US010102218B2

a2 United States Patent (10) Patent No.: US 10,102,218 B2

Lee et al. 45) Date of Patent: Oct. 16, 2018
(54) FILE SYSTEM WITH PER-EXTENT 7,451,167 B2 11/2008 Bali et al.
CHECKSUMS 8,140,964 B2 3/2012 Cragun et al.
8,386,835 B2 2/20;3 Dilger et al.
(71) Applicant: Microsoft Corporation, Redmond, WA 8,397,101 B2* 372013 Goss ..oocovrninnn GOOF ; ﬂ 1/283
(US) 9,106,257 B1* 82015 Pohlack HO3M 13/09
_ 9,183,246 B2 11/2015 Tipton et al.
(72) Inventors: Chesong Lee, Bellevue, WA (US); Raj 2005/0268341 A1* 12/2005 ROSS wvovvrevreevesrorsn. GOGF 21/64
Das, Kirkland, WA (US); Cornel Rat, 796/26
Bothell, WA (US); William Tipton, 2009/0024827 Al 1/2009 Davis
Seattle, WA (US) 2010/0228737 Al 9/2010 Riemers
(Continued)
(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this EP 1396978 A2 3/2004
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 878 days. OTHER PUBLICATIONS
(21) Appl. No.: 14/501,922 “WxChecksums 1.2.0 manual.” 2004. 35 pages. http://wxchecksums.
sourceforge.net/manual/en/manual . html.*
(22) Filed: Sep. 30, 2014 (an‘[inued)
(65) Prior Publication Data _ _
Primary Examiner — Kimberly Wilson
US 2016/0092467 Al Mar. 31, 2016 (74) Attorney, Agent, or Firm — Patent GC LLC
(51) Int. CL
GO6F 12/00 (2006.01) (37) ABSTRACT
GO6F 17/30 (2006.01) o _
GOGF 11/10 (2006.01) A file system allows a different checksum algorithm to be

(52) U.S. Cl. used for different extents of a file system pbject indepen-
CPC ... GOG6F 17/30203 (2013.01); GO6F 11/1004 dently of (_:,ither extents of the file syste{n object. The check-
(2013.01); GO6F 17/30082 (2013.01) sum algorithm can be a selectable attr.lbute of an extent or

(58) Field of Classification Search range ol extents of a file system object, such that some
CPC GOGE 17/30203 extents of a ﬁle system object can use a first chjacksum
USPC oo 707/827 Algorithm, wlule other extents of the file system object can

See application file for complete search history. use sec?fnd checksum algorithm. An extent of the file
system object also may have no associated checksum algo-

(56) References Cited rithm. The file system stores, for each extent of a file system
object, data indicating a checksum for the extent and an
U.S. PATENT DOCUMENTS indication of any checksum algorithm used for the extent.
5,752,251 A 5/1998 Cripps
7,415,653 Bl 8/2008 Bonwick et al. 20 Claims, 6 Drawing Sheets
~200
FILE SYSTEM -
OBJECT
(ATTRIBUTE)
202
u 206
I} r~
—
DIRECTORY FILE —* FILE STREAM
(ATTRIBUTE) (ATTRIBUTE) V| (ATTRIBUTE)
\
208
~210 s
r...../
ROOT Extent
DIRECTORY list 252
(ATTRIBUTE)

US 10,102,218 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0293142 Al 11/2010 Ackerman et al.
2016/0063018 Al 3/2016 Das et al.

OTHER PUBLICATIONS

Noam. “Powershell and .NET Forms. Write your own GUI—File
Checksum Tool.” 13 pages. https://scriptingblog.com/2014/05/07/

powershell-and-net-forms-file-checksum-tool/.*

“International Search Report & Written Opinion Issued in PCT
Patent Application No. PCT/US2015/052761”, dated Nov. 24, 2015,
10 Pages.

“International Preliminary Report on Patentability Issued in PCT
Patent Application No. PCT/US2015/052761”, dated Sep. 23, 2016,
19 Pages.

Pace, Alberto, “Technologies for Large Data Management 1n Sci-
entific Computing”, Published on: Sep. 2013, Available at: https://
cds.cern.ch/record/1630387/files/CERN-IT-2013-005.pdf.

Murray, Kate, “It’s Not Just Integrity: Fixity Data in Digital Sound
and Moving Image Files”, Published on: Mar. 4, 2014, Available at:
http://blogs.loc.gov/digitalpreservation/2014/03/1ts-not-just-integrity-
fixity-data-in-digital-sound-and-moving-image-files/.

* cited by examiner

U.S. Patent Oct. 16, 2018 Sheet 1 of 6 US 10,102,218 B2
~100
~ . 130
;106 ~ e 108
— | | REMOVABLE |-
z 120 102 STORAGE | |
| ~ | -~ . ‘ 110
~ GRAPHICS | |pROCESSING | | |..... NONREMOVABLE i“
~ PROCESSING ' - UNIT o STORAGE
L UNIT R {COMMUNICATION “““““ e
| o i ~104 | CONNECTION(S) | |
| | “‘“““"" HW;’ | - . __, 5.-*116
TTTTUSYSTEMMEMORY T b [OUTPUT DEVICE(S) |
Py e e ——————— o .
u VOLATILE MEMORY L PTIT PEVICRQ ris
ﬂ INPUT DEVICE(S) } *’
| g “““““““““““““““““““““ | - — —— -
IR NONVOLATILE MEMORY
L e

FI1G.

1

U.S. Patent Oct. 16, 2018 Sheet 2 of 6 US 10,102,218 B2

| 5{“200
- FILE SYSTEM
| OBJECT
(ATTRIBUTE)
202 '
S Sy St ——————— {,“206
1 1 ~
o
DIRECTORY FILE r—= FILE STREAM
(ATTRIBUTE) (ATTRIBUTE) ”"*‘w} (ATTRIBUTE)
S {x
O\
N
204 208
2100 s
ROOT / Extent /
DIRECTORY /o list252 /
(ATTRIBUTE) m *f
FIG. 2
~300
Extent | Storage | Checksum ~ |Checksum ~ |Other ‘
Identificr 302 {location 304 |[Algorithm |valuc 308 attributes 310

306

FIG. 3

U.S. Patent Oct. 16, 2018 Sheet 3 of 6 US 10,102,218 B2

ENSURE WRITE PERMISSION ON | /400
FILE SYSTEM OBJECT a

COMPUTE NEW |~
CHECKSUM

E ;"“408

UPDATE EXTENT
TABLE

FIG. 4

U.S. Patent

Oct. 16, 2018 Sheet 4 of 6

——

US 10,102,218 B2

500

ACCESS EXTENT TABLE ~

|
1

 IDENTIFY CHECKSUM ALGORITHM

—— ot

FOR EXTENT

STORAGE

~502

!

