12 United States Patent

van Riel

et al.

US010102116B2

US 10,102,116 B2
Oct. 16, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)

(22)

(65)

(1)
(52)

(58)

(56)

MULTI-LEVEL PAGE DATA STRUCTURE

Applicant: Red Hat Israel, Ltd., Raanana (IL)

Inventors: Henri van Riel, Raanana (IL); Michael

Assignee:

Notice:

Appl. No.:

Filed:

US 2017/0075814 Al Mar. 16, 2017
Int. CI.

GO6F 12/02 (2006.01)

U.S. CL

CPC

Tsirkin, Raanana (IL)

RED HAT ISRAEL, LTD., Raanana

(L)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 475 days.
14/851,166

Sep. 11, 2015

Prior Publication Data

Field of Classification Search

CPC

References Cited

U.S. PATENT DOCUMENTS

0,085,296 A
7,337,296 B2
7,562,204 Bl

7/2000 Karkhanis et al.
2/2008 Noel et al.
7/2009 Chollet1 et al.

GO6F 12/023 (2013.01)

GO6F 12/023
See application file for complete search history.

Receive request to allocate memory

Compare
memory size to

8,352,705 B2 1/2013 Agesen
8,738,860 Bl 5/2014 Grniflin et al.
2009/0193184 Al 7/2009 Yu et al.
2010/0318845 Al* 12/2010 Kohiga GO6F 11/073
714/15
2010/0332720 Al* 12/2010 Chang GOO6F 9/45537
711/6
2011/0022818 Al 1/2011 Kegel et al,
2012/0246381 Al 9/2012 Kegel et al.

OTHER PUBLICATTONS

“Chapter 3 Page Table Management™ https://www.kernel.org/doc/
gorman’/html/understand/understand006.html, accessed Jun. 25, 2015,

17 pages, Nov. 2007,

Simon Gog et al. “Optimized Succinct Data Structures for Massive
Data” http://people.eng.unimelb.edu.au/sgog/optimized.pdi, Depart-
ment of Computing and Information Systems, The University of

Melbourne, VIC, 3010, Melbourne, Australia; School of Computer
Science and Information Technology, RMIT University, VIC, 3001,
Melbourne, Australia, May 13, 2010, 28 pages.

* cited by examiner

Primary Examiner — Larry T Mackall
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

Methods, systems, and computer program products for
receiving a memory allocation request; comparing a
memory size corresponding to the memory allocation
request to a memory size threshold; allocating a memory
page that has a size larger than the memory size threshold,
the memory page having a page entry in a page management
data structure; and allocating a portion of the memory page,
the portion of the memory page corresponding to a sub-page
of the memory page.

19 Claims, 7 Drawing Sheets

300

J

thrashold
204

Allocate
sub-page

Sub-page
available?

308

Allocate and initialize page

206

Allocate a page

310

!

Split page into sub-pages
32

l

Yes
h J
Initialize sub-page page entry >
316
Update external | Set indicator in |
maﬁéng | the page entry |
— corresponding |
to the page
320 |

J

Allocate sub-page

314

U.S. Patent Oct. 16, 2018 Sheet 1 of 7 US 10,102,116 B2

100

L

Page Entry
104

Range of Physical
Memory
Page Array 102

Page Entry
106

Count
Address Space

Index into Address Space
Flags
Physical Address

U.S. Patent Oct. 16, 2018 Sheet 2 of 7 US 10,102,116 B2

200

{

0x0000

Page Entry 206 i Sub-page 202
0x1000 P——

Sub-pages
204

0x200000

U.S. Patent Oct. 16, 2018 Sheet 3 of 7 US 10,102,116 B2

300

Receive request {o allocate memory
302

Allocate
page | Allocate and initialize page
306

Compare
memory size to
threshold

304

Allocate
sub-page

Sub-page
available?
208

NO Allocate a page
310

)

Split page into sub-pages
Yes 312

'

