂ-.#_#.#.#.#.#.#_#.# .-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-_-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂl_-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.-ﬂ-.‘ﬂ-.‘ﬂ-.¢_¢.‘ﬂ-.-ﬂ-.‘ﬂ-.‘ﬂ-.-ﬂ-.‘ﬂ-.‘ﬂ-.-ﬂ-.‘ﬂ-.‘ﬂ-.-ﬂ-.‘ﬂ-.‘ﬂ-.#_‘ﬂ-.#.#.#.#.#.#.ﬂ-.#.# L L T T S . T T T T T e e L T -ﬂ-.‘ﬂ-

L T T T T T T T T T T N T T T T N T T T S S A T S T - L T - T - -T T TR LT -
T H A P A s

RE
QC,E:S.S;QR;);

WARE
RESOURCE
ALLOCATOR ;

<
<
+
<
<
+
<
<
+
<
<
+
<
] <
. L]~
L]~ +
. RE
L]~ <
. 1=
L1~ <
. L]~
L]~ +
. RE
L]~ <
. 1=
L1~ <
. L]~
L]~ +
. RE
L] <
1=
] <
L]~
L] +
RE
L] <
1=
] <
L]~
L] +
RE
L] <
1=
] <
L]~
L] +
RE
L] <
1=
] <
L]~
L] +
RE
<
1=
L1~ <
. L]~
L]~ +
. RE
L]~ <
. 1=
L1~ <
. L]~
L]~ +
. RE
L]~ <
. 1=
L1~ <
. L]~
L]~ +
. RE
L]~ <
. 1=
L1~ <
. L]~
L]~ +
. RE
L]~ <
. 1=
<
L]~
+
. RE
L]~ <
1 L]
RE
< L]~
1= .
< L1~
L]~ .
+ L]~
RE .
< L]~
1= .
< L1~
L]~ .
+ L]~
L]~
» .
< L1~
L]~ .
+ L]~
RE .
< L]~
1= .
< L1~
L]~ .
+ L]~
RE .
< L]~
1= .
< L1~
L]~ .
+ L]~
RE .
< L]~
1= .
< L1~
L]~ .
+ L]~
RE .
< L]~
1= .
< L1~
L]~ .
+ L]~
RE .
< L]~
1= .
< L1~
L]~ .
+ L]~
RE .
< L]~
L] .
L1~

FIG. 2

U.S. Patent Oct. 16, 2018 Sheet 3 of 19 US 10.104.008 B1

VM 2

TASK 1 TASK 2

L T - - - - T T T T T T T T T S T T T O T T T T T T T T L T T T N . T T T T T T T T T A -

. . - - . - .
a . .
- bl -+ - - 1 ‘B
- 4 . . .) - a
+ a a a - -

-

RESOURCE '
A RESOURCE CONFIGURATION
| ALLOCATOR

-

+ + + +
Tewrow 7
-

IEREEEEEEEREE]
- - - - - - - - - - - - - - - - ¢-¢-¢-¢-¢-¢-¢-¢- ¢-¢-¢ L

-

ol e el e e e e o e

e e e e M e patabolohobolohobololabalalaialoleialaeieieieieiaieieieieiei |

sf
[]
h] uf)
- L] ' - - 4 = d .
L . *] . sf
AP 44 . .
L . ' . . 4 L] | []
' L * .
.h-- - . -.. . . . 1 . b -
sf]
[]

E.G., PROCESSOR) zf

-

-

-

-

-

-

-

HARDWARE SH ARFD

: RESOURCE H ARDWARE
MANAGER STRUCTURES

* F P F FFFFPFFFFFFrFrFrFrFrFrFrFrFrFrFrFrFrFFrFFrEFrFrEFrEFrEFreFrEFrFrerFPr
-

FIG. 3

U.S. Patent Oct. 16, 2018 Sheet 4 of 19 US 10,104,008 B1

400

HARDWARE RESOURCE ALLOCATOR MODULE

402
VMM CONFIGURED RESOURCE MAPPING
SETTINGS 408

104 AUTOMATIC RESOURCE
RESOURCE ALLOCATION 110
MANAGEMENT POLICY
406 DYNAMIC LOAD ID SPACE
BALANCING MANAGEMENT 414

RESOURCE
MONITORING -~
MODULE o

FIG. 4

U.S. Patent Oct. 16, 2018 Sheet 5 of 19 US 10,104,008 B1

500

HARDWARE RESOURCE MANAGER MODULE

502
RESOURCE MAPPING

504
RESOURCE CONTROL
ACCESS EXCEPTION 506

HANDLER

FIG. 5

U.S. Patent Oct. 16, 2018 Sheet 6 of 19 US 10,104,008 B1

600

RESOURCE CONFIGURATION MODULE

600 ACTIVATE
RESOURCE TASK/VM 1D 608
ALLOCATION

604 ACTIVATE
AUTOMATIC
RESOURCE
CONFIGURATION

610
RESOURCE MAPPING

606 ACTIVATE DYNAMIC

L.OAD BALANCING RESOURCE POLICY 612

ACTIVATE
RESOURCE o,
MONITORING 614

FIG. 6

U.S. Patent Oct. 16, 2018 Sheet 7 of 19 US 10,104,008 B1

702

CURRENT CONTEXT REGISTER

N\
\ _ Context _ —p» > 706

gL gP \
\

INSTRUCTION FROM VM 1 INSTRUCTION FROM VM 2

704

FIG. 7

U.S. Patent Oct. 16, 2018 Sheet 8 of 19 US 10,104,008 B1

802
7\
VM ID 1 INSTRUCTION FROM VM 1
804

VM ID 2 INSTRUCTION FROM VM 2

FIG. 8

U.S. Patent Oct. 16, 2018 Sheet 9 of 19 US 10,104,008 B1

900

SHARED HARDWARE STRUCTURES

VM ID 1 XXX XXXXXXXXXXXXXXX
VM ID 1 XXX XXXXXXXXXXXXXXX

FIG. 9

U.S. Patent Oct. 16, 2018 Sheet 10 of 19 US 10,104,008 B1

702

CURRENT CONTEXT REGISTER

VM 1

APPING TABLE

VM | V VM
IDTID2}1ID3
00 . 11

1006

SHARED HARDWARE STRUCTURE (E.G., CACHE)

10
XXXXXXXXXXXXX | XXXXXXXXXXXXX XXXXXXXXXXXXX | XXXXXXXXXXXXX
XXAXXXXXXXXEXX | XXXXAIXXXXXXXX § XXXXXXXXXXXXA | XXXXXXXXXXXXX
XXXXXXXXXEXXX 1 XXXXXXXEXXXXX 1 XXXXXXXXXXXXX B XXXXXXXXXXXXX
XXXXXXXXXXXXX | AXXXXRXXXAXXXX B AXXXXXXXXAXXX § XXXXXXXXXXXXX
XXXXXXXXXXXXX | XXXXAXAXXXXXXX § XXXXXXXXXXXXX B XAXXXXXXXXXAXX
XXXXXXXXXXXXX] AXXXXAXAXXXXX B XXAXAXXXXXXXXX B AXXXXXAXXXXXX
XAXXXXXXXXXXXX 1 XXXXXXXXXXXXX B XXXAXXXXXXXXX B AXXXXXXXXXXXX
XXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXX 1 XXXXXXXXXXXXX
XXXXXXXXXXXXX AXXXXAXXXXXXXX § XXXXAXXEXXXXXA | XAXXXAXXXXXXX
XXXXXXXXXXXXX 1 XXXXXXXXXXEXX 1 XXXXEXAXXEXXXXX B XXXXXEXXXXXXX
XXXXXXXXXXXXEX | AXXXARXKXAXARXX § AAXAARXAKAXXXX B XAXXXAXXXAXAX

[
[Fo—"

[W—

FIG. 10

U.S. Patent Oct. 16, 2018 Sheet 11 of 19 US 10,104,008 B1

1102

INSTRUCTION XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1106

SHARED HARDWARE STRUCTURE

1104
\u//ﬁ\ XXXXXXXXXXXXXXXXXX
MAPPING TABLE XXXXXXXXXXXXXXXXXX

AXXXAXXXXXXXXXXXXX
VMID1 00]

VMID2 01|
D3 10]
“hMiDd 1]

), 9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.4

AXXXXXXXXXXXXXXXXX

AXXXXXXXXXXXXXXXXX

AXXXAXAXAXXXNXXXXX

AAXXXXXXAXXXXXXAXXXX

AXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

FIG. 11

U.S. Patent Oct. 16, 2018 Sheet 12 of 19 US 10.104.008 B1

1214 1700

1208
1206 USER PRIVILEGE (E.G., RING 3)

TASK 1 TASK 2

LT - B - N T N - - T - - - - - T - L B T - - N - - - R - BN I - - T N T - B - - - - L - B - - - - B - - B N - - - - - B T - - - B - - - -
L T T T e R R R T T T T T i R R T T T T R R O G R R R T T T T S R S S St Rt Sl R SR R o
-
-
-
. -
- .
-
- - . . 4 . +
4 - - - L . [] . -
- . 4 i . i 4 L . 4 1 L]
+ . - - . a . -
- 4 + L . . 4 [] +
- +* LI ko +* . L I - 4 = <
[] -
-
-
-
-
-
-
-
-
-
<
-
-
-
-
-
-
-
-
-
<
-
-
-
-
-
-
<
[] 1 L]
T T . S A .
won oo T Y T L T T s L L L L LT T A Y L T

JEVICE HARDWARE
(E.G., PROCESSOR

1202

* r T

: WARE
! RESOURCE
: ALLOCATOR

1204 §

SHARED

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
!-':
RE
:--t

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

WARE
RESOURCE
MANAGER

1206

* F F F FFFFFFFFFFFFFrFrrFrFrFrFrFrFrFrFrFrrrrrrrrFrFrerFrFrerFrFrerEFrFrFerEFrEFFrFeFEFrEFFrFEFrEFFrEFrEFEFFrEFEFFEFFrEFEFrEFrFrEFrEFrEFrEFrEFrEFrEFrEFrEFrEFrEFrEFrFFrEFrEFrEFrEFFrEFrEFrEFrEFrEFrEFrEFrEFrEFrEFrEFrFEFrEFrEFEFrEnDFEFrFEFrFEFrFEFrEFrFEFrEPrFPFP
-

A A e

g’
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L
<L

L

U.S. Patent

Oct. 16, 2018 Sheet 13 of 19

SERVICE LEVEL AGREEMENT

TENANT A
PROCESSOR: XXX
SPEED: XXX
OF CPUs: XOOXXXX | 1802
CPU CYCLES: YOO X
COPROCESSOR: XXX
GPU: XXX X
DSP: XXX X
ASIC: YOO X
FPGA: YOO X
L1 CACHE: XXXXXX | 1304
L2 CACHE: XOXXXXX
L3 CACHE: XOXXXXX
L4 CACHE: XOXXXXX

1306
DRAM: XXX

1308
STORAGE: XOOKXX

1310
NETWORK: XXX

FIG. 13

US 10,104,008 B1

1300

U.S. Patent Oct. 16, 2018 Sheet 14 of 19 US 10,104,008 B1

1400

RECEIVE A REQUEST TO EXECUTE A TASK FOR A TENANT ON
SHARED HARDWARE RESOURCES
1402

DETERMINE A SET OF COMPUTING RESOURCES FOR ALLOCATION
TO THE TASK BASED ON A SERVICE LEVEL AGREEMENT ASSOCIATED
WITH THE TENANT
1404

DETERMINE A SET OF ONE OR MORE RESOURCE USAGE
CONSTRAINTS TO BE APPLIED TO THE SET OF COMPUTING
RESOURCES BASED ON THE SERVICE LEVEL AGREEMENT
ASSOCIATED WITH THE TENANT
1406

ALLOCATE THE SET OF COMPUTING RESOURCES TO THE TASK
1408

MONITOR ONE OR MORE PERFORMANCE METRICS ASSOCIATED
WITH ONE OR MORE OF THE COMPUTING RESOURCES TO
DETERMINE UTILIZATION OF THE ONE OR MORE COMPUTING
RESOURCES DURING EXECUTION OF THE TASK
1410

ENFORCE, IN HARDWARE, THE SET OF ONE OR MORE RESOURCE
USAGE CONSTRAINTS DURING EXECUTION OF THE TASK.
1412

FIG. 14

U.S. Patent Oct. 16, 2018 Sheet 15 of 19 US 10,104,008 B1

RESOURCE
UTILIZATION UTILIZATION

BASELINE

T ARy U —— L1

5 10 15 20 TIME
RESOURCE
CREDIT BALANCE
100
50
5 10 15 20 TIME

FIG. 15

U.S. Patent Oct. 16, 2018 Sheet 16 of 19 US 10,104,008 B1

RESOURCE
CREDIT BALANCE
10 CREDITS
USED
100 20 CREDITS
USED

CREDITS FROM
t=2 EXPIRES

| CREDITS FROM

=3 EXPIRES
l

:
L ==L
t=X TIME

t=2 {=x+1 {=N+1
=3 t=N+2
t=N+3

FIG. 16

U.S. Patent Oct. 16, 2018 Sheet 17 of 19 US 10,104,008 B1

1700

RECEIVE A REQUEST TO EXECUTE A TASK N
1702

' ASSIGN A TASK IDENTIFIER TO THE TASK
1704

DETERMINE A BASELINE RESOURCE CREDIT PER TIME INTERVAL OF A
COMPUTING RESOURCE
1706

MONITOR A PERFORMANCE METRIC ASSOCIATED WITH THE COMPUTING
RESOURCE TO DETERMINE A UTILIZATION AMOUNT OF THE COMPUTING
RESOURCE DURING A FIRST TIME INTERVAL
1708

DETERMINE AN UNUSED AMOUNT OF THE COMPUTING RESOURCE IN
THE FIRST TIME INTERVAL
1710

INCREMENT A RESOURCE CREDIT BALANCE ASSOCIATED WITH THE TASK
IDENTIFIER BY THE UNUSED AMOUNT OF THE COMPUTING RESOURCE
1712

DETERMINE THAT A WORKLOAD OF THE TASK DURING A SECOND TIME
INTERVAL DEMANDS AN ADDITIONAL AMOUNT OF THE COMPUTING
RESOURCE IN ADDITION TO THE BASELINE RESOURCE CREDIT
1714

ALLOCATE AN ADDITIONAL AMOUNT OF THE COMPUTING RESOURCE TO
THE TASK
1716

DECREMENT THE RESOURCE CREDIT BALANCE BY THE ADDITIONAL
AMOUNT OF THE COMPUTING RESOURCE
1718

FIG. 17

U.S. Patent Oct. 16, 2018 Sheet 18 of 19 US 10,104,008 B1

PROCESSOR(S) 1816

\ 1804(1 1 804
MEMORY 1814
BROWSER APPLICATION 1806

/ USER DEVICE(S) USER) 1802

NETWORK(S)
1808

3™ PARTY COMPUTER(S)

1812
‘_/ 1800
SERVICE PROVIDER
COMPUTER(S) 1810
7
7 d ~
rd -~ ~.
FIG. 18 RESOURCE

CONFIGURATION
MODULE 1832

DATA
STORE(S) 1830

HARDWARE

RESQURCE
ALLOCATOR

MODULE 1840

PROCESSOR(S) 1820

STORAGE 1822 |

Comm. CONN. 1824
10 DEVICE(S) B25 S

0061

US 10,104,008 B1

Sheet 19 of 19

Oct. 16, 2018

U.S. Patent

6l DIA

0167 Esmﬂmo_
|

OT6T ST6T =161
LO1]1eWJOJU|

Jos() Bunsa | UONONPO.