~ STORE CHECKSUM VALUEAND />
CHECKSUM INDICATOR

REPORT SUCCESSFUL COMPLETION

~510

!

U.S. Patent Oct. 16, 2018 Sheet 5 of 6 US 10,102,218 B2

--

~600
ACCESS EXTENT TABLE o
~602

IDENTIFY CHECKSUM ALGORITHM |
FOR EXTENT

READ DATA FOR EXTENT FROM ,_ﬁ__,f”604

STORAGE

DATA

COMPARE COMPUTED CHECKSUM | /
TO STORED CHECKSUM

ff’f N“’\LH_
YES-r] MATCH? “eereeNO
""" e |6 o
- SIGNAL ERROR

DATA

U.S. Patent Oct. 16, 2018 Sheet 6 of 6 US 10,102,218 B2

RECEIVE FILE, RANGES IN FILE |-~
AND CHECKSUM ALGORITHMS

IDENTIFY EXTENTS WITHA | /707

RANGE -
jf"ﬁ'704
)
- APPLY CHECKSUM ALGORITHM |
TO EXTENT E
Ranges 706 Extents
remain TN remain

o .

-7 Access next . }

extent -

| RESPOND THAT FILE E
.~ SUCCESSFULLY CHANGED

| - T . e ——m o

FIG. 7

US 10,102,218 B2

1

FILE SYSTEM WITH PER-EXTENT
CHECKSUMS

BACKGROUND

A file system in a computer generally i1s part of the
operating system that manages access to data 1n files stored
on one or more storage devices. The file system provides an
interface through which other applications can create and
manage file system objects, write data to files and read data
from files stored on the storage devices.

Most file systems are configured to provide a level of data
integrity. For example, a file system may compute and store
checksums of the stored data when the data 1s written to a
storage device. When data 1s read from the storage device,
the checksums can be computed for the data as read and
compared to the stored checksums. There are variety of
checksum algorithms, which vary in terms of efliciency,
computational complexity and storage overhead.

SUMMARY

This Summary 1s provided to mtroduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

A file system allows a diflerent checksum algorithm to be
used for different extents of a file system object indepen-
dently of other extents of the file system object. The check-
sum algorithm can be a selectable attribute of an extent or
range ol extents of a file system object, such that some
extents of a file system object can use a first checksum
algorithm, while other extents of the file system object can
use a second checksum algorithm. An extent, or range of
extents, of the file system object also may have no associated
checksum algorithm. The file system stores, for each extent
of a file system object, data indicating a checksum for the
extent and an 1indication of any checksum algorithm used for
that extent. Such data can be stored for a range of extents,
thus applying 1t to each extent 1n the file system object.

A file system operation can be provided to allow an
application to request a change to the checksum algorithm
used for an extent of a file system object. When data 1s
written to an extent of a file system object, the checksum 1s
computed based on the checksum algorithm indicated for
that extent, and the checksum 1s stored. When data 1s read
from storage for an extent of a file system object, that
checksum of the read data 1s computed based on the check-
sum algorithm indicated for that extent, and 1s compared to
the stored checksum. Other operations affected by a per-
extent checksum include, but are not limited to, operations
for creating file system objects with such attributes, and
providing and changing default settings for such attributes.

Different default settings can be provided for different
parts of a file system object, such as for different file streams
within a {ile. Such a setting for a file system object can be
changed to and from using checksums, and among different
checksum algorithms.

In the following description, reference 1s made to the
accompanying drawings which form a part hereof, and 1n
which are shown, by way of illustration, specific example
implementations of this technique. It 1s understood that other

10

15

20

25

30

35

40

45

50

55

60

65

2

embodiments may be utilized and structural changes may be
made without departing from the scope of the disclosure.

DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example computer 1n
which a file system can be implemented.

FIG. 2 1s a diagram of an example class hierarchy of file
system objects.

FIG. 3 1s a diagram of an example extent table using
per-extent checksums.

FIG. 4 1s a flow chart describing an example implemen-
tation of changing a checksum algorithm used for an extent
of a file system object.

FIG. 5 1s a flow chart describing an example implemen-
tation of writing data to a file system object.

FIG. 6 1s a flow chart describing an example implemen-
tation of reading data from a {file system object.

FIG. 7 1s a flow chart describing an example implemen-
tation ol changing the protections applied to a file system
object.

DETAILED DESCRIPTION

The following section describes an example implemen-
tation of a computer with a file system.

FIG. 1 illustrates an example computer with which a file
system can be implemented. The computer can be any of a
variety ol general purpose or special purpose computing
hardware configurations. Some examples of types of com-
puters that can be used include, but are not limited to,
personal computers, game consoles, set top boxes, hand-
held or laptop devices (for example, media players, note-
book computers, tablet computers, cellular phones, personal
data assistants, voice recorders), server computers, multi-
processor systems, microprocessor-based systems, program-
mable consumer electronics, networked personal computers,
minicomputers, mainframe computers, and distributed com-
puting environments that include any of the above types of
computers or devices, and the like. A particular example
computer 1s a server computer supporting multiple virtual
machines which access data on a storage array with multiple
virtual hard drives.