Initialize sub-page page entry | Allocate sub-page

| Update external |

Set indicator in |

| ma;:flpmg the page entry |

l 213 1 corresponding |
{o the page

320 |

—— - |

FIlG. 3A

U.S. Patent Oct. 16, 2018 Sheet 4 of 7 US 10,102,116 B2

Root
360

Page array

362 Sub-page array

364
Range of Range of
physical physical
memory memory

U.S. Patent Oct. 16, 2018 Sheet 5 of 7 US 10,102,116 B2

400

Receive memory access request
402

Lookup page entry address

404
' Read page frame
Access page entry number from struct
406 page enlry
_ 408
Detemine the page frame o nclud
number and offset for the NO aye ICIUAes

sub-page?

page 410

412

Yes

Determine the page frame
number and offset for the
sub-page
414

Return page frame number
and offset
416

'

Access page / sub-page
located at page frame
number

418

FiG. 4

U.S. Patent Oct. 16, 2018 Sheet 6 of 7 US 10,102,116 B2

Page Frame Number Page Ofiset
202 204

FiG. 5A

Alignment Indicator
210

0x201000 |j> 0000 0000 0100 0000 0001 0000 0000 0000

|

Page Frame Number

of sub-page Page Offset
506 208
FiG. 5B

Alignment Indicator
216

0x1400000 :> 0000 0001 0100 0000 0000 0000 0000 0000

. r O]

Page Frame Page Offset
Number 514

of page
212

FIG. 5C

U.S. Patent Oct. 16, 2018 Sheet 7 of 7 US 10,102,116 B2

200
— % | Video Display é
. . R " 610
Processing Device < »
602 E | %
| | Alpha-Numeric Input Device |
< > 612
Main Memory < h |
604 | B T
- | . , cursor Control Device
| 614
. O
Static Memory p el
606 o
& F Signal Generation Device
| >
| § 616
- e |
Network Interface Device < §
603 %
\ ;
% g
gﬂ » Data Storage Device
Network g 015
620 i

NS

Us 10,102,116 B2

1
MULTI-LEVEL PAGE DATA STRUCTURE

BACKGROUND

The present disclosure relates generally to memory man-
agement, and more particularly to memory pages.

Conventional computer systems include a large amount of
memory. For example, a main memory of a computer system
may include non-volatile memory that 1s 1 excess of a
terabyte. This memory 1s used for manipulating data. For
example, a computer system may execute program from this
memory and store program data in this memory.

The amount of memory accessible to a computer system
has increased over time while the cost per byte of memory
has decreased. These advancements 1n memory technology
and lower costs have resulted in computer systems having
vast amounts of memory. To handle the large amount of
memory, computer systems include a kernel, which 1s a
central part of an operating system. The kernel manages
system resources of the computer system, such as the
memory. The kernel divides the memory of the computer
system 1nto units that are referred to as memory pages or
“pages.” Each page 1s associated with a subset of the
memory of the computer system. Typically, the kernel
manages the memory pages using page management data
structures. The page management data structures store page
entries corresponding to the pages. Each page in memory
has an associated page entry in the page management data
structure that defines the page.

As the amount of memory in a computer system has
increased, the number of pages utilized by the kernel has
also increased. Further, because each page 1s associated with
a page entry, the size of the page entry data structures has
also increased.

BRIEF SUMMARY

According to an example, a method includes receiving a
memory allocation request. The method further includes
comparing a memory size corresponding to the memory
allocation request to a memory size threshold. The method
turther includes allocating a memory page that has a size
larger than the memory size threshold, the memory page
having a page entry 1n a page management data structure.
The method further includes allocating a portion of the
memory page, the portion of the memory page correspond-
ing to a sub-page of the memory page. The method further
includes setting a parameter 1n the page entry, the parameter
indicating that the memory page includes one or more
sub-pages.

According to an example, a computer program product
stored on a non-transitory computer-readable medium
includes machine readable nstructions that when executed
by a processor cause the processor to determine that a
memory size corresponding to the memory allocation
request 1s below a memory size threshold. The processor
turther to allocate a memory page, the memory page having
a page entry 1n a page array. The processor further to allocate
a sub-page of the memory page, the sub-page included
within a range of physical memory allocated to the memory
page. The processor further to set a parameter 1n the page
entry to indicate that the memory page includes one or more
sub-pages.