7061
MIOMISN

19AI9S 197135 AJ \V 321N3(Q

9061 c061
uolledl|ddy qaM\ ol

US 10,104,008 Bl

1

ALLOCATING PROCESSOR RESOURCES
BASED ON A TASK IDENTIFIER

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 14/566,648, filed Dec. 10, 2014, now U.S. Pat.

No. 9,491,112 1ssued on Nov. 8, 2016, entitled “Allocating,
Processor Resources Based on a Task Identifier,” the entirety
of which 1s incorporated herein by reference.

BACKGROUND

In a multi-tenant environment where multiple tenants or
users may concurrently execute tasks on the same comput-
ing device, virtualization technologies can be used to pro-
vide each tenant with one or more virtual machines that act
as discrete computing units within the same computing
device. Each virtual machine may have 1ts own dedicated
computing resources allocated to the corresponding tenant.
However, because each tenant may implement different
services or functionalities on the same computing device,
the amounts and types of computing resources that may be
required by each tenant can be diflerent and may change
over time.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments 1n accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 illustrates an exemplary execution environment in
which virtualization technology 1s used for performing
embodiments of the disclosure:

FIG. 2 illustrates a varniation of an exemplary execution
environment shown 1n FIG. 1 that 1s configured to allocate
dedicated resources from shared hardware resources to a
virtual machine;

FIG. 3 illustrates another varniation of an exemplary
execution environment shown 1 FIG. 1 that 1s configured to
allocate dedicated resources from shared hardware resources
to a virtual machine;

FIG. 4 15 a block diagram illustrating exemplary aspects
of a hardware resource allocation module, according to
certain embodiments of the disclosure;

FIG. 5 15 a block diagram illustrating exemplary aspects
ol a hardware resource manager module, according to cer-
tain embodiments of the disclosure:

FIG. 6 1s a block diagram illustrating exemplary aspects
of a resource configuration module, according to certain
embodiments of the disclosure:

FIG. 7 1s a block diagram illustrating an exemplary
implementation of associating context with a computer
executable instruction, according to certain embodiments of
the disclosure;

FIG. 8 1s another block diagram illustrating an exemplary
implementation of associating context with a computer
executable 1nstruction, according to certain embodiments of
the disclosure;

FIG. 9 illustrates an exemplary implementation of a
shared hardware structure, according to certain example
embodiments of the disclosure:

FI1G. 10 1llustrates another exemplary implementation of
a shared hardware structure, according to certain embodi-
ments of the disclosure;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 1llustrates another exemplary implementation of
a shared hardware resource, according to certain embodi-

ments of the disclosure;

FIG. 12 1s a block diagram illustrating techniques for
providing dedicated resources from shared resources to a
task, according to certain embodiments of the disclosure;

FIG. 13 illustrates example information from a service
level agreement, according to certain embodiments of the
disclosure:

FIG. 14 illustrates a tlow diagram of a process for
allocation computing resources, according to certain
embodiments of the disclosure;

FIG. 15 1illustrates an example of banking unused com-
puting resources, according to certain embodiments of the
disclosure;

FIG. 16 illustrates an example of resource credits expir-
ing, according to certain embodiments of the disclosure;

FIG. 17 illustrates a tlow diagram of a process for banking
unused computing resources, according to certain embodi-
ments of the disclosure;

FIG. 18 illustrates an exemplary architecture for features
and systems described herein that includes one or more
service provider computers and/or a user device connected
via one or more networks, according to at least one exem-
plary embodiment; and

FIG. 19 1illustrates an environment in which various
embodiments can be implemented.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth 1n order to provide a thorough
understanding of the embodiments. However, 1t will also be
apparent to one skilled 1n the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified 1n order not to
obscure the embodiment being described.

Techniques are described {for allocating computing
resources to tasks (or virtual machines) concurrently execut-
ing on the same computing system. In one aspect, these
techniques may 1include allocating one or more shared
hardware computing resources (e.g., processing resource,
memory resource, storage resource, input/output (I/0)
resource, etc.) to a task based on a service level agreement
between a cloud service provider and the tenant requesting
computing resources for execution of the task. In another
aspect, the techmques described herein may include accu-
mulating credits for any unused portions of an allocated
computing resource, and applying the accumulated credits to
obtain additional amounts of the computing resource when
demanded by high workload periods during the execution of
the task.

Current processing and system architectures are capable
ol executing a plurality of processing tasks simultaneously.
These tasks may include a myriad of security sensitive tasks
and non-security sensitive tasks. In addition, in some
instances, malicious tasks may manage to 1nstall themselves
and execute alongside security sensitive tasks.

A hardware processor may support the execution of a
plurality of processing tasks simultaneously by using mul-
tiple cores and/or multi-threading. A processor may include
multiple cores and/or multi-threading may provide several
logical processors for simultaneously executing and com-
pleting the execution of tasks.

A multi-core processor may include multiple processing
units within the same processor. In some embodiments, the

US 10,104,008 Bl

3

multi-core processors may share certain resources, such as
busses, buffers and first, second or third level of cache
memories. In some instances, each core 1 a single or
multi-core processor may also include multiple executing
logical processors. Such a core that supports multiple logical
processors may be referred to as a multi-threaded processor.
Besides sharing higher level cache memories and busses, the
tasks executing on a multi-threaded processor may also
share several stages of the execution pipeline and lower
level cache memories.

Therefore, 1n a multi-core and/or multi-threaded proces-
sor several hardware resources are shared amongst the
various tasks executing on the processor. Examples of these
hardware resources include several stages of the execution
pipeline of a core, several temporary storage bullers, cache
memories and busses. Other examples of hardware
resources that can be shared by various tasks executing on
the processor may include coprocessors, specialized execu-
tion units (e.g., graphical processing units (GPUs), digital
signal processing units (DSPs) and/or application specific

logic implemented 1n application specific integrated circuits
(ASICs). programmable logic units (PLUs) such as field
programmable gate arrays (FPGAs), etc.), memories internal
or close to the processor (e.g., cache memories and their
related structures), memories external to the processor (e.g.,
random access memories such as dynamic random access
memories (DRAM)), storage resources (e.g., disk space) and
input/output resources (e.g., network bandwidth).

A multi-tenant environment may refer to an environment
where multiple users or accounts, each referred to as a
“tenant,” may be serviced simultaneously by a computing
device and/or the processor of the computing device. For
example, 1n a multi-tenant environment, a processor coms-
prising one or more processing cores and operating in a
multi-tenant environment may include one processing core
that may simultaneously service mnstructions associated with
two distinct tenants. In some 1nstances, each tenant may be
operating as part of a separate virtual machine. An example
ol a multi-tenant environment 1s a cloud computing service,
where the cloud service provider may schedule the process-
ing of tasks from different tenants (e.g., users) on the same
processor, the tasks associated with a tenant may be sched-
uled as an 1nstantiation of an operating environment within
a virtual machine. In certain implementation, a virtual
machine 1s an emulation of the underlying hardware.
Executing tasks associated with a tenant 1n a virtual machine
enables a processor to service multiple tenants simultane-
ously or near simultaneously.

FI1G. 1 illustrates an exemplary execution environment in
which virtualization technology 1s used for performing
embodiments described herein. Generally, “virtualization
technology” may be used for providing 1solation between
different operating environments sharing the same physical
resources. In other words, virtualization may provide a
logical abstraction of computing resources from physical
constraints. One common abstraction 1s referred to as a
virtual machine (also known as guest), or VM, which
provides the content running 1n the VM a direct interface to
the physical hardware while maintaiming the abstraction.
Generally, virtualization technology allows multiple VMs
running on the same physical hardware to operate indepen-
dently and isolated from each other. The one or more VMs
on the system are managed by a Virtualized Machine Moni-
tor, or VMM (also known as hypervisor or host). The VMM
1s a software or firmware layer responsible for hosting and
managing VMs. The VMM usually executes at a higher

10

15

20

25

30

35

40

45

50

55

60

65

4

privilege level than the VMs and manages the system’s
processor and memory, and allocates other resources for
cach VM.

FIG. 1 illustrates device hardware 102 executing VMM
104. VMM 104 manages a first VM 106 (VM1) and a second
VM 110 (VM2). Additional VMs not specifically shown
may also be managed by VMM 104. Device hardware 102
may include one or more processors besides other compo-
nents for operating a computing system, as described in
turther detail in FI1G. 14 and FIG. 15. In certain implemen-
tations, the processors may include hardware support for
virtualization technology. For example, INTEL and AMD
brand processors provide hardware hooks that support vir-
tualization technology. Qualcomm Incorporated also pro-
vides a soltware abstraction layer which enables multiple
operating systems and other clients to execute concurrently
on a single processor, through the virtualization and por-
tioning of physical hardware resources. As described above,
certain processors may be architected to share hardware
resources when possible, for more ethiciently utilizing cer-
tain hardware components. For example, multiple process-
ing cores may share caches and certain busses on the
processor. Furthermore, in some implementations, multiple
execution threads may operate on the same thread sharing
the execution pipeline and level 1 and level 2 caches.

In FIG. 1, VMM 104 manages VM1 106 executing a first
task 108 and VM2 110 executing a second task 112. In some
istances, instructions from the first task 108 and the second
task 112 may be executing simultaneously. Simultaneously
executing two tasks may include concurrently processing at
least one executable instruction belonging to the first task
108 and at least another executable mstruction belonging to
the second task 112, where neither of the instructions
belonging to the first task and the second task has completed
execution. In some embodiments, a task may refer to a group
of executable instructions. Example of a task may include a
processing thread, a process, or an application that may
include multiple processes.

FIG. 2 1llustrates a variation of the exemplary execution
environment shown in FIG. 1 that 1s configured to allocate
dedicated resources from shared hardware resources to a
virtual machine. FIG. 2 shows a resource configuration
module 202, hardware resource allocation module 204,
hardware resource manager module 206 and shared hard-
ware structures 208. In one implementation, the resource
configuration module 202 may be implemented in VMM
104 and the hardware resource allocation module 204,
hardware resource manager module 206 and shared hard-
ware structures 208 may be implemented 1n the processor
(e.g., hardware and/or microcode).

In certain implementations, the resource configuration
module 202 may configure the underlying hardware to
associate certain portions of the shared hardware structures
208 with a specific VM. For example, 1n one implementa-
tion, the resource configuration module 202 may request
dedicated resources for VM 110 (VM 2) from the shared
hardware structures. The resource configuration module 202
may allow VMM 104 to activate and deactivate dedicated
allocation of a portion of the shared hardware resources for
one or more VMs. The resource configuration module 202
may provide different levels of granularity of control to the
VMM 104. For example, the resource configuration module
202 may allow VMM 104 to enable dynamic and automatic
allocation of resources that may be provided by the hard-
ware resource allocator module 204 based on the number of
VMs sharing the resource, the number of shared resources,
or mn some embodiments, based on respective service level

US 10,104,008 Bl

S

agreements with the tenants associated with the VMs, etc.
For example, for two VMs executing on a processing core,
the hardware resource allocator module 204 may allocate
portions of the shared hardware structures 208 difierently
based on the service level agreement that each tenant has
established with the cloud computing service provider. In
some embodiments, VMM 104 may configure the resource
configuration module 202 such that VMM 104 overrides or
dictates the fine grained policy for each shared hardware
resource 208. Exemplary details of resource configuration
module 202 are described with reference to FIG. 6 further
below.

The hardware resource allocator module 204 may allocate
or associate certain resources to specific virtual machines.
The hardware resource allocator module 204 may use the
resource configuration module 202 with specific configura-
tions (e.g., based on service level agreements with the
tenants), overrides or hints set by the VMM 104, to allocate
or associate portions of the shared hardware resources. In
some 1nstances, the hardware resource allocator module 204
may automatically and dynamically allocate and associate
portions of the shared hardware structures 208 for the VMs
executing on the processor. For example, the dynamic and
automatic allocation of resources may be different for each
VMs. In some instances, the hardware resource allocator
module 204 may reconfigure resources associated with a
particular VM 1n runtime to accommodate the changing
workloads of the VMs and various processing load demands
for the processor.

In some embodiments, the hardware resource allocator
module 204 may assign an 1dentifier (may be referred to, for
example, as a task identifier (ID) or VM 1ID) to the virtual
machine from the plurality of virtual machines and associate
a portion of the hardware resource with the first identifier.
Exemplary details of resource configuration module 202 are
described with reference to FIG. 4 further below.

The hardware resource manager module 206 may manage
allocation of the shared hardware structures 208 by using
one or more mapping tables (as shown in FIG. 10 and FIG.
11). The mapping table may provide the mapping between
the VMs and the particular shared hardware resources from
the shared hardware structures 208. The hardware resource
manager module 206 may maintain and use such mapping
tables for providing active allocation control. During execu-
tion, the hardware resource manager module 206 may pro-
vide the appropriate mapping for resource allocation for the
VMs. In addition, the hardware resource manager module
206 may also provide certain hardware implemented (e.g.,
microcode) handlers for handling active allocation manage-
ment of resources during execution of computer executable
instructions belonging to a particular VM.

Multiple techniques for allocating various portions of
cach hardware resource may be used individually or in
combination of each other. In certain implementations, the
resource configuration module 202 may configure the policy
to be used by the hardware resource manager module 206 to
allocate the hardware resources. For example, the policy can
be set based on service level agreements. In some embodi-
ments, allocation dedicated caches, bullers or other
resources for a VM may be handled by the hardware
resource manager module 206, without exiting or transier-
ring control to the VMM 104, thus maintaining high level of
performance for the computing device. Although shown as
one module 1n the figures for ease of 1llustration, the shared
hardware structures 208 may be dispersed throughout the
processor and/or the computing system. Shared hardware
structures 208 may include hardware resources such as one

5

10

15

20

25

30

35

40

45

50

55

60

65

6

or more of a Level 1 cache, a Level 2 cache, a Level 3 cache,
Translation Lookaside Bufler (TLB), Write Combmlng Bul-
ter, Branch Prediction Table, Branch Target Builer, proces-
sor cycles, specialized execution units, memories such as
DR AMs external to the processor, storage resources such as
disk space and input/output resources such as network
interface unaits.