With reference to FIG. 1, an example computer 100
includes at least one processing unit 102 and memory 104.
The computer can have multiple processing umts 102. A
processing unit 102 can include one or more processing
cores (not shown) that operate independently of each other.
Additional co-processing units, such as graphics processing
unmit 120, also can be present 1n the computer. The memory
104 may be volatile (such as dynamic random access
memory (DRAM) or other random access memory device),
non-volatile (such as a read-only memory, flash memory,
and the like) or some combination of the two. This configu-
ration of memory 1s 1llustrated 1n FIG. 1 by dashed line 106.
The computer 100 may include additional storage (remov-
able and/or non-removable) including, but not limited to,
magnetically-recorded or optically-recorded disks or tape.
Such additional storage 1s 1llustrated 1n FIG. 1 by removable
storage 108 and non-removable storage 110. The various
components 1 FIG. 1 are generally interconnected by an
interconnection mechanism, such as one or more buses 130.

A computer storage medium 1s any medium 1n which data
can be stored in and retrieved from addressable physical
storage locations by the computer. Computer storage media
includes volatile and nonvolatile memory, and removable
and non-removable storage media. Memory 104 and 106,

US 10,102,218 B2

3

removable storage 108 and non-removable storage 110 are
all examples of computer storage media. Some examples of
computer storage media are RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optically or magneto-opti-
cally recorded storage device, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage
devices. The computer storage media can include combina-
tions of multiple storage devices, such as a storage array,
which can be managed by an operating system or file system
to appear to the computer as one or more volumes of storage.
Computer storage media and communication media are
mutually exclusive categories of media.

Computer 100 may also include communications connec-
tion(s) 112 that allow the computer to communicate with
other devices over a communication medium. Communica-
tion media typically transmit computer program instruc-
tions, data structures, program modules or other data over a
wired or wireless substance by propagating a modulated data
signal such as a carrier wave or other transport mechanism
over the substance. The term “modulated data signal” means
a signal that has one or more of its characteristics set or
changed in such a manner as to encode information 1n the
signal, thereby changing the configuration or state of the
receiving device of the signal. By way of example, and not
limitation, communication media includes wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency, infrared and other
wireless media. Communications connections 112 are
devices, such as a wired network interface, wireless network
interface, radio frequency transceiver, e.g., Wi-Fi, cellular,
long term evolution (LTE) or Bluetooth, etc., transceivers,
navigation transceivers, ¢.g., global positioning system
(GPS) or Global Navigation Satellite System (GLONASS),
etc., transceivers, that interface with the communication
media to transmit data over and receive data from commu-
nication media, and may perform various functions with
respect to that data.

Computer 100 may have various input device(s) 114 such
as a keyboard, mouse, pen, camera, touch input device,
sensor (e.g., accelerometer or gyroscope), and so on. Output
device(s) 116 such as a display, speakers, a printer, and so on
may also be included. All of these devices are well known
in the art and need not be discussed at length here. The 1input
and output devices can be part of a housing that contains the
various components of the computer in FIG. 1, or can be
separable from that housing and connected to the computer
through various connection interfaces, such as a serial bus,
wireless communication connection and the like. Various
input and output devices can implement a natural user
interface (NUI), which 1s any interface technology that
enables a user to interact with a device in a “natural”
manner, free from artificial constraints 1imposed by input
devices such as mice, keyboards, remote controls, and the
like.

Examples of NUI methods include those relying on
speech recognition, touch and stylus recognition, hover,
gesture recognition both on screen and adjacent to the
screen, air gestures, head and eye tracking, voice and
speech, vision, touch, gestures, and machine intelligence,
and may include the use of touch sensitive displays, voice
and speech recognition, intention and goal understanding,
motion gesture detection using depth cameras (such as
stereoscopic camera systems, infrared camera systems, and
other camera systems and combinations of these), motion
gesture detection using accelerometers or gyroscopes, facial
recognition, three dimensional displays, head, eye, and gaze

10

15

20

25

30

35

40

45

50

55

60

65

4

tracking, immersive augmented reality and virtual reality
systems, all of which provide a more natural interface, as
well as technologies for sensing brain activity using electric
field sensing electrodes (such as electroencephalogram tech-
niques and related methods).

The various storage 110, communication connections 112,
output devices 116 and input devices 114 can be integrated
within a housing with the rest of the computer, or can be
connected through input/output interface devices on the
computer, in which case the reference numbers 110, 112, 114
and 116 can indicate either the interface for connection to a
device or the device itsell as the case may be.

A computer generally includes an operating system,
which 1s a computer program running on the computer that
manages access to the various resources of the computer by
applications. There may be multiple applications. The vari-
ous resources include the memory, storage, input devices
and output devices, such as display devices and 1nput
devices as shown in FIG. 1. A file system generally 1is
implemented as part of an operating system of the computer,
but can be distinct from the operating system. The file
system may be practiced 1n distributed computing environ-
ments where operations are performed by multiple comput-
ers that are linked through a communications network. In a
distributed computing environment, computer programs
may be located in both local and remote computer storage
media and can be executed by processing units of different
computers.

The operating system, file system and applications can be
implemented using one or more processing units ol one or
more computers with one or more computer programs
processed by the one or more processing units. A computer
program 1ncludes computer-executable instructions and/or
computer-interpreted instructions, such as program mod-
ules, which instructions are processed by one or more
processing units in the computer. Generally, such nstruc-
tions define routines, programs, objects, components, data
structures, and so on, that, when processed by a processing
unit, instruct the processing unit to perform operations on
data or configure the processor or computer to 1mplement
various components or data structures.

(iven one or more computers and one or more storage
devices, whether a single computer, or a set of distributed
computers, or one or more computers connected to distrib-
uted storage, a file system provides an abstraction layer
between the details of managing the storage devices, such as
the actual storage locations within each device where data 1s
stored, and applications. This abstraction layer allows appli-
cations to identify files and access files using references to
files and locations within the files, without the need for the
application to have information about the actual storage
locations on the storage devices or other details about the
storage devices.

In some computers, multiple processing units are man-
aged to run multiple virtual machines, where each virtual
machine 1s defined by one or more data files. The storage
devices also may be managed to provide multiple virtual
hard drives (VHD). In such systems some of the data files,
particularly those defining the virtual machines, can be very
large. Some portions of the data file, e.g., certain VHD
metadata for example, may be more important than other
portions of the file.

By allowing different extents of a file to use different
checksum algorithms, as described herein, the checksum
algorithms can be selected more optimally based on the
relative importance of the data in different portions of a file.

e

US 10,102,218 B2

S

Such tailoring of the checksum algorithm to different extents
of a file can provide more eflicient storage utilization and
better performance.