According to an example, a system for managing memory
pages includes a processor and a memory, the memory
including a sub-page that 1s stored within a memory page.
The system further includes a page array in the memory that

5

10

15

20

25

30

35

40

45

50

55

60

65

2

includes a page entry corresponding to a memory page. The
system further includes a parameter in the page entry that
indicates that the memory page 1s split info one or more
sub-pages. The processor further to create a sub-page entry
in a sub-page of the one or more sub-pages, the sub-page
entry including at least the following parameters: an address
space corresponding to the sub-page; an index into the
address space; and one or more flags corresponding to the
sub-page.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an organizational diagram 1illustrating a data
structure for managing memory pages, in accordance with
various examples of the present disclosure.

FIG. 2 1s an organizational diagram 1llustrating a memory
page that 1s split into a plurality of sub-pages, 1n accordance
with various examples of the present disclosure.

FIG. 3A 1s a flow diagram showing an illustrative a
method for allocating of one or more memory pages, 1n
accordance with various examples of the present disclosure.

FIG. 3B i1s an organizational diagram illustrating an
external mapping that associates ranges of physical memory
to page management structures, in accordance with various
examples of the present disclosure.

FIG. 4 1s a flow diagram 1llustrating a method for deter-
mining a page iframe number, in accordance with various
examples of the present disclosure.

FIG. 5A 1s an organizational diagram 1llustrating a layout
of a virtual memory address, in accordance with various
examples of the present disclosure.

FIG. 5B 1s an organizational diagram 1llustrating a layout
of a virtual memory address of a sub-page, in accordance
with various examples of the present disclosure.

FIG. 5C 1s an organizational diagram 1llustrating a layout
of a virtual memory address of a page, 1n accordance with
various examples of the present disclosure.

FIG. 6 1s an organizational diagram illustrating a com-
puter system that may perform one or more of the operations
described herein, in accordance with various examples of the
present disclosure.

DETAILED DESCRIPTION

In the following description, specific details are set forth
describing some embodiments consistent with the present
disclosure. It will be apparent, however, to one skilled 1n the
art that some embodiments may be practiced without some
or all of these specific details. The specific embodiments
disclosed herein are meant to be 1llustrative but not limiting.
One skilled in the art may realize other elements that,
although not specifically described here, are within the
scope and the spirit of this disclosure. In addition, to avoid
unnecessary repetition, one or more features shown and
described 1n association with one embodiment may be
incorporated into other embodiments unless specifically
described otherwise or 1f the one or more features would
make an embodiment non-functional.

A data structure 100 for managing memory pages, 1n
which various aspects of the present disclosure may be
implemented, 1s described with reference to FIG. 1.

In the present example, the data structure 100 includes a
page array 102. The page array 102 includes a plurality of
page entries 104, 106, 108, 110 and 112. In the present
example, the page array 102 1s an array data type. In other
examples, the page array 102 may be another data structure
type, such as a linked list, table, tree, and so forth. The page

Us 10,102,116 B2

3

array or other data structure that includes the page entries
may be referred to as a page management data structure.

The page array 102 stores page entries 104-112 and/or
includes pointers to page entries 104-112. The page array
102 may be indexed, such as by virtual memory addresses.
For example, virtual memory addresses may be mapped to
the page entries 104-112 1n the page array 102 by an index
or lookup function. The page array 102 1s configured to map
the virtual memory addresses corresponding to the page
entries 104-112 to page frame numbers, which may also be
referred to as physical addresses.

The present example 1llustrates a single page array; how-
ever, 1n other examples, a plurality of page arrays may be
used. For example, a first page array may store page entries
corresponding to memory pages having a first size. The
memory pages having a first size may be, for example, 2 MB
(two megabytes). A second page array may store page
entries corresponding to memory pages having a second size
that 1s different than the first size. The memory pages having
a second size may be, for example, 4 KB (four kilobytes).
The memory pages having the first size may be referred to
as large pages and the memory pages having the second size
may be referred to as small pages. In other examples, the
large memory pages are 2 GB (two gigabytes) and the small
pages are 2 MB. In other examples, there may be more than
two pages sizes. For example, a first page size may be 2 GB,
a second page size may be 2 MB and a third page size may
be 4 KB. In vet other examples, the pages may have other
s1zes not specifically discussed.