Although, hardware structures are discussed throughout
the disclosure, in some embodiments, access to temporal
hardware resources, such as processor cycles, processor
instruction priorities, memory bus accesses, cache accesses,
I/O accesses, and network accesses may also be allocated
using techniques described herein. For example, certain
VMs may be assigned time-slices for accessing certain
shared temporal resources. In some instances, small random
delays may be introduced in the access patterns, such that
the distribution of access times may be dependent on other
VMs. Alternatively, the temporal hardware resource may be
time-division multiplexed, such that a given VM has a
predictable pattern of time slots, no matter what the other
VMs are doing.

FIG. 3 illustrates another variation of the exemplary
execution environment shown 1n FIG. 1 that 1s configured to
allocate dedicated resources from shared hardware resources
to a virtual machine. As shown 1n FIG. 3, at least a portion
or all of the hardware resource allocator module 304 may be
implemented 1n the VMM 104, rather than in the device
hardware 102. Similar to what has been described with
reference to FI1G. 2, the allocation controls for resources for
the VMs may be configured by VMM 104 via the resource
configuration module 302. The hardware resource allocator
module 304 may receive mput from the resource configu-
ration module 302 to allocate and/or associate the VMs with
specific portions of the shared hardware structures 308. The
resource configuration module 302 may be similar to the
resource configuration module 202 of FIG. 2, with a few
variations for interacting with the hardware resource allo-
cator module 304 implemented 1n the VMM 104. Exemplary
details of resource configuration module 302 are described
with reference to FIG. 6 further below.

Implementing the hardware resource allocator module
304 1n the VMM 104 may allow the user or the VMM 104
vendor with greater control of how the shared hardware
structures 208 are configured and allocated. For example,
different variations of the hardware resource allocator mod-
ule 304 may be provided for different uses cases. For
instance, the hardware resource allocator module 304 may
be diflerent for a VMM 104 executing on a cloud service
provider server rather than the hardware allocator module
304 for a VMM 104 executing on a workstation computer in
an oflice. Exemplary details of hardware resource allocator
module 304 are described with reference to FIG. 4 further
below.

Similarly, the hardware resource manager module 306
and the shared hardware structures 308 may be functionally
similar to the hardware resource manager module 206 and
the shared hardware structures 208. However, the hardware
resource manager module 306 and the shared hardware
structures 308 may be diflerent, 1n that they may expose an
interface to the VMM 104 for directly interacting and
configuring portions of the respective modules. Exemplary
details of the hardware resource manager module 306 are
described with reference to FIG. 5.

FIG. 4 1s a block diagram illustrating exemplary aspects
of the hardware resource allocation module, according to
some embodiments of the disclosure. Hardware resource

allocation module 500 may be implemented as the hardware

US 10,104,008 Bl

7

resource allocation module 204 in FIG. 2 or the hardware
resource allocation module 304 in FIG. 3, or any combina-
tion thereof. Furthermore, VMM configured settings module
402, automatic resource management module 404, dynamic
load balancing module 406, resource mapping module 408, 5
resource allocation policy module 410, ID space manage-
ment module 414 and resource monitoring module 416 may
be implemented 1n hardware, soltware, firmware (e.g., pro-
cessor microcode) or any combination thereof.

The hardware resource allocator module 400 may appro- 10
priately allocate or associate certain hardware resources,
such as portions of the shared hardware structures 208 with
specific VMs. The hardware resource allocator module 204
may use specific configurations (e.g., set based on service
level agreements), overrides or hints provided by the VMM 15
104 with the resource configuration module 600 to allocate
or associate portions of the shared hardware resources. In
some 1nstances, the hardware resource allocator module 400
may automatically and dynamically allocate and associate
the shared hardware resources for the VMs executing on the 20
processor. For example, the hardware resource allocator
module 400 may reconfigure resources associated with a
particular VM 1n runtime to accommodate for changing
workload of a task, the number of active VMs or tasks
associated with the processor. 25

The hardware resource allocator module 400 may receive
values (e.g., resource credits) from resource configuration
module described in further detail in FIG. 6 at the VMM
configured settings module 402. The configurations received
at the VMM configured settings module 402 may activate 30
resource allocation features and determine or override sev-
cral features or configurations for the hardware resource
allocator module 400. The VMM configuration settings
module 402 may disseminate the different configuration
values received from the resource configuration module 600 35
(via VMM 104) to the appropriate modules in the hardware
resource allocator module 400. In some 1nstances, the con-
figuration values from the resource configuration module
may be recerved via hardware registers, memory locations or
memory pointers by the VMM configured settings module 40
402 1n the hardware resource allocator module 400.

Automatic resource management module 404 may allow
for automatic resource configuration and allocation of
shared hardware resource based on example considerations
such as service level agreements, workload of a task, the 45
number of VMs, resources available, etc. In some instances,
the resource configuration module described in further detail
in FIG. 6 may activate the automatic resource management
module 404. In other implementations, the automatic
resource management module 404 may be activated to 50
automatically configure the resources associated with VMs
once the resource allocation features are enabled. If the
functions performed by the automatic resource management
module 404 are deactivated by the resource configuration
module 600, the VMM 104 may manually reconfigure and 55
associate certain VMs with certain resources associated with
certain portions of the shared resources using configuration
options 1n the resource configuration module 600.

Dynamic load balancing module 406 may dynamically
rebalance the resources associated with any particular VM. 60
For example, a processing core may be enabled to run two

VMs at a first time. In such a scenario, according to some
embodiments, the first VM may be allocated one/third the

resources of a shared hardware structure, such as a cache and
the second VM may be allocated one/third the resources of 65
the shared hardware structure, leaving about one/third of the
shared hardware structure as a resource for the VMM and

8

other miscellaneous tasks. However, if at a later point 1in time
the total number of VMs 1ncrease to four VMs from two
VMs, the device hardware 102 may be configured to
dynamically load balance the usage of the shared hardware
resources 208/308. For example, the allocation of the shared
hardware structure for the first VM may go down from
one/third of the shared hardware structure to one/fifth to
accommodate for the additional VMs. In some embodi-
ments, dynamic load balancing module 406 may throttle the
resources assocliated with each task based on their demands,
resources available, service level agreements or combina-
tions thereof.

In certain implementations, dynamic load balancing may
be performed for both active VMs and VMs that are not
currently active but are scheduled for execution on the
processing core. In other implementations, dynamic load
balancing may be performed only for active VMs executing
on a processing core. For example, 1n some embodiments,
where a processing core may have multiple processing
threads executing simultaneously on the same processing
core and sharing hardware structures, such as caches,
embodiments described herein may appropriately allocate
resources for each of the active VMs associated with each of
the currently executing processing threads. In other imple-
mentations, each processing thread of each processing core
may maintain several active VMs and their cached state for
fast switching between multiple VMs and therefore may be
configured to enable dynamic load balancing using the
dynamic load balancing module 406.

Resource mapping module 408 may be configured to
generate a mapping or indication for the mapping of the
VMs to certain portions of the shared hardware structures
208/308. For example, in FIGS. 1-3, for VM 110 (VM 2),
executing a task 112, the VMM 104 may indicate to the
underlying hardware to reserve a first way of a cache for VM
110 (VM 2), such that all cache access performed by the VM
110 (VM 2) are serviced by the first way of the cache. As
another example, VMM 104 may 1ndicate to the underlying
hardware to reserve a coprocessor for execution of task 112.

The ID space management module 414 may manage the
usage of the VM IDs 1n a system where a mapping may exist
between the VMs and the shared hardware resources. In a
multi-socket or multi-core system, the ID space manage-
ment module 414 may use a large enough address space,
such that the invalidation of a used VM ID may be deferred
for a significantly long period to avoid frequent inter-
processor mterrupts to mvalidate VM IDs and synchronize
the ID space amongst multiple sockets. This may allow
amortization of the time cost associated with synchronizing
the VM ID set amongst the various processing entities on the
system.

In some 1nstances, the ID space management module 414
may assign an identifier to a portion of the hardware
resource and associate or provide a mapping between the
VM ID of the VM and the portion of the shared hardware
structure 208. In other implementations, ID management
module 414 may directly tag the portion of the hardware
resource with the VM ID.

The hardware resource allocator module 400 may also
implement a resource momtoring module 416. The resource
monitoring module 416 may enable the underlying hardware
for momtoring overall consumption of resources by any
particular VM or task. The resource monitoring module 416
may configure certain performance counters provided by the
device hardware 102. In some embodiments, the resource
monitoring module 416 may activate resource allocation and
initiate automatic or pre-configured allocation of resources

US 10,104,008 Bl

9

based on the service level agreement, resource consumption
or events monitored for a specific VM.

FIG. 5 15 a block diagram illustrating exemplary aspects
of the hardware resource manager module, according to
certain embodiments of the disclosure. Hardware resource
manager module 500 may be implemented as the hardware
resource manager module 206 1n FIG. 2 or the hardware
resource allocation module 306 in FIG. 3, or any combina-
tion thereof. Furthermore, allocation mapping module 502,
allocation control 504 and access exception handler 506 may
be implemented 1n hardware, solftware, firmware (e.g., pro-
cessor microcode) or any combination thereof.

Allocation mapping module 502 may maintain one or
more mapping tables (as shown in FIG. 10 and FIG. 11)
accessible by the hardware resource manager module 206.
The mapping tables may associate the VM IDs (may also be
referred to as task IDs) and portions of the particular shared
hardware resources from the shared hardware structures
208/308. In some implementations, allocation mapping
module 502 may maintain the mapping tables 1n system
memory. In other implementations, allocation mapping
module 502 may cache some or all of the entries from the
mapping tables 1n the processor for fast access by compo-
nents of the hardware resource manager module 206, such as
the allocation control module 504.

In some 1nstances, the access control module 504 may
manage access to the shared hardware structures 208/308
using 1nformation stored and maintained by the access
mapping module 502. During execution of instructions from
the various VMs the access control module 504 may provide
the appropriate mapping for access request based on the
originating VM for the computer executable instruction
making the request.

In some implementations, allocation control module 504
may allow or restrict access for computer executable 1nstruc-
tions executed from the VM to the portion of the hardware
resource from the shared hardware structures 208/308 asso-
ciated with an VM 1identifier. Allocation control module 504
may also restrict access to the portion of the hardware
resource associated with the VM identifier such that the
computer executable instructions executed from the virtual
machine can only access the portion of the shared hardware
resource associated with the VM identifier. In some imple-
mentations, allocation control module 504 may restrict
access to the portion of the shared hardware resource asso-
ciated with the VM 1identifier such that the computer execut-
able 1nstructions executed from the virtual machine cannot
access the portion of the hardware resource associated with
VM identifier from the hardware resource.

Multiple techniques for restricting access to various por-
tions of each hardware resource may be used individually or
in combination with each other. In certain implementations,
the resource configuration module 202 may configure the
policy to be used for resource allocation by allocation
control module 504.

Access exception handler 506 may provide certain hard-
ware implemented (e.g., microcode) handlers for handling
access restriction of resources during the execution of
istructions belonging to a particular VM. In some
instances, access exception handler 506 may transier control
to the VMM 104 for a VM operation and provide the VMM
104 with additional information regarding the access request
by the VM.

FIG. 6 1s a block diagram illustrating exemplary aspects
of the resource configuration module, according to certain
embodiments of the disclosure. Resource configuration
module 600 may be implemented as part of VMM 104, as

10

15

20

25

30

35

40

45

50

55

60

65

10

discussed with reference to FIG. 2 and FIG. 3. In certain
instances, even though the resource configuration module
may be implemented as part of the VMM 104, the resource
configuration module 400 may access certain hardware
resources, such as configuration registers provided by the
device hardware 102, such as the processor (hardware or
microcode), or any combination thereof.

Furthermore, activate resource allocation module 602,
activate automatic resource configuration module 604, acti-
vate dynamic load balancing 606, task/VM ID module 608,
resource mapping module 610, restriction policy module
612 and activate resource monitoring module 614 may all be
implemented in software or i conjunction with certain
features implemented 1n hardware, software, firmware (e.g.,
processor microcode) or any combination thereof. Resource
configuration module 600, using one or more modules
above, may provide the configuration for allocating
resources to a VM from a shared hardware structure 208/
308.

In some implementations, the resource configuration
module 600 may provide an interface for programming
mechanisms, features and configurations provided by sev-
eral modules and components of the processor (hardware or
microcode), such as the hardware resource allocator module
400 and the hardware resource manager module 500. For
example, 1n one implementation, the processor may provide
the configuration registers for enabling/disabling dynamic
allocation of shared hardware resources, performance moni-
toring of certain tasks/VMs, dynamic load balancing, etc. in
VMM 104 for programming such configuration parameters.

In some implementations, the resource configuration
module 600 may configure the underlying hardware to
associate certain portions of the shared hardware structures
208/308 with a specific VM. For example, the resource
configuration module 600 may request dedicated resources
for VM 110 (VM 2), e.g., based on a service level agree-
ment. The resource configuration module 600 may provide
different levels of granularity of control to the VMM 104 for
controlling the allocation of resources to specific VMs.

Activate resource allocation module 602 may activate or
deactivate the resource allocation feature. Activate resource
allocation module 602 may provide a combination of set-
tings to activate or deactivate the resource allocation feature
globally for the processor, and/or for per core, per thread, per
task and/or per VM basis. For example, activate resource
allocation module 602 may set one or more activate bits 1n
one or more configuration registers provided by the proces-
sor to activate the allocate resource feature and clear the one
or more activate bits to deactivate the allocate resource
teature. Several such configuration bits may be provided for
activating or deactivating the resource allocation feature on
various different granularities.

Activate automatic resource configuration module 604
may provide the automatic resource management module
404 implemented as part of the hardware resource allocator
module 400 a hint to allow for automatic resource configu-
ration and allocation of shared hardware resource, based on
example considerations such as service level agreement,
workload of a task, the number of VMs and resources
available. In instances where the VMM 104 may disable
automatic resource configuration in the activate automatic
resource configuration module 604, VMM 104 may provide
the resource mapping using the resource mapping module
610 and the restriction policy module 612 1n the hardware
resource allocator module 600.