An implementation of a file system which allows different
extents of a file to use different checksum algorithms will
now be described 1n more detail.

In a file system, references to files are defined as combi-
nations of various file system objects, such as a name of a
storage device or collection of storage devices, names of
directories and paths of directories, names of file streams
and files, or other types of file system objects. Each file
system object generally 1s a named construct that represents
data stored within the file system.

Within the file system, when data for a file 1s stored, 1t
generally 1s broken into small chunks (often called blocks)
which are stored 1n storage locations on the storage device.
The file system generally tracks, for each file, the storage
locations within the storage device where each block of a file
1s stored, and the ordering of those blocks. A file system also
can define clusters, which 1s a group of blocks, and some
operations can be limited to operations performed on clus-
ters instead of groups of blocks. Herein, the term “extent™ 1s
used to mean any division of a file, such as a block or cluster.
In addition to tracking storage locations where stored data
for each extent of a file 1s stored, the file system tracks a
checksum computed, and checksum algorithm, for each
extent. The checksum information, 1.e., the computed check-
sum and an indication of the checksum algorithm, can be
stored for a range of extents, or subregions of an extent,
depending on the implementation.

An example implementation of such a file system waill
now be described. In the following description of FIGS. 2
through 8, a block of storage 1s used as the example
granularity of storage operations. It should be understood
that the following can be applied to using any extent, or
range of extents, of a file, such as a block, cluster or other
subset of storage depending on conventions used by the
storage devices, processing units, operating systems and file
systems 1mnvolved.

Referring to FIG. 2 as an example implementation, the file
system generally defines a set of different kinds of file
system objects 200, such as a directory 202, a file 204 and
file streams 206. A file 204 can include a collection of file
streams 206 as indicated at 208. For example, a file can
include a metadata file stream and a data file stream. A root
directory 210 1s a special kind of directory 202, providing
the top level directory of a volume being managed. The
volume governed by the root directory can include a plu-
rality of storage devices or a portion of a storage device, but
for 1llustration purposes only the description heremn will
refer to singular storage device.

Each file system object also can have one or more
attributes, such as a name and other attributes that depend on
the implementation of the file system. The attributes of a first
file system object can include default settings for other file
system objects which are created and dependent on the first
file system object. For example, attributes of a directory can
define default settings for files and file streams created
within that directory. Similarly, attributes of a file can define
default settings for file streams included within that file.

A ile, file stream or other similar object can also include
an extent table 252 that lists, for each extent (such as a
cluster or block or other subset of storage) of the file or file
stream, various information about that extent, such as its
location 1n storage, and other data such as attributes of an
extent.

—y

10

15

20

25

30

35

40

45

50

55

60

65

6

The extent table can be stored 1n a number of ways. For
example, 1n some 1implementations, the extent table can be
a simple list or array of information about blocks, mapping
a virtual block identifier used by the file to a logical block
identifier used to refer to a storage location on a storage
device. As another example, 1n some implementations the
extent table can be stored 1n an indexed tree structure such
as a B+ tree, using a virtual cluster number as a key and a
logical cluster number as a value. Other data, such as

attributes of an extent, can be stored for each extent in such
data structures.

While the foregoing describes a file system that has file
system objects within an object class hierarchy, other imple-
mentations of file systems using other types of data struc-
tures to represent file system structures also can be used, and
the invention 1s not limited to the object types described
above, or to an object-oriented implementation. The term
“file system object” 1s intended to mean any implementation
of a file system structure, such as a root directory, file or the
like, depending on the file system, and 1s not limited to
object-oriented 1mplementations.

In general, a file system allows applications and users to
create, within a root directory for a storage volume, multiple
directories and other file objects within those directories,
which creates a directory tree. The name of a storage
volume, and the list of names of directories contaiming a file
system object, 1s called a path. A computer program accesses
a file system object through the file system by providing to
the file system the path that contains the desired file system
object and the name of the file system object. Note that a
volume can refer to the storage locations available 1n a
storage device, or 1 a portion of a storage device, or 1n
multiple storage devices, depending on the implementation.

A file system makes available to other computer programs
a variety ol operations, typically through a programming
interface such as function calls and the like, which opera-
tions allow storage to be accessed. A file system may include
operations that mitialize a storage device (also called a
“volume™ herein) for use, and operations that create, read,
write or update, or delete file objects. A computer program
performs operations on a file system object by specifying the
operation and the path and name for the file system object on
which the operation 1s to be performed.

To allow the checksum algornithm to be different for
different extents of a file, the file system uses the extent table
252 for a file system object to store an indication of the
checksum algorithms, 11 any, used for extents of the file. For
example, this indication can be stored as an attribute of the
extent 1n the extent table. Alternatively, this indication can
be indirectly accessed through the extent table, for example
by being stored in association with the storage subsystem
data for the storage location of the stored data for the extent.
As another example, ranges of extents can be defined and
this information can be stored for ranges of extents.

An example implementation of an extent table 252 with
per-extent checksum information will now be described in
connection with FIG. 3.

An extent table 300 for a file system object that stores data
in extents, such as a file or file stream, as shown 1n FIG. 3,
can be implemented as an array, list or other indexed data
structure. The extent table 1s can be indexed based on an
extent identifier 302 for each extent in the file system object.
Extent identifiers generally are assigned sequentially within
the file and thus indicate the order of data in the file. These
extent 1dentifiers generally are mapped to storage locations
304 on storage devices. The storage locations 304 may

US 10,102,218 B2

7

themselves be identifiers used by a storage subsystem to
uniquely 1dentify an addressable portion of storage within
the storage subsystem.

The extent table 300 can includes, for each extent, a
checksum indicator 306, which 1s a value indicating which
checksum algorithm, 11 any, 1s used to compute a checksum
for the extent. The value can be, for example, an 1nteger
value that the file system in turn maps to a checksum
algorithm. One value can be set to indicate that no checksum
algorithm 1s used (e.g., O or =1 or some “null” value
indicator). The computer program implementing the file
system can use a variety of techniques to use the checksum
indicator 306 to switch to executing the corresponding
checksum algorithm. In general, the file system includes
computer programs that, when executed by a computer, can
implement at least two different checksum algorithms.