Memory pages corresponding to the page entries 104-112
may be split mto sub-pages. For example, a large page that
1s 2 MB 1n size may be split into 512 small pages that are
cach 4 KB 1n size. In some examples, the large page is
referred to as a page, and the small pages are referred to as
sub-pages or split-pages. In some examples, sub-pages may
be further split into sub-sub-pages.

In the present example, each page entry has a data type
that groups parameters corresponding to that page entry. In
some examples, a “struct” or structure data type 1s used to
define each page entry. In other examples, a class data type
1s used to define each page entry. Each page entry has a size.
For example, a page entry may have a size of 64 bytes. The
size of the page entry may be configured based on the

amount of data to be stored in the page entry. Other sizes of

page entries may be used depending upon the amount of data
that 1s stored 1n the page entries.

Each page entry corresponds to a memory page or a
sub-page ol a memory page. For example, the page entry
106 includes parameters that define a memory page or
sub-page. The memory page or sub-page may be accessed
by performing a lookup on the page entry 106 using a virtual
address. By accessing the page entry 106, the computer
system may determine the features of the page or sub-page,
based on the parameters included 1n the page entry 106. In
addition, the page entry 106 may also be used to determine
a page frame number, which may 1dentify a physical address
of the memory page 1n the memory. Determining a page
frame number using a page entry 1s discussed 1n further
detail with respect to FIG. 4.

In the present example, a page entry 104 includes a range

of physical memory parameter that specifies a range of

physical memory where the memory pages and sub-pages

corresponding to the page entries are located. The range of

physical memory may be contiguous or non-contiguous. For
example, the range of physical memory may specily one or
more ranges of physical memory that each have a start
address and an end address.

10

15

20

25

30

35

40

45

50

55

60

65

4

The page array entry 104 may also be referred to as an
index page entry because 1t specifies mmformation corre-
sponding to the page entries 1n the page array. An index page
entry may be positioned as a {irst page entry, as 1s illustrated
in the present example. In some examples, an index page
entry may be positioned as a last page entry in the page
array. In other examples, a page array does not include an
index page entry.

In the present example, the page entry 106 includes
parameters such as a count, index into address space,
address space, flags, physical address, and so forth. In other
examples, the physical address parameter 1s not included 1n
the page entry 106. In some examples, additional, fewer
and/or diflerent parameters may be specified in a page entry.

In the present example, the page entry 106 includes a
count parameter that identifies a number of processes and/or
virtual systems to which the memory page 1s allocated. The
count parameter may be used, for example, to support
memory deduplication. Memory deduplication refers to
sharing a memory page between a plurality processes and/or
virtual systems. For example, a virtual system may attempt
to allocate a memory page that 1s identical to an already
existing memory page. Rather than creating a new memory
page, the existing memory page may be used, and the count
corresponding to the memory page may be incremented. If
the count indicates that the memory page 1s a deduplicated
memory page, a copy-on-write technique may be performed
if the memory page 1s modified by a process and/or virtual
system.

In the present example, the page entry 106 includes an
address space parameter that identifies the address space
corresponding to the memory page. For example, 11 the
memory page corresponds to a file, the address space
parameter may identily the address space corresponding to
the file. The page entry 106 may also include an index into
the address space parameter that 1identifies the ofiset into the
address space where the memory page corresponding to the
page entry 1s located. For example, if the memory page 1s a
first memory page of a file, the index into address space
parameter may be set to 0, indicating that the memory page
1s at the beginning of the file. Similarly, 1f a memory page
1s a second memory page of the file, the index into address
space parameter may be set to 1. The mndex into the address
space may be further incremented for each additional
memory page of the file. For example, a file may be 12 KB

(twelve kilobytes) 1n size, and composed of three memory
pages that each have a size of 4 KB (four kilobytes). The
address space specified 1n the page entry 106 may i1dentily
the address space corresponding to the 12 KB file, with the
first memory page at oflset 0 of the file being assigned an
index into the address space of 0. The second memory page
at offset 4 KB of the file 1s assigned an index into the address
space of 1. The third memory page at offset 8 KB into the
file 1s assigned an index into the address space of 2.