Activate dynamic load balancing module 606 may pro-
vide the dynamic load balancing module 406 implemented

US 10,104,008 Bl

11

as part of the hardware resource allocator module 400 a hint
to allow for dynamic load balancing of shared hardware
resources. Dynamic load balancing, as described in FIG. 4,
may allow for rebalancing of resources associated with the
VM based on the changing processing demands for the
computing system.

In certain aspects, Task/VM 1D module 608 may identify
the task and/or VM for which to activate the resource
allocation feature. For example, referring to FIGS. 1-3,
VMM 104 may configure Task/VM ID module 608 to
identify and activate the resource allocation feature for VM
110 (VM 2). The determination of activating the resource
allocation feature may be based on a service level agreement
associated with the tenant of any particular VM. For
instance, VMM 104 may choose to activate the resource
allocation feature for a certain number of banks of DRAMsSs
to VM 110 (VM2) under a service level agreement with the
tenant or user of VM 110 (VM 2).

In some implementations, a group ID may be used by the
Task/VM ID module 608 for identifying and activating the
resource allocation feature for a pluarlity of VMSs or Tasks.
For example, 1n one implementation, a mask may be used to
select a group of VMs or Tasks.

In some 1mplementations, where automatic resource con-
figuration 604 may be deactivated, the resource mapping
module 610 may be configured to provide the VMM 104
with an interface for providing a mapping or indication for
the mapping of the VMs to certain portions of the shared
hardware structures 208/308. Changes to the mapping by the
resource mapping module may result i updates to the
allocation mapping module 502 in the hardware resource
manager module 500.

In some aspects, the restriction policy module 612 may
provide policy for the allocation restrictions associated with
shared hardware resources for any VM. For example, 1n one
implementation, a specific portion of the shared hardware
structure may be restricted from being associated with a
specific VM ID (via resource mapping module). For
example, 11 access to a specialized execution unit 1s not part
ol a service level agreement associate with a particular VM,
the VM may be restricted from using the specialized execu-
tion unit. In some instances, the allocation policy for the
restrictions selected in the restriction policy module 612
may update the allocation control module 504 in the hard-
ware resource manager module 500.

In some aspects, the resource configuration module 600
may allow VMM 104 to activate resource monitoring via the
activate resource monitoring module 614. The activate
resource monitoring module 614 may activate resource
monitoring using performance monitors in the resource
monitoring module 416 1n the hardware resource allocation
module 400. Activating resource monitoring may enable the
underlying hardware to monitor consumption or gather
information regarding specific events for the resource con-
sumption by any particular VM or task and appropriately
take action for misbehaving VMs or tasks.

FIG. 7 1s a block diagram illustrating an exemplary
implementation of associating context with a computer
executable 1nstruction, according to certain embodiments.
As described herein, the allocation control policies for an
istruction belonging to a first VM 704 may be different
from the allocation control policies for an instruction
belonging to a second VM 706. In one implementation, the
mapping or association ol the VM with portions of the
shared hardware structure 208 may be based on the map-
pings maintained by the allocation mapping module 502 of
the hardware resource manager module 500. The allocation

10

15

20

25

30

35

40

45

50

55

60

65

12

control policy may be reflected in the allocation control
module 504 of the hardware resource manager module 500.

As shown 1n FIG. 7, 1n one implementation, the processor
may maintain the current context associated with the active
VM 1n a current context register 702. In some implementa-
tions, the current context may be maintammed for each
processing thread on the processor. The current context
register 702 may associate the executing instructions for the
processing thread or core with an active VM. In some
implementations, based on the contents of the current con-
text register 702, the allocation control module or the shared
hardware structure 208 may restrict/allow access to certain
portions of the shared hardware structures 208, using tech-
niques described herein.

In certain 1mplementations, switching the execution
between one VM to another VM may be implemented as a
serializing event, such that all computer executable instruc-
tions before the switch occurs (i.e., all the instructions
belonging to the VM prior to the switch) are completed
and/or flushed from the processor pipeline before the new
istructions ifrom the newly loaded VM start executing.
Implementing the VM switch as a serializing event ensures
that instructions from the VM after the VM switch do not
gain access to the shared hardware resources associated with
the VM prior to the VM switch.

FIG. 8 1s another block diagram illustrating an exemplary
implementation of associating context with a computer
executable instruction, according to some embodiments. As
shown 1n FIG. 8, each instruction may be tagged with the
VM ID that the computer executable mnstruction 1s associ-
ated with. For example, as shown 1n block 802, the mstruc-
tion from the VM 106 may be tagged with VM ID 1, and as
shown 1n block 804, the 1nstruction from the VM 110 may
be tagged with VM ID 2. In certain implementations, the
instructions may be tagged at any of various stages of the
processor pipeline, such as fetch and/or decode stages of the
processing pipeline.

In some 1mplementations, the shared hardware structure
208/308 may include logic to check 1f a portion of the shared
hardware structure 1s associated with the VM ID tagged to
the computer executable mnstruction requesting information.
In some implementations, the access control module 504
may determine the access restrictions for a given instruction
based on the tag associated with the instruction.

In some 1mplementations, a combination of techniques
may be used in determining the VM an 1nstruction belongs
to for the purposes of allowing access to certain portions of
a shared hardware structure 208/308. In one example sce-
nario, as described 1n FIG. 7, the current context register 702
may provide the VM association for the mstructions. How-
ever, for certain instructions with long latencies, the proces-
sor may tag the instruction with the VM ID and allow the
instruction to continue completion even after the serializing
event (1.e., switch from one VM to another VM).

FIG. 9 illustrates an exemplary implementation of a
shared hardware structure, according to some embodiments.
The shared hardware structure 900 from FIG. 9 may repre-
sent one 1mplementation of the shared hardware structures
(208 and 308) represented in FIG. 2 and FIG. 3. In FIG. 9
several lines of data are depicted, wherein each data line 1s
tagged with a VM ID. For example, 1n FIG. 9, some of the
lines are tagged with VM ID 1 and others are tagged with
VM ID 2. In one mmplementation, the shared hardware
structure may have logic for determining the VM that the
access request belongs to. For example, the checking logic
in the shared hardware structure 900 may check the current
context register 702 (as described 1n FIG. 7) or the tag

US 10,104,008 Bl

13

associated with the access request (as described 1n FIG. 8)

to determine the VM from which the access request origi-
nates. In one implementation, under a specific access policy,

if the access request originates from a VM with VM ID 1 to
access a line tagged with VM 1D 1, the access to the line may 5
be granted. On the other hand, 11 the access request origi-
nates from a VM with VM 1D 1 to access a line tagged with
VM ID 2, the access to the line may be denied. In some
implementations, an access exception may be generated 1n
response to an invalid or 1llegal access request and handled 10
by the access exception module 3506 of the hardware
resource manager module 500.

FIG. 10 1illustrates an exemplary implementation of a
shared hardware structure, according to some embodiments.
The shared hardware structure 1000 from FIG. 10 may 15
represent one implementation of the shared hardware struc-
tures (208 and 308) represented 1n FIG. 2 and FIG. 3. FIG.

10 1llustrates an example shared hardware structure, such as

a 4-way cache 1006. Generally, an access request for a line

in the cache 1006 may result 1n an access to a line residing 20
at any one ol the ways of the cache, based on the cache
eviction policy. In some aspects of the disclosure, certain
ways of the cache may be reserved for specific VMs.

In some implementations, the VMM 104, via the resource
configuration module 600, may request resource allocation 25
and management for the VM 110 (VM 2). In some 1mple-
mentations, the resource mapping module 408 may generate
the mapping for the VM, using a mapping table 1004. In
some aspects, mapping table 1004 may be maintained by the
allocation mapping module 502 of the hardware resource 30
manager module 500.

As shown 1n FIG. 10, the allocation control module 504
may use the current context register 702 1n determining the
current executing VM and associate the reserved way of the
cache that may be used by the computer executable mstruc- 35
tions executing in the current context. In some 1mplemen-
tations, the current context may be cached in the shared
hardware structure or a temporary bufler quickly accessible
to the shared hardware structure. As shown 1n FIG. 10, the
current context register 702 may have a VM ID for the VM 40
106 (VM 1) that may translate to the first way of the cache
1006, using the mapping table 1004.

FIG. 11 1illustrates another exemplary implementation of
a shared hardware resource, according to certain embodi-
ments of the disclosure. The shared hardware structure 1100 45
from FIG. 11 may represent one implementation of the
shared hardware structures (208 and 308) represented 1n
FIG. 2 and FIG. 3. For example, the shared hardware
structure may be a branch prediction bufler, or a table
lookaside bufler or any other bufler. In some 1mplementa- 50
tions, a computer executable instruction accessing shared
hardware structure 1106 and originating from a VM may be
associated with a portion of the shared hardware structure
using a mapping table 1104. The mapping table may asso-
ciate the VM ID with a secondary ID that may be used to 55
statically or semi-statically segment the shared hardware
structure 1106 into multiple portions. As discussed previ-
ously, the current context for the VM may be accessed from
the current context register 702 or a tag associated with the
computer executable instruction or any other suitable 60
method. The mapping table may be maintained by the
allocation mapping module 502 of the hardware resource
manager module 500.

FIG. 12 1s a block diagram illustrating techniques for
allocating portion of a shared hardware resource to a task, 65
according to some embodiments. FIG. 12 illustrates device
hardware 1202 executing privileged code 1n kernel privilege

14

1212. Device hardware 1202 may include one or more
processors, as well as other components for operating a
computing system. In some implementations, the processors
may provide hardware support for allocating portions of the
shared hardware structures to specific tasks and managing
such allocations. Examples of such processors may include
but are not limited to Intel®, Qualcomm® and AMD®
processors. Similar to what has been discussed before, for
example, with reference to FIG. 1, certain processors may be
architected to share hardware resources, when possible, for
more ethiciently utilizing certain hardware components. For
example, multiple processing cores may share caches and
certain busses on the processor. Furthermore, in some imple-
mentations, multiple execution threads may operate on the
same processor sharing the execution pipeline and level 1
and level 2 caches.

In some implementations, privileged code/binary execut-
ing at kernel privilege 1212 may include operating system
code/binary running at very high privilege levels on the
device hardware. In some aspects, the level of privilege may
determine the level of direct access and control of the
hardware resources. For example, the kernel of the operating
systems and drivers may operate at kernel privilege level
1212 (e.g., Ring O prnivilege level), and tasks such as
applications and processes may operate at user privilege
level 1214 (e.g., Ring 3 privilege level). The binary execut-
ing at kernel privilege 1212 may manage a first task 1206
and a second task 1208. In some embodiments, a task may
refer to a group of computer executable instructions.
Example of a task may include a processing thread, a
process or an application that may include multiple pro-
CEeSSes.

FIG. 12 further shows resource configuration module
1203, hardware resource allocator module 1204, hardware
resource manager module 1206 and shared hardware struc-
tures 1208. Resource configuration module 1203 may be
implemented as part of kernel privilege 1212 1n the operat-
ing system, and hardware resource allocator module 1204,
hardware resource manager module 1206 and shared hard-
ware structures 1208 may be implemented as part of device
hardware 1202, such as the processor (hardware and/or
microcode).

According to some aspects, the resource configuration
module 1203 may configure the underlying hardware to
associate certain portions of the shared hardware structures
1208 with a specific task. In some instances, the resource
configuration module 1203 may use a task ID to associate a
task with a specific portion of the shared hardware structure
1208. In some implementations, resource configuration
module 1203 may configure computing device 1200 such
that all access requests originating from a task and directed
towards the shared hardware structure 1208 are restricted to
certain portions of the shared hardware structure 1208, and
no other tasks may access the resources specific to the
second task 1208. Resource configuration module 1203 may
be implemented using any combination of techniques dis-
cussed above with reference to FIG. 6, where portions of the
shared hardware structures are associated with the tasks and
task IDs and/or with the VMs and VM IDs.

The hardware resource allocator module 1204 may appro-
priately allocate or associate certain resources with specific
tasks. The hardware resource allocator module 204, may use
specific configurations, overrides or hints set by the resource
configuration module 1203 from the kernel privileged code/
binary 1212 in allocating or associating portions of the
shared hardware resources to specific tasks. In some
instances, the resource allocator module may automatically

US 10,104,008 Bl

15

and dynamically allocate and associate the shared hardware
resources for the tasks executing on the processor. Hardware
resource allocator module 1204 may be implemented using
any combination of techniques discussed above with refer-
ence to FIG. 4, where portions of the shared hardware
structures are associated with the tasks and task IDs and/or
with the VMs and VM IDs.

In some aspects, hardware resource manager module
1206 may manage access to the shared hardware structures
1208. For example, in one implementation, the hardware
resource allocator module 1204 may create a mapping table
in the hardware resource manager module 1206 between the
tasks and the particular shared hardware resources from the
shared hardware structures 1208. During execution, the
hardware resource manager module 1206 may provide the
appropriate mapping for resource accesses. In addition, the
hardware resource manager module 1206 may also provide
certain hardware implemented (e.g., microcode) handlers for
handling access to restricted resources during the execution
of instructions belonging to a particular task. Hardware
resource manager module 1206 may be implemented using,
any combination of techniques discussed above with refer-
ence to FIG. 5, where portions of the shared hardware
structures are associated with the tasks and task IDs and/or
with VMs and VM IDs.

In certain aspects of the disclosure, the accesses to the
shared hardware structures 1208 may be handled by the
hardware resource manager module 1206 implemented in
the device hardware 1202. For example, for accessing
dedicated caches, bufllers or other resources for a task, the
access may be handled by the hardware resource manager
module 1206. Although, shown as one module 1n the figures
for ease of illustration, the shared hardware structures 1208
may be dispersed throughout the processor and/or the com-
puting system. Shared hardware structures may include
hardware resources, such as one or more of a Level 1 cache,
a Level 2 cache, a Level 3 cache, Translation [Lookaside
Bufler (TLB), Write Combining Bufler, Branch Prediction
Table, Branch Target Bufler, processor cycles, memory bus
access, cache access, I/O access, network access, specialized
execution units, memories such as DRAMs external to the
processor, storage resources such as disk space, input/output
resources such as network interface units, etc.

Techniques and components described with reference to
FIGS. 1-11 may be used 1n any combination to implement
aspects of the modules or components, such as the kernel
privileged components 1212 and/or the device hardware
1202 described 1n FIG. 12 without deviating from the scope
of the invention. In some aspects, techniques described 1n
FIGS. 1-11 are applicable to FIG. 12 by associating portions
of the shared hardware structures with tasks and task IDs
and/or with VMs and VM 1Ds.