There are many checksum algorithms that can be used.
The {following i1s a non-exhaustive, illustrative list of
example checksum algorithms usetul for such a file system:
longitudinal parity, modular sum, Fletcher checksum, Adler
checksum, cyclic redundancy, and hash functions such as
MD35 and SHA variants.

The extent table 300 also can include, for each extent, a
checksum value 308, which 1s a value that 1s a result of
computing the checksum algorithm corresponding to the
checksum 1indicator 306 on the data stored at the storage
location 304 for the extent.

The extent table 300 also can include, for each extent,
other attributes 310 of the extent.

Alternatively, the various values 304, 306, 308 and 310
may be stored 1n one or more tables indexed by the extent
identifier, depending on the implementation. For example,
the checksum values 308 may vary 1n size depending on the
checksum algorithm used. By storing checksum values 308
in a separate table, or even a different extent 1n the storage
subsystem, management of storage for the checksum values
can be separated from management of storage of the rest of
the extent table. Alternatively, the extent table can be allo-
cated such that the size of the checksum value field 1s fixed
to the largest possible size. Alternatively, the checksum
value 308 can be an indicator of where the checksum value
1s stored. As another alternative, the checksum values and
checksum algorithm can be stored with respect to the storage
system 1dentifiers for the extent, and such information can be
tracked with respect to the storage subsystem instead of a file
system object. Thus, the file system can 1dentify the check-
sum used for an extent of a file system object either directly
in the extent table or indirectly through the extent table.
Alternatively, mnformation about checksum algorithms used
for a file system object can be stored 1n relation to ranges of
extents of the file system object.

Given an extent table through which a checksum value
and checksum algorithm for an extent can be stored and
determined, a file system operation also 1s provided to allow
the checksum algorithm for a given extent, or a range of
extents, of a file system object to be changed. Such a change
to the checksum algorithm for an extent, or range of extents,
of a file can be made independently of other extents of the
file. The file system operation 1s generally invoked by an
application, but could be 1mput by a user in a command line
interface or 1 a graphical user interface in which a user
selects. A computer program also can be written that
manipulates a file system object to change checksum algo-
rithms used within the file system object. An example
implementation of such operation, which assumes the opera-
tion recerves an indication of the file system object, the
extent, or range of extents, to be changed, and an 1ndication

10

15

20

25

30

35

40

45

50

55

60

65

8

of the checksum algorithm, will be described 1n connection
with FIG. 4. A user interface can be provided to communi-
cate to the user available checksum algorithms and to allow
the user to select from among the available checksum
algorithms for particular regions of a file.

As shown 1n FIG. 4, 1n response to invoking the operation
to change the checksum algorithm for an extent of a file
system object, the file system ensures 400 that the caller has
write permission for the file system object. If there are
otherwise no errors with the mput parameters, then the file
system reads 402 the extent table entry for the extent to be
changed. If the checksum algorithm indicated by the
invoked operation 1s already in use for that extent, as
determined at 404, then the process ends. The data for the
extent 1s read from storage (optionally verifying the current
checksum) and a checksum using the new checksum algo-
rithm 1s computed 406. The new checksum value and an
indicator of the new checksum algorithm are then stored
408. Such an operation can be defined for a range of extents
by repeating the processing of 400 through 408 for each
extent in a given range of extents. It 1s possible that changing
the checksum algorithm for a range of extents may result in
a current range of extents being subdivided into multiple
ranges, each having a different checksum algorithm.

Given such an implementation of checksums in a file
system, a variety of other operations can be modified to
support this usage. For example, reading and writing of data
can be dependent on the checksum algorithm used for any
given extent of a file. Also, higher level file management
operations can be provided that change the checksum algo-
rithm used for different sections of a file to provide diflerent
levels of protection. In some implementations, and operation
can be defined that specifies a checksum algorithm to be
used for extents of a file system object which have yet to be
allocated and stored. When data 1s ultimately written to such
extents, the checksum algorithm to be used can be pre-
defined. This set of operations 1s not intended to be exhaus-
tive, but merely illustrative of the kinds of operations that
can be implemented differently depending on whether the
file system supports sharing of stored data among file system
objects. Any such operations can be defined for a single
extent or for a range of extents. The range of extents can also
include extents that have not yet been allocated for the file
system object.

Writing data to a file system object will now be described
in connection with FIG. 5. When data 1s to be written to an
extent 1n a file system object, the file system accesses 500 the
extent table for the data about the extent. The file system
identifies 502 the checksum algorithm, if any, to be used for
the extent. If there 1s a checksum algorithm used for this
extent, then the file system computes 504 the checksum for
the data to be written using the i1dentified checksum algo-
rithm. Otherwise, a checksum computation can be avoided.
The file system writes 506 the data for that extent to storage,
and updates the storage location for the extent if appropriate.
The file system also stores 508 the checksum value com-
puted for the extent and, 11 not already stored, an indication
of the checksum algorithm used. If successiul, the file
system responds 310 with an indication of a successiul write
operation; otherwise a failure of any of the foregoing steps
can cause an error to be signaled.

In some instances, the write operation 1s appending new
data to a file. In such a case, the file system adds an entry to
the extent table for the new extent. At the time of, or prior
to, adding the entry, the file system can set the checksum
algorithm to be used 1n a number of ways. The checksum
algorithm can be a parameter of the append operation. The

US 10,102,218 B2

9

checksum algorithm can be determined by default according
to an attribute of the file or an attribute inherited from
another file system object. The checksum algorithm can be
selected based on the immediately preceding extent in the
file system object. The checksum algorithm can be selected
based on the extent in the storage subsystem into which the
data 1s being written.

The checksum algorithm for a range of extents outside the
allocation of the current file system object can be specified
prior to the data for the extent actually being appended to the
file system object. For example, an empty file can be created,
but with a range of extents having a specified checksum
algorithm. The end of the file can be set to include the range.
As data 1s written to the file using extending writes, the file
gradually expands and checksums are computed for the data
stored 1n the specified range of extents.

In some 1nstances, the write operation may involve read-
ing and moditying currently stored data. The currently
stored checksum algorithm and checksum value for the
currently stored data can be verified before the write opera-
tion to ensure the currently stored data, as read, 1s correct
before modification.