In the present example, the page entry 106 includes one
or more flags. Flags may include, for example, a pg_split
flag that 1dentifies whether the memory page 1s split 1nto a
plurality of sub-pages. For example, a memory page may be
a large memory page that 1s 2 MB 1n size. The memory page
may be split into a plurality of 4 KB sub-pages. In this
example, a tlag may be set in the page entry corresponding
to the memory page that indicates that the memory page has
been split and includes the sub-pages. A flag may also be set
in each sub-page to indicate that the sub-page 1s split from

a page.

Us 10,102,116 B2

S

Flags may also include, for example, a valid flag that
indicates that the memory page or sub-page 1s valid and
ready for use.

In the present example, the page entry 106 includes a
physical address parameter. The physical address parameter
may specily a page frame number that 1dentifies the physical
location of the memory page corresponding to the page
entry. In some examples, the page entries are configured
with the physical address in order to identify the page frame
numbers of the memory pages and sub-pages. Storing the
physical address 1n the page entries may increase the size of
the page entries, which may cause a large increase 1n the size
of the page arrays that store the page entries.

In some examples, to conserve memory, page entries do
not store the physical address. In these examples, a calcu-
lation may be performed to 1dentily the page frame number
of a page or sub-page associated with the page entry.
Accordingly, rather than retrieving a physical address from
a page entry, the physical address 1s calculated. Calculating
the physical address rather than retrieving the physical
address from the page entry may result in a longer access
time for determining the physical address of the page.

Accordingly, the physical address may be stored in the
page entry to increase the speed of the page access, and the
physical address may not be stored 1n the page entry in order
to conserve memory. One or both techniques may be used,
based on a balancing of the cost considerations (access time
versus memory usage). In some examples, some page arrays
may use page entries having a physical address parameter,
while other page arrays in the same computer system may
calculate the physical address rather than storing the physi-
cal addresses 1n the page entries. For example, for large
pages, the physical address may be stored 1n the page entries,
while for small pages the physical address may be calcu-
lated. In another example, the physical address may be
stored 1 page entries for small pages, but not for large
pages.

A memory page 200 including a plurality of sub-pages, 1n
which various aspects of the present disclosure may be
implemented, 1s described with reference to FIG. 2.

The memory page 200 may be referred to as a page or a
large page.

In the present example, the memory page 202 has a length
of 0x200000 (2,097,152 bytes), which 1s referred to as a 2

MB memory page. In other examples, memory pages may
be of other lengths. For example, a memory page may be 2
GB. Offset 0x0000 1dentifies the beginning of the memory
page 200, and ofiset 0x200000 i1dentifies the end of the
memory page 200. In the present example, the memory page
200 1s allocated 1n a main memory and may be filled with
code and/or data.

In the present example, the memory page 200 includes
sub-pages 202 and 204. A sub-page 1s a portion/subset of the
page that 1s smaller than the memory page. The sub-page
may also be referred to as a small page or a split-page. In the
present example, each sub-page 1s 4 KB (4096 bytes) 1n size,
such that the first sub-page 202 1s positioned between oflsets
0x0000 and 0x1000 of the memory page. In the present
example, sub-pages 204 1include one or more sub-pages that
are allocated in the memory page 200. The oflsets of the
sub-pages 202 and 204 include data and/or code that 1s
stored 1n memory. An oflset 1s a memory address within a
page or sub-page that may be used to store code and/or data.
In the present example, the memory page 200 includes
offsets 0x0000 to 0x200000. In the present example, each

10

15

20

25

30

35

40

45

50

55

60

65

6

sub-page includes the offsets 0x0000 to 0x1000. Examples
of storing code and/or data include storing a file or a portion
of a file.