FI1G. 13 illustrates examples of information from a service
level agreement (SLLA) 1300 that may be used for allocating
or associating hardware resources with a particular task or
virtual machine instance, according to some embodiments.
In the example shown, SLA 1300 may be an agreement
between tenant A and a shared hardware resource provider
such as a cloud service provider. SLA 1300 may define the
types and amounts of computing resources and services that
the shared hardware resource provider has agreed to provide
to tenant A. In some embodiments, the SLA may omit the
specific description of some or all of the various types and
amounts of computing resources, and may 1nstead define the
level of service provided to a tenant as one of multiple levels
of services available (e.g., tier 1, tier 2, tier 3, etc.). In such
implementations, each tier level of service may map to a

10

15

20

25

30

35

40

45

50

55

60

65

16

listing of types and amounts of computing resources, and the
particular level of service 1s used to dernive the information
shown 1 FIG. 13.

In some embodiments, the amount of computing
resources available to a tenant under the SLA can be used to
scale appropriate or proportionate amounts of other types of
computing resources for the tenant. For example, suppose
under the SLA, a tenant 1s provided with 100 processor
cycles per hour, and this retlects a 50% utilization of a
processing unit. In such a scenario, 50% of the cache and
DRAMSs can also be made available to the tenant such that
suflicient supporting resources are available to the tenant to
utilize the full 50% of the processing unit.

According to some embodiments, SLA 1300 may
describe processing resources 1302 from the shared hard-
ware resources that tenant A may have access to or may
utilize for execution of a task under the agreement. These
may include the type of processor (e.g., manufacturer,
model), speed of processor, number of processors and num-
ber of processor cycles per time interval (e.g., number of
cycles per hour). In some embodiments, the processing
resources may also include access to coprocessors and/or
specialized execution units coupled to the processor, which
can be used to execute application specific or complex tasks
or instructions. In some implementations, the specialized
execution units may execute the application specific or
complex instructions 1n parallel to the processor. Examples
of specialized execution units may include coprocessors,
graphic processing umts, digital signal processors, applica-
tion specific itegrated circuits and/or logic implemented in
programmable logic devices such as field programmable
gate arrays (FPGAs).

In some embodiments, SLA 1300 may describe the types
and amounts of memory resources 1304 and 1306 available
to tenant A. The memory resources may include memory
resources that are internal or are close to the processor 1304
(e.g., L1 cache, L2 cache, L3 cache, L4 cache) and their
related structures (e.g., TLB) and/or memory resources that
may be external to the processor 1306 such as DRAMs. SLA
1300 may describe the amounts of each memory resource
for allocation to tenant A, such as the number of ways of
cache, or the number of banks of DRAM. SLA 1300 may
also describe other computing resources that are available to
tenant A such as storage resources 1308 and 1I/O resources
1310. For example, SLA 1300 may describe the types and
amounts of storage (e.g., disk or steady state storage, storage
space, access speed, etc.). SLA 1300 may also describe 1/O
bandwidth available for tenant A such as network upload and
download speeds.

It should be understood that the computing resources
described in SLA 1300 are just examples, and that other
SLAs may describe fewer or more computing resources that
may be available to a tenant, and that some computing
resources not specifically described in a SLA can be implied
from the information provided in the SLA.

FIG. 14 1llustrates a flow diagram of a process 1400 for
allocating or associating computing resources to a task or
virtual machine instance, according to some embodiments.
Some or all of process 1400 (or any other processes
described herein, or variations and/or combinations thereof)
may be performed under the control of one or more com-
puter systems configured with executable instructions and
may be implemented as code (e.g., firmware, executable
instructions, one or more computer programs Or One or more
applications) executing collectively on one or more proces-
sors, or by hardware or combinations thereof. The code may
be stored on a computer-readable storage medium, for

US 10,104,008 Bl

17

example, mn the form of a computer program that may
include a plurality of instructions executable by one or more
processors. The computer-readable storage medium may be
non-transitory. For example, some or all of process 1400 can
be performed by a hardware resource allocator module (e.g.,
hardware resource allocator module 400), or some or all of
process 1400 can be performed by hardware logic, or a
combination of hardware logic and hardware resource allo-
cator module, as explained further below.

At block 1402, a request to execute a task for a tenant on
shared hardware resources 1s recetved at a computing
device. The request may include requesting instantiation of
a virtual machine instance for the tenant to execute the task.
In some embodiments, a task ID or VM ID can be assigned
to the task or virtual machine instance. The task may mvolve
executing one or more instructions, and may include a
processing thread, a process, or an application that may
include multiple processes. The shared hardware resources
may include one or more computing resources, and may
include processing resources, memory resources, storage
resources and/or I/O resources. Processing resources may
include one or more processors, processor cores, Coproces-
sors, specialized execution units such as GPUs, DSPs,
ASICs, programmable logic devices (e.g., FPGAs) or other
logic circuits that can execute application specific or com-
plex instructions. Memory resources may include various
levels of cache memories (e.g., one or more blocks of one or
more of a Level 1 cache, a Level 2 cache, a Level 3 cache
and a Level 4 cache, etc.) and their related structures such as
TLBs, system memories such as one or more banks of
DRAMSs, etc. Storage resources may include disk space or
other system storage. I/0 resources may include resources to
transierring data between the computing device hosting the
computing resources and the external world such as network
interface components and network bandwidth.

At block 1404, process 1400 determines a set of comput-
ing resources for allocation to the task or to the wvirtual
machine istance for execution of the task based on a service
level agreement (SLLA) associated with the tenant. For
example, a SLA associated with the tenant such as SLA 1300
may be used to determine the set of computing resources to
allocate to the task. In some embodiments, the information
from the SLA can be used by resource allocation policy
module 410 to set the policy on how the resources can be
allocated to this tenant. The information regarding the
computing resources to provide to a tenant can be stored, for
example, 1n a table associated with a task 1dentifier assigned
to the tenant. The set of computing resources may include a
processing resource, and in some embodiments, may further
include at least one of a memory resource, a storage
resource, and an I/O (1input/output) resource, such as those as
described above.

At block 1406, process 1400 determines a set of one or
more resource usage constraints to be applied to the set of
computing resources based on the SLA associated with the
tenant. For example, a resource usage constraint can be a cap
on the consumption amount of a computing resource per
time 1interval, a fixed quantity or fixed proportion of a
computing resource to allocate to the task, a limit on how
long or how much access of a computing resource can be
given to a task or any combination thereof. Examples of
resource usage constraints may include a number of proces-
sor cycles per time 1nterval, a number of bytes of memory
accessed by a memory controller per time interval, a number
of megabytes of DRAM, a number of gigabytes of disk
storage, access to a number of coprocessors or specialized
execution units, etc. In some embodiments, a mapping of the

5

10

15

20

25

30

35

40

45

50

55

60

65

18

resource usage constraints to the corresponding computing
resources and tenant can be stored 1n memory (e.g., an array
or table in DRAM) or 1n hardware registers. During execu-
tion of the task or during the life of the virtual machine
instance, this mapping can be accessed by hardware logic to
perform hardware enforcement of the resource usage con-
straints on the computing resources.

At block 1408, the set of computing resources for execu-
tion of the task can be allocated to the task or to the virtual
machine instance used for execution of the task. If a virtual
machine 1nstance for execution of the task has not instanti-
ated yet, a virtual machine instance can be instantiated on
the shared hardware resources. Allocating the set of com-
puting resources may involve associating the set of com-
puting resources to a task ID or VM 1D associated with the
tenant requesting execution of the task, for example, by
resource mapping module 408. Examples of allocating the
set ol computing resources may include allocating one or
more blocks of one or more of a Level 1 cache, a Level 2
cache, a Level 3 cache and a Level 4 cache for execution of
the task based on the SLA (e.g., by tagging one or more
blocks of the corresponding cache with the task ID or VM
ID associated with the task to expose or make visible the
corresponding blocks of cache to the task); allocating one or
more banks of dynamic random access memory (DRAM)
for execution of the task based on the SLA (e.g., by a
memory controller tagging one or more blocks or one or
more ranks of DRAM with the task ID or VM ID associated

with the task to expose or make visible the corresponding
banks or ranks of DRAM to the task); providing access to
one or more coprocessors for the execution of the task based
on the SLA; and/or providing access to one or more copro-
cessors and/or specialized execution units for the execution
ol the task based on the SLA. It should be understood that
these are just examples, and that any portions of any of the
shared hardware resources described herein can be allocated
or assigned to a task or virtual machine instance.

In some embodiments, access to a coprocessor and/or
specialized execution umt can be achieved by way of
appropriately executing a coprocessor 1mstruction in a copro-
cessor or executing a specialized machine instruction in the
corresponding specialized execution unit. When a coproces-
sor 1struction for a coprocessor or a specialized machine
instruction for a specialized execution unit of the shared
hardware resources 1s received during execution of a task,
depending on whether the SLA associated with the tenant
permits the tenant to have access to the coprocessor or
specialized execution umt; the mstruction can be forwarded
to the coprocessor or specialize execution unit for execution,
or be discarded 11 the SLA does not permit the tenant to have
access to the coprocessor or the specialized execution unait.
For example, suppose a SLA provides a tenant with access
to a GPU, when a GPU instruction 1s received during
execution ol a task associated with the tenant, the GPU
istruction can be forwarded to the GPU {for execution.
Whereas 11 the SLA does not provide the tenant with access
to a GPU, if a GPU instruction 1s received during execution
of the task, the GPU instruction may be discarded since the
tenant does not have permission to utilize the GPU. In some
embodiments, 11 the tenant does not have permission to
utilize the coprocessor or specialized execution unit, the
specialized machine instruction can be decoded into normal
processor instructions for execution on a processor rather
than on the coprocessor or specialized execution unit. In
some embodiments, resource allocation policy module 410
may control how a coprocessor instruction or specialized
machine 1nstruction from a tenant 1s executed.

US 10,104,008 Bl

19

In some embodiments, the amounts of the various difler-
ent computer resources allocated to a task can be scaled
together. For example, 11 25% of the processor cycles of a
processing unit 1s allocated to a task, 25% of the cache,
DRAMSs, and/or other computing resources may also be
allocated to the task to prevent other tasks from hindering
the tull usage of the 25% of processor cycles. For example,
other tasks or tenants that may be utilizing the shared
computing resources disproportionally and may take up
excessive amounts of cache and other resources (e.g., 30%
of processor cycles but 60% of cache). By scaling the
computing resources allocated to a task together, such
disproportionate utilization can be prevented.

At block 1410, process 1400 may monitor one or more
performance metrics such as performance counters associ-
ated with one or more of the computing resources to
determine an activity level or utilization of the one or more
computing resources during execution of the task. In some
embodiments, this can be performed by resource monitoring
module 416 or by hardware logic. For example, an mnstruc-
tion or program counter can be monitored to determine
processor activity or utilization during execution of the task.
The number of processor instructions associated with a task
(e.g., as 1dentified by a task ID or VM ID) being executed
over a time period or time 1nterval can be used to determine
how much of the processor 1s being used up by the task
during that time period or time interval. Similarly, a cache
miss counter and/or a cache hit counter can be monitored to
indicate the amount of cache used by the task. A memory
controller read byte counter and/or a memory controller
write byte counter can be monitored to indicate the amount
of memory (e.g., DRAM) being used by the task. A network
traflic counter can be momitored to determine that amount of
[/O trathic being used by the task. According to some
embodiments, one or more of the performance counters can
be implemented as hardware counters.

At block 1412, the set of one or more resource usage
constraints can be enforced 1n hardware during execution of
the task. In some embodiments, the hardware enforcement
ol the resource usage constraints can be performed without
solftware 1ntervention (e.g., without operating system or
hypervisor controls). For example, hardware logic or micro-
code can compare the utilization of a computing resource
over a time interval with the corresponding resource usage
constraint stored in memory or hardware registers. In some
embodiments, when the utilization of a computing resource
by the task or by the virtual machine instance has reached
the corresponding resource usage constraint 1n a time inter-
val, the task or virtual machine instance can be prevented
from further utilizing the computing resource in the same
time interval. For example, execution of the task can be
delayed until the next time interval with the computing
resource becomes available to the task under the resource
usage constraint set by the SLA.

Preventing a task or virtual machine mstance from further
utilizing the computing resource be achieved, for example,
by turning oif hardware enable bits, un-tagging the corre-
sponding computing resource, or disassociating the comput-
ing resource with the task ID or VM ID to mask the
computing resource from the task once the utilization of the
computing resource has reached the resource usage con-
straints. At the next time interval when the computing
resource 1s made available to the task again (based on the
resource usage constraints), the hardware enable bits can be
turned back on, or the corresponding computing resource
can be re-tagged or re-associated with the task 1D or VM 1D
to make the computing resource visible to the task again. In

10

15

20

25

30

35

40

45

50

55

60

65

20

some embodiments, depending on the SLA, a minimal level
of the computing resource can be maintained for the task
even when the task has consumed the resource usage con-
straint amount of the computing resource.

In some embodiments where the computing resources
include a processing resource such as a number of processor
cycles per time interval, enforcing the resource usage con-
straints may include adjusting an execution pipeline priority
ol processor nstructions associated with the task based on
the utilization of the processing resource relative to its
corresponding resource usage constraint. For example, sup-
pose a resource usage constraint limits the number of
processor cycles allocated to a particular task to 100 cycles.
If the task has already consumed 100 processor cycles in the
time interval, the priority of the next processor instruction
for the task can be adjusted to be the lowest priority such that
the processor mstruction 1s executed only when other higher
priority tasks are idle or 1f excess processor cycles are
available. In some embodiments, the processor instruction
can be held 1n a bufler to delay execution of the processor
instruction until the next time interval.

As compared to software implementations, enforcing the
resource usage constraints i hardware can provide finer
grain control in the utilization of the computing resources.
For example, continuing with the processor cycle per time
interval example above, the time it takes for a hypervisor or
operating system to detect that the allowable number of
processor cycles have been used up 1n a time interval by a
task and to instruct the system to reconfigure the resource
allocation can be 1n the order of a few milliseconds. During
this time, the task may be able to use up excessive processor
cycles beyond the resource usage constraint warranted by
the SLA. In contrast, by enforcing the resource usage
constraint 1n hardware, the very next processor instruction
associated with the task beyond the resource usage con-
straint can be de-prioritized or delayed to provide better
enforcement of the resource usage constraints.