In some 1nstances, the write operation may be a “write to
new” or “copy on write” operation, or similar operation
which results 1n the data for the extent being written to a new
storage location. If the extent table tracks checksum values
and checksum algorithms indirectly, for example by having
such values stored for each storage location of the volume,
then such data can be updated for the new storage location.

Reading data from a file system object will now be
described in connection with FIG. 6. A read operation
generally imvolves accessing 600 the extent table for data
about the extent. The file system 1dentifies 602 the checksum
algorithm used for the extent. The file system reads 604 the
data from the storage subsystem using the storage location
tfor the extent. A checksum for the read data 1s then computed
606 using the 1dentified checksum algorithm. The computer
checksum 1s compared 608 to the previously stored check-
sum. If the checksums match, as indicated at 610, then the
read data 1s returned 612; otherwise an error can be signaled
as noted at 614.

Using such a file system, diflerent portions of a file can
use different checksum algorithms, and can have these
checksum algorithms changed independently of other por-
tions of the file. The capability 1s particularly advantageous,
for example, 1n storage systems with large files in which
different regions ol stored data have different levels of
importance. A specific example 1s 1n a data center with a
virtual hard drive (VHD) where a file may 1include important
metadata 1n one region and less important other data in
another region. By supporting files that allow different
extents to use diflerent checksums, the file system advanta-
geously supports an improved tradeotl between performance
and protection for such files. For example, extents in a file
that store VHD metadata can be assigned one checksum
algorithm, which may take longer to compute or result 1n a
larger checksum value than another checksum algorithm
assigned to other extents in the file that store other VHD
data. Stmilarly, a file with one combination of checksum
algorithms can be changed to use another combination of
checksum algorithms.

An example implementation of an operation that changes
protections applied to a file system object will now be
described in connection with FIG. 7.

In this example operation, an application can make
repeated calls to a file system operation that changes the
checksum applied to a designated extent of a designated file.

10

15

20

25

30

35

40

45

50

55

60

65

10

Alternatively the file system can also include an operation
that recetve an indication of a file, different ranges within the
file and an indication of the different checksum algorithms
to be applied to the extents within the different ranges.

Thus, 1n FIG. 7, the file system receives 700 an indication
of a file, ranges within the file and different checksum
algorithms to be applied to the extents within the different
ranges. Given a range, extents within the range are 1dentified
702. The new checksum algorithm, as designated for extent
in the current range of the file being processed, 1s applied
704 to each extent, 1n a manner such as described 1in FIG. 4.
It all extents of that range are processed, as determined at
706, then the next range of the file 1s processed, as indicated
at 702, until all ranges are processed, as determined at 708.
It successtul, the application responds 710 with an i1ndica-
tion of a successiul change to the file.

It should be understood that a variety of other operations
can be provided to access and manage file system objects
that utilize different checksum algorithms for different
extents within the file system objects. The foregoing pro-
vides a set of illustrative example implementations for such
a file system.

By having an extent, or a range ol extents, to have a
checksum algorithm changed, or not used, 1t 1s possible to
dynamically change the checksum algorithm for an extent
temporarily. As a particular example, to write data to an
extent, the extent can be set to have data written 1n place, and
can be set to have no checksum. After the write 1s complete,
the checksum algorithm can be set and the checksum i1s then
computed. More specifically, when a write occurs to an
extent that 1s marked as having checksums, the application
can write to a given range, and the file system writes an
intent log record that states that that the data in that range 1s
being overwritten.

The write takes place in the original
media extent. The checksum value then can be computed
and stored. If some error occurs prior to the checksum being
computed, such as a crash, cluster failover, or other failure,
then the checksum can be addressed as part of file system
recovery. Because the intent log recorded that the data was
being overwritten in the range, it 1s assumed that the correct

checksum for this range 1s now unknown. The range 1s then
temporarilly marked as having no checksum. Later, i1 an
application or the file system reads or writes this range, then
the data stored 1n this range 1s then presumed to be correct
and the checksum for the range 1s then computed and stored
and the range 1s marked as having a checksum.

Such a file system advantageously supports having files
with different checksums applied to different extents which
can provide a better tradeoll between protection, storage
utilization and performance.

Accordingly, 1n one aspect a computer with a file system
includes a means for tracking, for an extent of a file system
object, a checksum algorithm applied to the extent from
among a plurality of different checksum algorithms. Such a
file system can include a means for changing the checksum
algorithm applied to an extent of the file system object
independently of other extents of the file system object.

In another aspect, a computer with a file system includes
a means for changing the checksum algorithm applied to an
extent of the file system object independently of other
extents of the file system object, wherein the checksum
algorithm applied to the extent 1s selected from among a
plurality of different checksum algorithms.

In another aspect, a computer with a file system includes
storage 1including, for different extents of a file system

US 10,102,218 B2

11

object, an indication of checksum algorithm applied to the
extents from among a plurality of diflerent checksum algo-
rithms.

In another aspect, a computer-implemented process per-
formed by a file system of a computer includes receiving an
indication of checksum algorithm applied to an extent, from
among a plurality of different checksum algorithms, and
applying the checksum algorithm to stored data for the
extent independently of other extents of the file system
object.

In another aspect, an article of manufacture includes a
storage medium, with computer program code stored 1n the
storage medium that, when executed by one or more com-
puters, configures the one or more computers to receive an
indication of checksum algorithm applied to an extent, from
among a plurality of different checksum algorithms, and
apply the checksum algorithm to stored data for the extent
independently of other extents of the file system object.

In any of the foregoing aspects, in response to a write
operation to an extent of a file system object, the file system
identifies a checksum algorithm to apply to the extent,
computes a checksum value for the extent using the check-
sum algorithm, and stores an indication of the checksum
algorithm and the checksum wvalue associated with the
extent.

In any of the foregoing aspects, in response to a read
operation for an extent of a file system object, the file system
identifies a checksum algorithm applied to the extent, com-
putes a checksum value for data read from storage for the
extent using the checksum algorithm, and compares the
computed checksum value to a stored checksum value for
the extent.