In the present example, as illustrated with respect to
sub-page 202, each sub-page of the memory page 200
includes a page entry 206. The page entry 206 may include
teatures similar to the page entries described in FIG. 1. For
example, the page entry 206 may include parameters speci-
tying an address space, index into the address space, flags,
physical address and so forth. In another example, page
entries corresponding to the sub-pages are stored 1n a page
array, rather than 1n the sub-pages themselves. For example,
the page entries corresponding to the sub-pages are stored in
the same page array that stores the page entries correspond-
ing to the pages. In another example, the page entries
corresponding to the sub-pages are stored 1n a different page
array than the page array stores the page entries correspond-
ing to the pages

Storing a page entry 206 1n the sub-page 202 may provide
the advantage ol memory savings. For example, 1f a page
entry 1s 64 bytes, a page array that stores a plurality of page
entries may utilize a large amount of memory 11 page entries
for sub-pages are also included in the page array. Accord-
ingly, each page entry for a sub-page may be stored 1n the
sub-page 1tself, to reduce the memory overhead of a page
array data structure. In this example, a page array may be
utilized to store page entries for each memory page (e.g.,
memory page 200), with the page entries for the sub-page
being stored in each sub-page of the memory page, as 1s
illustrated with respect to sub-page 202. For example, a
sub-page may be 4096 bytes and a page entry for the
sub-page may be 64 bytes. In this example, the page entry
may be stored in the first 64 bytes of the sub-page with the
remaining 4032 bytes of the sub-page used to store other
code and/or data.

The present example describes particular memory sizes
corresponding to pages, sub-pages, and page entries. These
memory sizes are provided as examples to illustrate the
concept of providing a page-entry within a sub-page. In
other examples, pages, sub-pages and page entries may be
defined to have other memory sizes.

Turning now to FIG. 3A, a flow diagram of a method 300
for allocating memory pages 1s 1illustrated according to
aspects of the present disclosure. The method 300 may be
performed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic and
microcode), software (such as instructions run on a com-
puter system, specialized hardware, dedicated machine, or
processing device), firmware, or a combination thereof.

At action 302, the kernel receirves a request to allocate
memory. For example, a process or the kernel itself may
request memory. In some examples, the request 1s for the
kernel to allocate memory for caching a file or other data. In
other examples, the request 1s for the kernel to allocate
memory to load a file into the memory for execution. In yet
another example, the request 1s for the kernel to allocate
additional memory for an already existing process.

At action 304, responsive to the request, the kernel
determines whether to allocate a page or a sub-page based on
the size of the memory that 1s requested to be allocated. The
determination whether to allocate a sub-page may be per-
formed based on the kernel 1dentifying whether allocating a
sub-page would be more cost eflective than allocating a
page. In the present example, the determination includes
comparing the size of the memory requested to a threshold.

In the present example, the kernel identifies the amount of
memory requested. The kernel then compares the size of the

Us 10,102,116 B2

7

memory requested with a size threshold to determine
whether the memory requested exceeds, 1s below, or equal to
the threshold. In some examples, 1 the amount of memory
requested 1s less than or equal to the threshold, the kernel
determines that a sub-page should be allocated. In other
examples, 11 the amount of memory requested 1s less than the
threshold, the kernel determines that a sub-page should be
allocated. In yet another example, 1f the amount of memory
1s greater than the threshold, the kernel determines that a
page should be allocated (rather than a sub-page). In yet
another example, 11 the amount of memory 1s greater than or
equal to the threshold, the kernel determines that a page
should be allocated (rather than a sub-page).

For example, a page may have a size of 2 MB and a
sub-page may have a size of 4 KB. If 1 KB of memory 1s
requested, the kernel may compare the requested memory
s1ze (1 KB) with the sub-page size (4 KB) to calculate that
the requested memory size would fit within a sub-page.
Accordingly, based upon the calculation, the kernel may
determine that splitting a memory page into sub-pages and
allocating a sub-page 1s more cost eflective than allocating
an entire memory page.

In other examples, the size threshold may be pre-config-
ured or user-defined. For example, a pre-configured size
threshold may be set to the size of a sub-page. Based on this
threshold, if the amount of memory requested 1s less than the
s1ze of the sub-page, kernel determines to split the page into
sub-pages and allocate a sub-page. Otherwise, 11 the amount
of memory requested 1s larger than a sub-page, the kernel
determines to allocate a page, rather than split the page into
sub-pages.