According to some embodiments, based on the activity
level or utilization of the one or more computing resources,
the one or more allocations of the computing resources
allocated for execution of the task can be adjusted. In some
embodiments, this can be performed by automatic resource
management module 404. For example, suppose the SLA
associated with the tenant provides the tenant with a certain
number of processor cycles per time period (e.g., per second,
per minute, per hour, etc.). If the performance metrics
associated with the processor (e.g., hardware performance
counters such as processor mstruction or program counter)
indicates that only half of that number of processor cycles 1s
being used up by the task of the tenant, then in some
embodiments, the number of processor cycles allocated to
the task can be reduced by the unused amount or a portion
thereof (e.g., can be reduced by half or less). In this manner,
unused computing resources allocated to a particular task
can be reallocated to other tasks such that the shared
hardware resources can be used more efliciently, and that
computing resources allocated to a task are not left idle and
wasted.

In some embodiments, the activity level or utilization of
the one or more computing resources can also be used to
increase the allocation of the one or more computing
resources to a task. Continuing with the example above,
suppose the number of processor cycles per time period
allocated to a task 1s less than the maximum allowable by the
SLA (e.g., if the allocation has been reduced due to inac-
tivity), if the performance metrics associated with the pro-
cessor 1ndicates that the task 1s using close to the number of

US 10,104,008 Bl

21

processor cycles allocated to the task, or shows a trend that
the number of processor cycles used by the task 1s increas-
ing, then the number of processor cycles allocated for the
task can be 1ncreased up to the allowable amount under the
SLA. As another example, 11 the cache miss to cache hit ratio
1s high or 1s increasing, then the number of ways of cache
being allocated to a task can be increased up to the allowable
amount under the SLA. In some embodiments, the utiliza-
tion of one computing resource can be used to throttle and
adjust the allocations of other computing resources, for
example, 1n 1mplementations where the allocations of dii-
ferent computing resources are scaled together. Thus, as the
allocation of one computing resource 1s being adjusted, the
allocations of other computing resource can be adjusted
accordingly.

In some 1mplementations, the monitoring and allocation
adjustment of the computing resources can be performed
using hardware. For example, hardware registers can be
configured with an allowable value representing the amount
ol a computing resource that can be allocated to a task under
the SL A and an allocation value 1indicating the amount of the
computing resource currently being allocated to the task.
The count value 1n the hardware performance counter asso-
ciated with the computing resource for a particular task can
be compared with the allocation value to determine how
much of the allocated computing resource the task 1s utiliz-
ing. Based on this comparison or an observed trend of the
count value, microcode executed as a background process
can be used to adjust the allocation of the computing
resource up to the allowable value. In some embodiments,
the utilization of one computing resource can be used to
throttle and adjust the allocation of other computing
resources.

Although the allocation of a computing resource can be
throttled and adjusted as described above, one or more of the
computing resources allocated at block 1404 may be static,
and the allocation of the computing resource may remain the
same and not be adjusted during execution of the task
regardless of the utilization or activity level of that comput-
ing resource. For example, the amount of storage disk space
allocated to a task may remain static and unchanged during
execution of the task regardless of how much storage the
task 1s using at any point in time. In some embodiments,
which of computing resources are dynamically adjusted and
which are static can be defined by the SLA.

In 1mplementations where a computing resource 1s
adjusted based on the activity level or utilization of the
computing resource, an unused portion of the computer
resource over a time period or time interval can be banked
or accumulated as a resource credit balance such that when
additional computing resource 1s needed at a later time
period or time interval, the banked or accumulated amount
of the unused computing resource can be made available to
tenant. In other words, the resource credit balance accumu-
lated for a task or tenant can be applied to increase the
amount ol the computing resource at a later point 1n time
when execution of the task demands a burst of the comput-
ing resource. In some embodiments, depending on the credit
resource balance, the amount of the computing resource
allocated to a task at a point in time may exceed the baseline
amount of the computing resource indicated by a SLA
associated with the tenant.

FIG. 13 illustrates the concept of banking a computing
resource according to some embodiments. In the upper
graph, the amount of utilization of a computing resource
over time 1s shown as the solid line, and the baseline amount
of the computing resource 1s shown as the dotted line. The

10

15

20

25

30

35

40

45

50

55

60

65

22

baseline amount can be, for example, a baseline resource
credit per time 1nterval (e.g., processor cycles per hour) that
1s available to a tenant under a SLA. In the lower graph, the
resource credit balance accumulated for the computing
resource over time 1s shown.

In the example shown, the baseline resource credit per
time 1nterval (e.g., per second, per minute, per {ive minutes,
per ten minutes, per hour, etc.) of the computing resource 1s
100 credits. In other words, 1n each time interval, 100 credits
of the computing resource can be allocated to the task or
virtual machine instance. In the first time interval t=1, the
task has only utilized or consumed 90 credits of the com-
puting resources. As a result, 10 unused credits (the differ-
ence between the baseline resource credit and the utilization
amount) are accumulated 1n the resource credit balance at
the end of the first time 1nterval. At the second time 1nterval
t=2, the task consumed another 90 credits, and another 10
credits are accumulated as shown, yielding a resource credit
balance of 20 credits at the end of the second time 1nterval.

This accumulation process continues until time t=8, when
the task demands an amount of computing resource beyond
the baseline resource credit. As shown, the task demands a
burst of 120 credits of the computing resource at time t=8.
Since the unused amounts of the computing resource 1n prior
time intervals have been banked, even though the task 1s
demanding more of the computing resource than the base-
line amount, the extra 20 credits of the computer resource
are made available to the task at time t=8.

Following the example, the task utilizes 120 credits of the
computing resource for the next six time intervals. For each
time 1nterval where utilization of the computing resource
exceeds the baseline resource credit, the difference between
the utilization amount and the baseline resource credit 1s
deducted from the resource credit balance. At time t=14, the
baseline resource credit previously accumulated has been
used up. As a result, even 11 the task demands more of the
computing resource than the baseline amount, the amount of
the computing resource available to the task 1s capped at the
baseline amount as shown.

During the next four time intervals, the task 1s consuming,
the full baseline amount, and therefore, the resource credit
balance remains zero because there 1s no unused amount of
the computing resource to bank. At time t=18, the task again
consumes less than the baseline amount, and the resource
credit balance begins accumulating again. In some embodi-
ments, this process may continue until a predetermined
number of time 1ntervals have elapsed (e.g., number of time
intervals totaling an hour, a day, a month, etc.), at which
point, the resource credit balance 1s reset to zero such that
unused computing resources are not accumulated indefi-
nitely.

It should be understood that the concept of banking or
accumulating unused computing resource can be applied to
any of the computing resources described herein. In some
embodiments, any number of computing resources allocated
to a task may have 1ts own resource credit balance, and 1n
some 1mplementations, unused amounts of one or more of
the computing resources may be allowed to accumulate,
while unused amounts of other computing resources may not
be allowed to accumulate. Furthermore, in some embodi-
ments, a resource credit balance accumulated for one com-
puting resource may be applied to obtain additional amounts
of another computing resource. Moreover, one credit of a
computing resource may be exchanged for fewer or more
credits of another computing resource. In some embodi-
ments, whether an unused amount of a computing resource
1s allowed to be accumulated and the associated exchange

US 10,104,008 Bl

23

rate for other computing resources, 1f any, can be defined by
the SLA associated with the tenant.

FIG. 16 1llustrates the concept of unused resource credits
expiring, according to some embodiments. In the diagram,
the resource credit balance accumulated for a computing
resource over time 1s shown. The resource credits accumu-
lated 1n each time interval are shown with a number to
indicate the time at which the resource credit was accumus-
lated. According to some embodiments, the resource credit
balance 1s implemented as a first-in-first-out (FIFO) system.
The oldest accumulated resource credits are used up first. In
some embodiments, the resource credits accumulated at a
particular time interval may expire 1t left unused after a
predetermined number of time intervals (e.g., the predeter-
mined number of time intervals can be the number of time
intervals that make up an hour, a day, a week, a month, etc.).

In the example shown, at time t=1, 20 resource credits are
accumulated, and these credits are marked with a “1” in the
figure to indicate that they were accumulated at time t=1. At
time t=2, another 20 resource credits are accumulated and
are marked with a “2.” At time t=3, another 20 resource
credits are accumulated and are marked with a “3.” In the
particular example shown, no additional resource credits are
accumulated after time t=3.

At some later time at time t=x, but before a predetermined
number of time intervals N, 10 resource credits from the
resource credit balance are used up by the task (e.g., when
the task demands additional computing resources beyond the
baseline amount). As shown 1n FIG. 16, the oldest accumu-
lated resource credits (1in this example, from time t=1) are
applied and used first. At time t=x+1, the task utilizes
another 20 resource credits from the resource credit balance.
As shown, because only 10 credits accumulated from time
t=1 remained at that time, the remaining 10 credits from time
t=1 and 10 credits accumulated from time t=2 are applied to
the task. In the particular example shown, no {further
resource credit from the resource credit balance 1s used by
the task.

At a later time when time t=N (1.e., aiter a predetermined
number of time intervals N have elapsed), the resource
credits accumulated from prior time interval may begin to
expire. For example, at time t=N+1, the resource credits
accumulated from time t=1 are set to expire. However,
because all credits accumulated from time t=1 were already
applied to and used by the task, there 1s no 1impact to the
resource credit balance. Then at time t=N+2, the resource
credits accumulated from time t=2 expire. As shown, at time
t=N+2, the 10 remaining resource credits that were accu-
mulated from time t=2 are removed or decremented from the
resource credit balance. Similarly, at time t=N+3, the
resource credits accumulated from time t=3 expire, and the
20 resource credits that were accumulated from time t=3 are
removed or decremented from the resource credit balance.

FIG. 17 illustrates a flow diagram of a process 1700 for
banking or accumulating a computing resource in a single or
multi-tenant operating environment, according to some
embodiments. For example, some or all of process 1700 can
be performed by a hardware resource allocator module (e.g.,
hardware resource allocator module 400). At block 1702, a
request to execute a task for a tenant on shared hardware
resources 1s recerved at a computing device. The request
may include instantiating a virtual machine instance for the
tenant to execute the task. The task may involve executing,
one or more instructions, and may include a processing
thread, a process, or an application that may include multiple
processes. The shared hardware resources may include one
or more computing resources, and may include processing

10

15

20

25

30

35

40

45

50

55

60

65

24

resources, memory resources, storage resources and/or 1/O
resources. Processing resources may include one or more
Processors, Pprocessor cores, coprocessors, specialized
execution units such as GPUs, DSPs, ASICs, programmable
logic devices (e.g., FPGAs) or other logic circuits that can
execute application specific or complex instructions.
Memory resources may include various levels of cache
memories (e.g., one or more blocks of one or more of a
Level 1 cache, a Level 2 cache, a Level 3 cache and a Level
4 cache, etc.) and their related structures such as TLBs,
system memories such as one or more banks of DRAMS, eftc.
Storage resources may include disk space or other system
storage. I/0 resources may include resources for transferring
data between the computing device hosting the computing
resources and the external world such as network interface
components and network bandwidth.

In some embodiments, at block 1704, a task identifier (or
VM ID) 1s assigned to the task. This can be performed, for
example, by ID space management module 414. The task
identifier can be a value that 1s incremented for each task, a
value derived from a tenant identifier, a random value, or
other suitable identifier to umiquely identity the task.
According to some embodiments, the task identifier can be
used to track the utilization and unused amounts of a
computing resource for the task or corresponding tenant. For
example, a resource credit balance associated with the task
identifier can be maintained during execution of the task to
keep track of the unused amount of a computing resource.

At block 1706, a baseline resource credit per time interval
or time period indicating a baseline amount of a computing
resource available for the tenant to execute the task 1s
determined. In some embodiments, this can be performed by

resource allocation policy module 410. For example, the
baseline resource credit can be determined based on a SLA
associated with the tenant. In some embodiments, the base-
line resource credit can be expressed as a credit per second,
per minute, per five minutes, per ten minutes, or per hour,
etc., and the baseline resource credit per time interval
represents a baseline amount of the computing resource to
associate with the task identifier (e.g., for allocation to the
task associated with the task identifier) 1n each time interval
over a predetermined number of time 1ntervals.

At block 1708, process 1700 may monitor a performance
metric (e.g., a performance counter) associated with the
computing resource to determine an activity level or utili-
zation amount of the computing resources by the task during
a time interval. This can be performed, for example, by
resource monitoring module 416. The performance counter
can be used to determine the consumption of the computing
resource by the task in the time interval. For example, an
instruction or program counter can be monitored to deter-
mine processor activity or utilization by the task in the time
interval. The number of processor instructions associated
with a task (e.g., as 1dentified by a task ID or VM ID) being
executed over the time interval can be used to determine
how much of the processor 1s being used up by the task
during that time interval. Similarly, a cache miss counter
and/or a cache hit counter can be monitored to indicate the
amount of cache used by the task. A memory controller read
byte counter and/or a memory controller write byte counter

can be monitored to indicate the amount of memory (e.g.,
DRAM) being used by the task. A network traflic counter
can be momitored to determine that amount of I/O traflic
being used by the task. According to some embodiments,
one or more of the performance counters can be imple-
mented as hardware counters.

US 10,104,008 Bl

25

At block 1710, an unused amount of the computing
resource 1n the time interval 1s determined. In some embodi-
ments, this determination can be performed by resource
monitoring module 416. For example, the unused amount
can be determined based on a difference between the utili-
zation amount of the computing resource during the time
interval as derived from block 1608 and the baseline
resource credit from block 1606. At block 1612, a resource
credit balance associated with the task identifier i1s 1ncre-
mented by the unused amount of the computing resource.
This can be performed over a predetermined number of time
intervals such that an unused amount of the computing
resource 1n each time interval can be accumulated over the
predetermined number of time 1ntervals.

At block 1714, process 1700 may determine that the
workload of a task at a later time interval demands a
utilization amount of the computing resource that exceeds
the baseline resource credit or baseline amount of the
computing resource. This can be performed, in some
embodiments, by automatic resource management module
404. As an example, suppose the computing resource 1s a
number ol processor cycles per time interval. The system
can determine that the workload of the task 1s demanding
additional processor cycles if the processor receives a pro-
cessor mstruction associated with the task 1n a time interval
after the baseline number of processor cycles in the same
time interval has already been used up, or if the task 1s not
idle after the baseline amount of computing resource 1n the
same time interval has already been used up. Other com-
puting resources may use a similar mechamsm to determine
that the task 1s demanding additional amounts of a comput-
ing resource in excess of the baseline amount. Even though
the workload of a task may be demanding additional
amounts of a computing resource, as the unused amounts of
the computing resource in one or more prior time 1ntervals
are accumulated or banked, the additional amount of the
computing resource exceeding the baseline amount can be
allocated to the task or be assigned to the task identifier
associated with the task. In some embodiments, the addi-
tional amount of the computing resource being allocated to
the task or associated with the task identifier 1s less than or
equal to the current resource credit balance available.