In any of the foregoing aspects, 1n response to an opera-
tion to change a checksum algorithm applied to an extent of
a file, a file system computes a checksum value for data read
from storage for the extent using the checksum algorithm,
and stores an indication of the checksum algorithm and the
checksum value associated with the extent.

In any of the foregoing aspects, a checksum indicator can
be stored for each extent of a file system object indicating a
checksum algorithm applied to the extent, where the check-
sum algorithm 1s selected from among a plurality of check-
sum algorithms.

In any of the foregoing aspects, a checksum value can be
stored for each extent of a file system object indicating the
checksum value computed for the stored data for the extent.

In any of the foregoing aspects, the checksum indicator
for an extent can be stored 1n an entry for the extent 1n an
extent table for the file system object.

In any of the foregoing aspects, the checksum value for an
extent can be stored 1n an entry for the extent in an extent
table for the file system object.

In any of the foregoing aspects, the checksum indicator
for an extent can be accessed indirectly through an entry for
the extent 1n the extent table for the file system object.

In any of the foregoing aspects, the checksum value for an
extent can be accessed indirectly through an entry for the
extent 1n the extent table for the file system object.

In any of the foregoing aspects, the checksum indicator
for an extent of a file system object 1s stored 1n association
with data about the storage location of stored data for the
extent.

In any of the foregoing aspects, the checksum value for an
extent of a file system object 1s stored in association with
data about the storage location of stored data for the extent.

In any of the foregoing aspects, the checksum algorithm
for an extent of a file system object can be removed 1n the

10

15

20

25

30

35

40

45

50

55

60

65

12

event of a failure of a write operation. Upon a later access
to that extent, the checksum algorithm can be reassigned to
the extent, and the checksum value can be computed and
stored.

Any of the foregoing aspects may be embodied 1n one or
more computers, as any individual component of such a
computer, as a process performed by one or more computers
or any individual component of such a computer, or as an
article of manufacture including computer storage with
computer program instructions are stored and which, when
processed by one or more computers, configure the one or
more computers.

Any or all of the aforementioned alternate embodiments
described herein may be used in any combination desired to
form additional hybrid embodiments. Alternatively, or 1n
addition, the functionality of one or more of the various
components described herein can be performed, at least 1n
part, by one or more hardware logic components. For
example, and without limitation, illustrative types of hard-
ware logic components that can be used include Field-
programmable Gate Arrays (FPGAs), Application-specific
Integrated Circuits (ASICs), Application-specific Standard
Products (ASSPs), System-on-a-chip systems (SOCs), Com-
plex Programmable Logic Devices (CPLDs), etc. It should
be understood that the subject matter defined in the
appended claims 1s not necessarily limited to the specific
implementations described above. The specific implemen-
tations described above are disclosed as examples only.

What 1s claimed 1s:
1. A computer including a file system and configured to
manage storage ol and access to a plurality of file system
objects of the file system on one or more storage devices, the
computer comprising:
a computer storage medium storing a data structure, for
cach file system object, comprising, for each extent of
a plurality of extents of the respective file system
object, an mndication of a checksum algorithm applied
to the extent selected from among a plurality of differ-
ent checksum algorithms and a checksum value for the
extent, allowing a first range of extents of a file system
object to have a checksum algorithm different from a
second range of extents in the file system object;
a processing system comprising a memory with computer
program code for the file system stored in the memory
that, when executed by the processing system, config-
ures the processing system to provide an interface
through which file system operations of accessing a file
system object and changing a checksum algorithm can
be mvoked, the file system:
1in response to receiving an vocation of the operation to
change a checksum algornithm applied to a selected
extent of a selected file system object to a selected new
checksum algorithm:
receive data indicating the selected file system object,
the selected extent and the selected new checksum
algorithm from among the plurality of different
checksum algorithms,

compute a checksum value for data read from storage
for the selected extent using the selected new check-
sum algorithm, and

store, 1 the computer storage medium 1in the data
structure for the selected extent, an indication of the
selected new checksum algorithm and the computed
checksum value for the selected extent, such that the
selected extent has a different checksum algorithm
than another extent in the file system object; and

US 10,102,218 B2

13

in response to recerving, from an application, an invoca-

tion of the operation to access a selected file system

object, for each extent of the file system object to be

accessed:;

access an 1ndication of the checksum algorithm applied
to the extent from the data structure for the extent
stored 1n the computer storage medium,

apply the checksum algorithm, indicated in the data
structure for the extent, to the data for the extent to
compute a checksum value for the extent.

2. The computer of claim 1, wherein the file system, in
response to a write operation to an extent of a file system
object, i1dentifies a checksum algorithm to apply to the
extent, computes a checksum value for the extent using the
identified checksum algorithm, and stores, in the computer
storage medium and 1n association with the extent, an
indication of the identified checksum algorithm and the
computed checksum value for the extent.

3. The computer of claim 1, wherein the file system, in
response to a read operation for an extent of a file system
object, 1dentifies from the data stored in the computer
storage medium a checksum algorithm applied to the extent,
computes a checksum value for data read from storage for
the extent using the checksum algorithm, and compares the
computed checksum value to a checksum value stored 1n the
computer storage medium for the extent.

4. The computer of claim 1, wherein the indication of the
checksum algorithm stored in the computer storage medium
1s a checksum indicator stored 1n an entry for the extent 1n
an extent table for the file system object.

5. The computer of claim 4, wherein the checksum value
for an extent 1s stored 1n the computer storage medium 1n the
entry for the extent in the extent table for the file system
object.

6. The computer of claim 1, wherein the indication of the
checksum algorithm stored in the computer storage medium
1s a checksum indicator for an extent accessed indirectly
through an entry for the extent 1n the extent table for the file
system object.

7. The computer of claim 6, wherein the checksum value
for an extent 1s accessed indirectly through the entry for the
extent 1n the extent table for the file system object.

8. The computer of claim 1, wherein the indication of the
checksum algorithm stored in the computer storage medium
1s a checksum indicator for an extent stored in association
with data indicating a storage location of stored data for the
extent.

9. The computer of claim 1, wherein the checksum value
for an extent of a file system object 1s stored 1n association
with data indicating a storage location of stored data for the
extent.