At block 1716, the additional amount of the computing
resource associated with the task identifier 1s allocated to the
task. In this manner, up to the accumulated amount of the
computing resource can be applied to the task when a
workload of the task utilizes more than the baseline amount
of the computing resource. In some embodiments, a propor-
tionate additional amount of another computing resource
associated with the task identifier can also be allocated to the
task such that the computing resources associated with a task
identifier are scaled and throttled together. For example, 1f
an additional 20% of the processor cycles are allocation to
the task based on the resource credit balance, an addition
20% of cache can also be allocated to the task.

At block 1718, the additional amount of the computing
resource allocated to the task 1s decremented from the
resource credit balance. This can be performed, for example,
by automatic resource management module 404. In some
embodiments, to prevent accumulating the unused amount
of the computing resource indefinitely, the resource credit
balance associated with a task identifier from a particular
time interval can be reset to zero or expires after a prede-
termined number of time intervals (e.g., number of time
intervals that equal an hour, a day, a month, etc.) has elapsed
from that time interval. In other words, any accumulated
resource credit from a particular time interval that remains

10

15

20

25

30

35

40

45

50

55

60

65

26

unused after a predetermined number of time intervals may
expire and be decremented from the resource credit balance.
In some embodiments 1n which the allocations of computing
resources are scaled together, a resource credit balance for
one computing resource can be used to imply an unused
amount of another computing resource. For example, a
resource credit balance amounting to an unused 50% of
processor cycles may imply an unused 50% of cache. As
such, an unused 50% of the cache can be banked over a time
interval even though only the processor utilization 1s being
tracked.

While the above description of process 1700 has been
described with reference to tracking a resource credit bal-
ance for one computing resource, 1t should be understood
that execution of a task involving multiple computing
resources may have a separate resource credit balance for
one or more of the computing resources. In some embodi-
ments, a resource credit balance for one computing resource
can be applied to obtain additional credits for another
computer resource, and the exchange may be governed by an
credit exchange rate between diflerent types of computing
resources. In some embodiments, unused amounts of the
different computing resources can be accumulated nto a
single resource credit balance, 1n which different types of
computing resources may be given a different rate of unused
credits. For example, unused processor cycles may have a
value of 1 credit, whereas unused cache may have a value of
S credits.

It should be appreciated that the specific steps illustrated
in FIGS. 14 and/or 16 may provide a particular order of steps
in some embodiments. However, other sequences of steps
may also be performed in alternate embodiments. For
example, alternative embodiments may perform the steps/
blocks outlined above 1n a different order. Moreover, the
individual steps/blocks illustrated in FIGS. 14 and/or 16
may 1nclude multiple sub-steps that may be performed in
various sequences as appropriate to the individual step.
Furthermore, additional steps/blocks may be added or
removed depending on the particular applications. One of
ordinary skill in the art would recogmize and appreciate
many variations, modifications and alternatives of the pro-
CEesS.

FIG. 18 1llustrates an exemplary architecture for features
and systems described herein that includes one or more
service provider computers and/or a user device connected
via one or more networks, according to at least one exem-
plary embodiment. The devices discussed in FIGS. 1-16,
may use one or more components of the computing devices
described 1n FIG. 18 or may represent one or more com-
puting devices described in FIG. 18. In architecture 1800,
one or more users 1802 may utilize user computing devices
1804(1)-(N) (collectively, user devices 1804) to access
application 1806 (e.g., a web browser or mobile device
application), via one or more networks 1808. In some
aspects, application 1806 may be hosted, managed and/or
provided by a computing resources service or service pro-
vider. One or more service provider computers 1810 may
provide a native application which 1s configured to run on
user devices 1804 which user(s) 1802 may interact with.
Service provider computer(s) 1810 may, 1n some examples,
provide computing resources such as, but not limited to,
client entities, low latency data storage, durable data storage,
data access, management, virtualization, cloud-based soft-
ware solutions, electronic content performance manage-
ment, etc. Service provider computer(s) 1810 may also be
operable to provide web hosting, computer application
development and/or implementation platforms, combina-

US 10,104,008 Bl

27

tions of the foregoing or the like to user(s) 1802. Service
provider computer(s) 1810, in some examples, may com-
municate with one or more third party computers 1812.

In some examples, network(s) 1808 may include any one
or a combination of many different types of networks, such
as cable networks, the Internet, wireless networks, cellular
networks and other private and/or public networks. While
the 1llustrated example represents user(s) 1802 accessing
application 1806 over network(s) 1808, the described tech-
niques may equally apply in instances where user(s) 1802
interact with service provider computer(s) 1810 via user
device(s) 1804 over a landline phone, via a kiosk or 1n any
other manner. It 1s also noted that the described techniques
may apply 1n other client/server arrangements (e.g., set-top
boxes, etc.), as well as 1n non-client/server arrangements
(e.g., locally stored applications, etc.).

As described briefly above, application 1806 may allow
user(s) 1802 to interact with service provider computer(s)
1810 such as to access web content (e.g., web pages, music,
video, etc.). Service provider computer(s) 1810, perhaps
arranged 1n a cluster of servers or as a server farm, may host
application 1806 and/or cloud-based software services.
Other server architectures may also be used to host appli-
cation 1806. Application 1806 may be capable of handling
requests from many users 1802 and serving, in response,
various 1tem web pages. Application 1806 can provide any
type of website that supports user interaction, including
social networking sites, online retailers, informational sites,
blog sites, search engine sites, news and entertainment sites
and so forth. As discussed above, the described techniques
can similarly be implemented outside of application 1806,
such as with other applications running on user device(s)
1804.

User device(s) 1804 may be any type of computing device
such as, but not limited to, a mobile phone, a smart phone,
a personal digital assistant (PDA), a laptop computer, a
desktop computer, a thin-client device, a tablet PC, an
clectronic book (e-book) reader, etc. In some examples, user
device(s) 1804 may be in communication with service
provider computer(s) 1810 via network(s) 1808, or via other
network connections. Additionally, user device(s) 1804 may
be part of the distributed system managed by, controlled by
or otherwise part of service provider computer(s) 1810 (e.g.,
a console device integrated with service provider computers
1810).

In one 1llustrative configuration, user device(s) 1804 may
include at least one memory 1814 and one or more process-
ing units (or processor(s)) 1816. Processor(s) 1816 may be
implemented as appropriate 1n hardware, computer-execut-
able 1nstructions, firmware, or combinations thereof. Com-
puter-executable instruction or firmware implementations of
processor(s) 1816 may include computer-executable or
machine-executable mstructions written in any suitable pro-
gramming language to perform the wvarious Ifunctions
described. User device(s) 1804 may also include geo-loca-
tion devices (e.g., a global positioning system (GPS) device
or the like) for providing and/or recording geographic loca-
tion mformation associated with user device(s) 1804.

Memory 1814 may store program instructions that are
loadable and executable on processor(s) 1816, as well as
data generated during the execution of these programs.
Depending on the configuration and type of user device(s)
1804, memory 1814 may be volatile (such as random access
memory (RAM)) and/or non-volatile (such as read-only
memory (ROM), flash memory, etc.). User device(s) 1804
may also include additional removable storage and/or non-
removable storage including, but not limited to, magnetic

10

15

20

25

30

35

40

45

50

55

60

65

28

storage, optical disks and/or tape storage. The disk drives
and their associated computer-readable media may provide
non-volatile storage of computer-readable istructions, data
structures, program modules and other data for the comput-
ing devices. In some implementations, memory 1814 may
include multiple different types of memory, such as static
random access memory (SRAM), dynamic random access
memory (DRAM), or ROM.

Turning to the contents of memory 1814 1n more detail,
memory 1814 may include an operating system and one or
more application programs or services for implementing the
teatures disclosed herein including at least a user provided
input element or electronic service web page, such as via
browser application 1806 or dedicated applications (e.g.,
smart phone applications, tablet applications, etc.). Browser
application 1806 may be configured to receive, store and/or
display a website or other interface for interacting with
service provider computer(s) 1810. Additionally, memory
1814 may store access credentials and/or other user infor-
mation such as, but not limited to, user IDs, passwords
and/or other user information. In some examples, the user
information may include imnformation for authenticating an
account access request such as, but not limited to, a device
ID, a cookie, an IP address, a location or the like. In addition,
the user mformation may include a user-provided response
to a security question or a geographic location obtained by
the user device 1804.

In some aspects, service provider computer(s) 1810 may
also be any type of computing devices such as, but not
limited to, a mobile phone, a smart phone, a personal digital
assistant (PDA), a laptop computer, a desktop computer, a
server computer, a thin-client device, a tablet PC, efc.
Additionally, 1t should be noted that in some embodiments,
service provider computer(s) 1810 are executed by one or
more virtual machines implemented 1n a hosted computing
environment. The hosted computing environment may
include one or more rapidly provisioned and released com-
puting resources, which computing resources may include
computing, networking and/or storage devices. A hosted
computing environment may also be referred to as a cloud
computing environment. In some examples, service provider
computer(s) 1810 may be in communication with user
device(s) 1804 and/or other service providers via network(s)
1808, or via other network connections. Service provider
computer(s) 1810 may include one or more servers, perhaps
arranged 1n a cluster, as a server farm, or as individual
servers not associated with one another. These servers may
be configured to implement the keyword classification and
rating feature services described herein as part of an inte-
grated, distributed computing environment.

In one illustrative configuration, service provider com-
puter(s) 1810 may include at least one memory 1818 and one
or more processing units (or processor(s)) 1820. Pro-
cessor(s) 1820 may be implemented as appropriate 1n hard-
ware, computer-executable instructions, firmware or com-
binations thereof. Computer-executable nstruction or firm-
ware 1mplementations of processor(s) 1820 may include
computer-executable or machine-executable instructions
written 1n any suitable programming language to perform
the various functions described.

In some 1nstances, hardware processor(s) 1820 may be a
single core processor or a multi-core processor. A multi-core
processor may include multiple processing units within the
same processor. In some embodiments, the multi-core pro-
cessors may share certain resources, such as busses and {irst,
second or third level of cache between multiple-cores. In
some 1nstances, each core in a single or multi-core processor

US 10,104,008 Bl

29

may also include multiple executing logical processors (or
threads). In such a core (that supports multiple logical
processors), several stages of the execution pipeline and also
lower level caches may also be shared.

Memory 1818 may store program instructions that are
loadable and executable on processor(s) 1820, as well as
data generated during the execution of these programs.
Depending on the configuration and type of service provider
computer(s) 1810, memory 1818 may be volatile (such as
RAM) and/or non-volatile (such as ROM, flash memory,
etc.). Service provider computer(s) 1810 or servers may also
include additional storage 1822, which may include remov-
able storage and/or non-removable storage. The additional
storage 1822 may include, but 1s not limited to, magnetic
storage, optical disks and/or tape storage. The disk drives
and their associated computer-readable media may provide
non-volatile storage of computer-readable mstructions, data
structures, program modules and other data for the comput-
ing devices. In some implementations, memory 1818 may
include multiple different types of memory, such as SRAM,
DRAM, or ROM.

Memory 1818, the additional storage 1822, both remov-
able and non-removable are all examples of computer-
readable storage media. For example, computer-readable
storage media may include volatile or non-volatile, remov-
able or non-removable media implemented 1n any method or
technology for storage of information such as computer-
readable 1nstructions, data structures, program modules or
other data. Memory 1818 and the additional storage 1822 are
all examples of computer storage media. Additional types of
computer storage media that may be present 1 service
provider computer(s) 1810 may include, but are not limited
to, PRAM, SRAM, DRAM, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, DVD or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by service provider
computer(s) 1810. Combinations of any of the above should
also be included within the scope of computer-readable
media.

Alternatively, computer-readable communication media
may include computer-readable nstructions, program mod-
ules or other data transmitted within a data signal, such as a
carrier wave or other transmission. However, as used herein,
computer-readable storage media does not include com-
puter-readable communication media.

Service provider computer(s) 1810 may also contain
communications connection(s) 1824 that allow service pro-
vider computer(s) 1810 to communicate with a stored data-
base, another computing device or server, user terminals
and/or other devices on network(s) 1808. Service provider
computer(s) 1810 may also include I/O device(s) 1826, such
as a keyboard, a mouse, a pen, a voice input device, a touch
iput device, a display, speakers, a printer and the like.

Memory 1818 may include an operating system 1828, one
or more data stores 1830 and/or one or more application
programs or services for implementing the features dis-
closed herein, including an resource configuration module
1832 and a hardware resource allocator module 1840. The
modules described herein may be software modules, hard-
ware modules or a suitable combination thereof. It the
modules are software modules, the modules can be embod-
ied on a non-transitory computer readable medium and
processed by a processor in any of the computer systems
described herem. It should be noted that the described
processes and architectures can be performed either in

10

15

20

25

30

35

40

45

50

55

60

65

30

real-time or in an asynchronous mode prior to any user
interaction. The modules may be configured 1n the manner
suggested 1 FIG. 18, and/or functions described herein can
be provided by one or more modules that exist as separate
modules and/or module functions described herein can be
spread over multiple modules.

FIG. 19 illustrates aspects of an exemplary environment
1900 for implementing various embodiments. As will be
appreciated, although a Web-based environment 1s used for
purposes ol explanation, different environments may be
used, as appropriate, to implement various embodiments.
The environment includes an electronic client device 1902,
which can include any appropriate device operable to send
and receive requests, messages or information over an
appropriate network 1904 and convey information back to a
user of the device. Examples of such client devices include
personal computers, cell phones, handheld messaging
devices, laptop computers, set-top boxes, personal data
assistants, electronic book readers and the like. The network
can include any appropriate network, icluding an intranet,
the Internet, a cellular network, a local area network or any
other such network or combination thereof. Components
used for such a system can depend at least 1n part upon the
type of network and/or environment selected. Protocols and
components for communicating via such a network are well
known and will not be discussed herein 1n detail. Commu-
nication over the network can be enabled by wired or
wireless connections and combinations thereof. In this
example, the network includes the Internet, as the environ-
ment includes a Web server 1906 for recerving requests and
serving content 1 response thereto, although for other
networks an alternative device serving a similar purpose
could be used as would be apparent to one of ordinary skill
in the art.