10. The computer of claim 1, wherein a file system object
includes a first extent including metadata for the file system
object, and a second extent including data stored by the file
system object, wherein the checksum algorithm for the first
extent 1s different from the checksum algorithm for the
second extent.

11. A computer-implemented process performed by a file
system ol a computer configured to manage storage of and
access to a plurality of file system objects of the file system
on one or more storage devices, the file system having an
interface through which file system operations of accessing
a file system object and changing a checksum algorithm can
be mvoked, the process comprising:

storing, 1n a computer storage medium, a data structure,

for each file system object, comprising, for each extent
of a plurality of extents for the respective file system

10

15

20

25

30

35

40

45

50

55

60

65

14

object, an 1ndication of a checksum algorithm applied

to the extent selected from among a plurality of differ-

ent checksum algorithms, and a checksum value for the

extent, allowing a first range of extents of the file

system object to have a checksum algorithm different

from a second range of extents of the file system object;

1in response to receiving an ivocation of the operation to

change a checksum algorithm applied to a selected

extent of a selected file system object to a new selected

checksum algorithm:

receiving data indicating the selected file system object,
the selected extent, and the selected new checksum
algorithm from among the plurality of different
checksum algorithms,

computing a checksum value for data read from storage
for the selected extent using the selected new check-
sum algorithm, and

storing, 1 the computer storage medium 1n the data
structure for the selected extent, an indication of the
selected new checksum algorithm and the computed
checksum value for the selected extent, such that the
selected extent has a different checksum algorithm
than another extent in the file system object; and

in response to receiving, from an application, an mvoca-

tion of the operation to access an extent of a selected

file system object:

accessing an 1indication of the checksum algorithm
applied to the extent from the data structure for the
extent stored on the computer storage medium, and

applying the checksum algorithm, indicated 1n the data
structure for the extent, to data for the extent to
compute a checksum value for the extent.

12. The computer-implemented process of claim 11,
wherein, in response to the request including a write opera-
tion to an extent of a file system object:

identifying a checksum algorithm to apply to the extent,

computing a checksum value for the extent using the

checksum algorithm, and

storing, in the computer storage medium and 1n associa-

tion with the extent, an indication of the checksum
algorithm and the checksum value computed for the
extent.

13. The computer-implemented process of claim 11,
wherein, 1n response to the request including a read opera-
tion for an extent of a file system object:

identifying a checksum algorithm applied to the extent

and a stored checksum value for the extent from the
data stored in the computer storage medium,
computing a checksum value for data read from storage
for the extent using the checksum algorithm, and
comparing the computed checksum value to the stored
checksum value for the extent from the computer
storage medium.

14. The computer-implemented process of claim 11,
wherein the indication of the checksum algorithm stored in
the computer storage medium 1s a checksum indicator stored
in an entry for the extent 1n an extent table for the file system
object, and wherein the checksum value for the extent is
stored 1n the entry for the extent in the extent table for the
file system object.

15. The computer-implemented process of claim 11,
wherein a file system object includes a first extent including,
metadata for the file system object, and a second extent
including data stored by the file system object, wherein the
checksum algorithm for the first extent i1s different from the
checksum algorithm for the second extent.

US 10,102,218 B2

15

16. An article of manufacture including a storage medium,
with computer program code stored in the storage medium
that, when executed by a computer, configures the computer
to provide a file system for the computer configured to
manage storage ol and access to a plurality of file system
objects of the file system on one or more storage devices
having an interface through which file system operations of
accessing a file system object and changing a checksum

algorithm can be 1nvoked, the file system being configured
to:

store, 1n a computer storage medium, a data structure, for
cach file system object, comprising, for each extent of
a plurality of extents for the file system object, an
indication of a checksum algorithm applied to the
extent selected from among a plurality of different
checksum algorithms, and a checksum value for the
extent allowing a first range of extents of a file system
object to have a checksum algorithm different from a
second range of extents in the file system object;
in response to recerving an invocation of the operation to
change a checksum algorithm applied to a selected
extent of a selected file system object to a new selected
checksum algorithm:
receive data indicating the selected file system object,
the selected extent, and the selected new checksum
algorithm from among the plurality of different
checksum algorithms,
compute a checksum value for data read from storage
for the selected extent using selected new checksum
algorithm, and
store 1n the computer storage medium 1in the data
structure for the selected extent, an indication of the
selected new checksum algorithm and the computed
checksum value for the selected extent, such that the
selected extent has a different checksum algorithm
than another extent in the file system object; and
1in response to receiving, from an application, an 1nvoca-
tion of the operation to access an extent of a selected
file system object:
accessing an indication of the checksum algorithm
applied to the extent from the data structure for the
extent stored on the computer storage medium, and

5

10

15

20

25

30

35

40

16

apply the checksum algorithm, indicated in the data
structure for the extent, to data for the extent to
compute a checksum value for the extent.

17. The article of manufacture of claim 16, wherein the
one or more computers are configured to, 1n response to the
request 1cluding a write operation to an extent of a file
system object:

identifying a checksum algorithm to apply to the extent,

computing a checksum value for the extent using the

checksum algorithm, and

storing, 1n the computer storage medium and 1n associa-

tion with the extent, an indication of the checksum

algorithm and the checksum value computed for the
extent.

18. The article of manufacture of claim 16, the one or
more computers are configured to, 1n response to the request
including a read operation for an extent of a file system
object:

identifying a checksum algorithm applied to the extent

and a stored checksum value for the extent from the
data stored 1n the computer storage medium,
computing a checksum value for data read from storage
for the extent using the checksum algorithm, and
comparing the computed checksum value to the stored
checksum value for the extent from the computer
storage medium.

19. The article of manufacture of claim 16, wherein the
indication of the checksum algorithm stored 1n the computer
storage medium 1s a checksum indicator stored 1n an entry
for the extent in an extent table for the file system object, and
wherein the checksum value for the extent 1s stored 1n the
entry for the extent in the extent table for the file system
object.

20. The article of manufacture of claim 16, wherein a file
system object includes a first extent including metadata for
the file system object, and a second extent including data
stored by the file system object, wherein the checksum
algorithm for the first extent 1s different from the checksum
algorithm for the second extent.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