The illustrative environment includes at least one appli-
cation server 1908 and a data store 1910. It should be
understood that there can be several application servers,
layers, or other elements, processes or components, which
may be chained or otherwise configured, which can interact
to perform tasks such as obtaining data from an appropriate
data store. As used herein the term “data store™ refers to any
device or combination of devices capable of storing, access-
ing and retrieving data, which may include any combination
and number of data servers, databases, data storage devices
and data storage media, 1n any standard, distributed or
clustered environment. The application server can include
any appropriate hardware and software for integrating with
the data store as needed to execute aspects of one or more
applications for the client device, handling a majority of the
data access and business logic for an application. The
application server provides access control services 1 coop-
eration with the data store and 1s able to generate content
such as text, graphics, audio and/or video to be transferred
to the user, which may be served to the user by the Web
server 1n the form of Hyperlext Markup Language
(“HTML”), Extensible Markup Language (“XML™) or
another appropnate structured language 1n this example. The
handling of all requests and responses, as well as the
delivery of content between client device 1902 and appli-
cation server 1908, can be handled by the Web server. It
should be understood that the Web and application servers
are not required and are merely example components, as
structured code discussed herein can be executed on any
appropriate device or host machine as discussed elsewhere
herein.

Data store 1910 can include several separate data tables,
databases or other data storage mechanisms and media for

US 10,104,008 Bl

31

storing data relating to a particular aspect. For example, the
data store illustrated includes mechanisms for storing pro-
duction data 1912 and user information 1916, which can be
used to serve content for the production side. The data store
may also include a mechanism for storing log data, which
can be used for reporting, analysis or other such purposes. It
should be understood that there can be many other aspects
that may need to be stored in the data store, such as for page
image information and to access right information, which
can be stored in any of the above listed mechanisms as
appropriate or in additional mechanisms in data store 1910.
Data store 1910 1s operable, through logic associated there-
with, to receive instructions from application server 1908
and obtain, update or otherwise process data in response
thereto. In one example, a user might submit a search request
for a certain type of item. In this case, the data store might
access the user information to verily the identity of the user
and can access the catalog detail information to obtain
information about i1tems of that type. The information then
can be returned to the user, such as 1n a results listing on a
Web page that the user 1s able to view via a browser on user
device 1902. Information for a particular item of interest can
be viewed 1n a dedicated page or window of the browser.

Several different types of devices, such as user devices and
servers have been described with reference to FIG. 19. The
devices discussed in FIGS. 1-16, may use one or more
components of the devices described in FIG. 19 and/or
represent one or more devices described 1n FIG. 19.

Each server typically will include an operating system
that provides executable program instructions for the general
administration and operation of that server and typically will
include a computer-readable storage medium (e.g., a hard
disk, random access memory, read only memory, etc.) stor-
ing instructions that, when executed by a processor of the
server, allow the server to perform its mtended functions.
Suitable implementations for the operating system and gen-
eral functionality of the servers are known or commercially
available and are readily implemented by persons having
ordinary skill 1n the art, particularly 1n light of the disclosure
herein.

The environment 1 one embodiment 1s a distributed
computing environment utilizing several computer systems
and components that are imterconnected via communication
links, using one or more computer networks or direct
connections. However, it will be appreciated by those of
ordinary skill in the art that such a system could operate
equally well 1n a system having fewer or a greater number
of components than are illustrated 1n FIG. 19. Thus, the
depiction of system 1900 1n FIG. 19 should be taken as being
illustrative 1n nature and not limiting to the scope of the
disclosure.

The various embodiments further can be implemented in
a wide variety ol operating environments, which in some
cases can include one or more user computers, computing
devices or processing devices which can be used to operate
any ol a number of applications. User or client devices can
include any of a number of general purpose personal com-
puters, such as desktop or laptop computers running a
standard operating system, as well as cellular, wireless and
handheld devices running mobile software and capable of
supporting a number ol networking and messaging proto-
cols. Such a system also can include a number of worksta-
tions running any ol a variety of commercially-available
operating systems and other known applications for pur-
poses such as development and database management.
These devices also can include other electronic devices, such

10

15

20

25

30

35

40

45

50

55

60

65

32

as dummy terminals, thin-clients, gaming systems and other
devices capable of communicating via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled 1n the art for supporting com-
munications using any of a variety of commercially-avail-
able protocols, such as Transmission Control Protocol/In-
ternet Protocol (““TCP/IP”), Open System Interconnection
(““OSI”), File Transfer Protocol (“FTP”’), Universal Plug and
Play (“UpnP”), Network File System (“NFS”), Common
Internet File System (“CIFS™) and AppleTalk. The network
can be, for example, a local area network, a wide-area
network, a virtual private network, the Internet, an intranet,
an extranet, a public switched telephone network, an 1nfra-
red network, a wireless network and any combination
thereof.

In embodiments utilizing a Web server, the Web server
can run any of a variety of server or mid-tier applications,
including Hypertext Transier Protocol (“HTTP”) servers,
FTP servers, Common Gateway Intertace (“CGI”) servers,
data servers, Java servers and business application servers.
The server(s) also may be capable of executing programs or
scripts 1n response requests from user devices, such as by
executing one or more Web applications that may be imple-
mented as one or more scripts or programs written 1n any
programming language, such as Java®, C, C# or C++, or any
scripting language, such as Perl, Python or TCL, as well as
combinations thereof. The server(s) may also include data-
base servers, mcluding without limitation those commer-
cially available from Oracle®, Microsolt®, Sybase® and
IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside 1n a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor-
mation may reside 1 a storage-area network (“SAN”)
familiar to those skilled 1n the art. Similarly, any necessary
files for performing the functions attributed to the comput-
ers, servers or other network devices may be stored locally
and/or remotely, as appropriate. Where a system includes
computerized devices, each such device can include hard-
ware elements that may be electrically coupled via a bus, the
clements including, for example, at least one central pro-
cessing unit (“CPU”), at least one input device (e.g., a
mouse, keyboard, controller, touch screen or keypad) and at
least one output device (e.g., a display device, printer or
speaker). Such a system may also include one or more
storage devices, such as disk drives, optical storage devices
and solid-state storage devices such as random access
memory (“RAM™) or read-only memory (“ROM”), as well
as removable media devices, memory cards, tlash cards, etc.

In various embodiments, a CPU may be referred to as a
hardware processor or processing unit. In some 1nstances,
the processor may be a single core processor or a multi-core
processor. A multi-core processor may include multiple
processing units within the same processor. In some embodi-
ments, the multi-core processors may share certain
resources, such as busses and first, second or third level of
cache between multiple-cores. In some instances, each core
in a single or multi-core processor may also include multiple
executing logical processors (or threads). In such a core, that

supports multiple logical processors, several stages of the
execution pipeline and also lower level caches may also be

shared.

US 10,104,008 Bl

33

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.) and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed and/

or removable storage devices as well as storage media for
temporarily and/or more permanently containing, storing,

transmitting and retrieving computer-readable information.
The system and various devices also typically will include a
number of soltware applications, modules, services or other
clements located within at least one working memory
device, including an operating system and application pro-
grams, such as a client application or Web browser. It should
be appreciated that alternate embodiments may have numer-
ous variations from that described above. For example,
customized hardware might also be used and/or particular
clements might be implemented in hardware, software (in-
cluding portable software, such as applets) or both. Further,
connection to other computing devices such as network
input/output devices may be employed.

Storage media and computer readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used 1n the art, including storage media and
communication media, such as but not limited to volatile and
non-volatile, removable and non-removable media 1mple-
mented 1 any method or technology for storage and/or
transmission of information such as computer readable
instructions, data structures, program modules or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (“EEPROM™), flash memory or other
memory technology, Compact Disc Read-Only Memory
(“CD-ROM?”), digital versatile disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices or any other
medium which can be used to store the desired information
and which can be accessed by the a system device. Based on
the disclosure and teachings provided herein, a person of
ordinary skill 1n the art will appreciate other ways and/or
methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the disclosure as set forth in the
claims.

Other variations are within the spint of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain 1llustrated embodiments thereol are shown in the
drawings and have been described above 1n detail. It should
be understood, however, that there 1s no intention to limait the
disclosure to the specific form or forms disclosed, but on the
contrary, the mtention 1s to cover all modifications, alterna-
tive constructions and equivalents falling within the spirit
and scope of the disclosure, as defined 1 the appended
claims.

The use of the terms “a” and “an” and *“‘the” and similar
referents 1n the context of describing the disclosed embodi-
ments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “‘comprising,” “having,” “including,”
and “contaiming” are to be construed as open-ended terms
(1.e., meaning “including, but not limited to,”) unless oth-
erwise noted. The term “‘connected” 1s to be construed as
partly or wholly contained within, attached to, or joined
together, even 11 there 1s something intervening. Recitation
of ranges of values herein are merely intended to serve as a

10

15

20

25

30

35

40

45

50

55

60

65

34

shorthand method of referring individually to each separate
value falling within the range, unless otherwise indicated
herein and each separate value 1s incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed 1n any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better 1lluminate embodiments of the
disclosure and does not pose a limitation on the scope of the
disclosure unless otherwise claimed. No language 1n the
specification should be construed as indicating any non-
claimed element as essential to the practice of the disclosure.

Disjunctive language such as the phrase “at least one of X,
Y, or Z.,” unless specifically stated otherwise, 1s intended to
be understood within the context as used i1n general to
present that an 1tem, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language 1s not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one ol Y, or at least one of Z to each be present.

Preferred embodiments of this disclosure are described
herein, including the best mode known to the inventors for
carrying out the disclosure. Variations of those preferred
embodiments may become apparent to those of ordinary
skill in the art upon reading the foregoing description. The
inventors expect skilled artisans to employ such variations
as appropriate and the mventors mtend for the disclosure to
be practiced otherwise than as specifically described herein.
Accordingly, this disclosure includes all modifications and
equivalents of the subject matter recited in the claims
appended hereto as permitted by applicable law. Moreover,
any combination of the above-described elements 1 all
possible variations thereof 1s encompassed by the disclosure
unless otherwise indicated herein or otherwise clearly con-
tradicted by context.

All references, including publications, patent applications
and patents, cited herein are hereby incorporated by refer-
ence to the same extent as 1f each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth 1n 1ts entirety herein.

What 1s claimed 1s:

1. A computer-implemented method comprising:

receiving, by a resource allocator executing on a proces-
sor, a request to execute a task on shared hardware
resources;

determining, by the resource allocator executing on the
processor, a baseline resource credit per time interval
associated with a computing resource for the task;

monitoring, by the resource allocator executing on the
processor, a performance metric associated with the
computing resource to determine a utilization amount
of the computing resource by the task during a first time
interval;

determining, by the resource allocator executing on the
processor, an unused amount of the computing resource
in the first time interval based on a diflerence between
the utilization amount and the baseline resource credit:

incrementing, by the resource allocator executing on the
processor, a resource credit balance based on the
unused amount of the computing resource 1n the first
time interval;

determiming, by the resource allocator executing on the
processor, that a workload of the task during a second
time nterval 1s demanding an additional amount of the
computing resource in addition to the baseline resource
credit of the computing resource;

allocating, by the resource allocator executing on the
processor, the additional amount of the computing
resource to the task in the second time interval, the

US 10,104,008 Bl

35

additional amount being less than or equal to the
resource credit balance, wherein the additional amount
corresponds to a percentage increase of the computing
resource; and

allocating, by the resource allocator executing on the

processor, the same percentage increase of a memory
resource to the task in the second time interval.

2. The computer-implemented method of claim 1, further
comprising;

decrementing the resource credit balance based on the

additional amount of the computing resource allocated
to the task.

3. The computer-implemented method of claim 1,
wherein the resource credit balance from the first time
interval 1s set to zero after a predetermined number of time
intervals have elapsed and if the resource credit balance
from the first time 1nterval has not been exhausted since the
first time 1nterval.

4. The computer-implemented method of claim 1,
wherein resource credit balances from earlier intervals are
exhausted before resource credit balances from later inter-
vals.

5. The computer-implemented method of claim 1,
wherein the memory resource includes at least one of a
memory internal to a processor or a memory external to the
Processor.

6. The computer-implemented method of claim 1,
wherein the memory resource includes at least one of a
cache memory or a DRAM memory.

7. The computer-implemented method of claim 1,
wherein the performance metric includes at least one of an
instruction counter, a cache miss counter, a cache hit coun-
ter, a memory controller read byte counter, a memory
controller write byte counter, or a network data traflic
counter.

8. The computer-implemented method of claim 1, further
comprising:

allocating the same percentage increase of a storage

resource to the task 1n the second time interval.

9. The computer-implemented method of claim 1, further
comprising;

allocating the same percentage increase of an I/O resource

to the task 1n the second time interval.

10. The computer-implemented method of claim 1, fur-
ther comprising:

further incrementing the resource credit balance by an

unused amount of another computing resource that 1s
different than the computing resource 1n the first time
interval.

11. A computing device comprising:

a processing unit include one or more processor Cores;

and

a hardware resource allocator configured to:

assoclate, with a task, at least a baseline amount of a
computing resource for each time interval of a pre-
determined number of time intervals;

monitor a consumption of the computing resource by
the task 1n each time interval:

10

15

20

25

30

35

40

45

50

36

accumulate resource credits based on an unused
amount of the computing resource during at least
some of the time intervals;

apply at least some of the accumulated resource credits
to allocate an additional amount of the computing
resource to the task 1n a time interval in which a
workload of the task consumes more than the base-
line amount of the computing resource, wherein the
additional amount corresponds to a percentage
increase of the computing resource; and

allocate the same percentage increase of a memory
resource to the task in the time interval 1n which the
workload of the task consumes more than the base-
line amount of the computing resource.

12. The computing device of claim 11, wherein the
hardware resource allocator 1s further configured to decre-
ment the accumulated resource credits based on the addi-
tional amount of the computing resource allocated to the
task.

13. The computing device of claim 11, wherein the
hardware resource allocator 1s further configured to decre-
ment the accumulated resource credits by unused resource
credits earned 1n a particular time interval when the prede-

termined number of time intervals have elapsed atfter that
particular time 1nterval.

14. The computing device of claim 11, wherein resource
credits from earlier time intervals are applied belfore
resource credits from later time intervals.

15. The computing device of claim 11, wherein the
memory resource includes at least one of a memory nternal
to a processor or a memory external to the processor.

16. The computing device of claim 11, wherein the

memory resource icludes at least one of a cache memory or
a DRAM memory.

17. The computing device of claim 11, wherein the
performance metric includes at least one of an instruction
counter, a cache miss counter, a cache hit counter, a memory
controller read byte counter, a memory controller write byte
counter, or a network data traffic counter.

18. The computing device of claim 11, wherein the
hardware resource allocator 1s further configured to allocate
the same percentage increase of a storage resource to the
task 1n the second time interval.

19. The computing device of claim 11, wherein the
hardware resource allocator 1s further configured to allocate
the same percentage increase of an I/O resource to the task
in the second time 1nterval.

20. The computing device of claim 11, wherein the
hardware resource allocator 1s further configured to accu-
mulate resource credits based on an unused amount of
another computing resource that 1s different than the com-
puting resource.

	Front Page
	Drawings
	Specification
	Claims