In another example, the size threshold may be a number
of sub-pages. For example, the kernel may calculate whether
more than a threshold number of sub-pages would be
allocated to fit the size of the memory requested. Alterna-
tively, the kernel may calculate whether less than a threshold
number of sub-pages would be allocated to fit the size of the
memory requested. In response to either of the above
calculations, the kernel may determine whether to split the
page.

At action 306, based upon the comparison, the kernel
determines that the page should be allocated (rather than a
sub-page). Thus, a page 1s allocated and mitialized. A
pre-existing memory page may be located and used, if
available. If a pre-existing page 1s not available, allocation
of the page may include locating and assigming iree blocks
of physical memory to the page. In some examples, allo-
cating a page includes updating or adding a page entry 1n a
page array and indexing the page entry within the page array.
In some examples the page 1s 1mitialized by configuring
parameters 1n the page entry corresponding to the page, such
as the count, address space, index mto address space, flags,
physical address, and so forth. If the request 1s to allocate
memory that 1s larger than the page, additional memory
pages may also be allocated and 1mtialized.

In action 308, based upon the comparison, the kernel
determines that a sub-page should be allocated. First, the
kernel may determine whether a pre-existing sub-page 1s
available. The kernel may, for example, identity whether
there are memory pages that have been split into sub-pages
that are available for use. A sub-page may be available for
use 1f 1t was previously split from a page and not yet
assigned. In another example, a sub-page may be available
il 1t was previously used and then freed. The i1dentification
of available sub-pages may be performed by traversing a
page array or other data structure.

10

15

20

25

30

35

40

45

50

55

60

65

8

At action 310, if there are no sub-pages available, a page
may be allocated by locating a pre-existing memory page
that 1s unused, or by allocating a new memory page. A new
memory page may be allocated by, for example, locating and
assigning iree blocks of memory to the page and updating a
page array with an entry for the page. If the request is to
allocate memory that 1s larger than the page, additional
memory pages may also be allocated and imtialized.

At action 312, the kernel splits the allocated page into
sub-pages. In some examples, based on the amount of
memory requested, the page may be split mnto a number of
sub-pages that accommodates the memory requested. For
example, 11 each sub-page 1s 4 KB, and the amount of
memory requested 1s 10 KB, then a 12 KB portion of the
page may be split into three sub-pages, with the remaining
portion of the page not being split into additional pages. In
another example, the page may be split into sub-pages that
are not yet requested, such that sub-pages are available to
handle additional sub-page requests.

For example, the kermel may determine a number of
sub-pages within the memory page. In some examples, the
kernel may read a pre-configured value from memory that
identifies the number of sub-pages within the memory page.
For example, a page may be set to a size of 2 MB and a
sub-page may be set to a size of 4 KB. Based on the page
and sub-page sizes, a value may be set in memory that
identifies that each page includes 512 sub-pages. Accord-
ingly, the page may be split into 512 sub-pages.

In other examples, the kernel dynamically calculates the
number of sub-pages by dividing the size of the page by the
size of a sub-page. For example, a sub-page may have a
dynamically configured page size that 1s configured with a
s1ze that fits the amount of memory requested. For example,
the memory request may be a request for 1 KB of memory.
Based on this request a sub-page size may be dynamically
configured to be 1 KB. The kernel may divide a page into
sub-pages having the determined sub-page size. In this
example, with the sub-page size of 1 KB, the kernel may
calculate that a 2 MB page may be split into 2000 sub-pages.
Accordingly, the page may be split into 2000 sub-pages.

At action 314, a sub-page is allocated from the one or
more sub-pages split from the page in action 312. The
allocation may be performed by locating and assigning free
blocks of memory to the sub-page. In some examples, a page
array may be updated with a page entry corresponding to the
sub-page. The page array may store page entries for both
pages and sub-pages. In other examples, a page array 1s
updated that corresponds to sub-pages, where the page array
corresponding to the sub-pages 1s separate from another
page array that corresponds to pages. In yet another
example, a page entry 1s stored within the sub-page 1tself
rather than being stored 1n a page array. In some examples,
a page array corresponding to page entries ol sub-pages 1s
stored 1n kernel virtual memory such as vmalloc. If the
requested memory 1s larger than the sub-page, additional
memory sub-pages may also be allocated from one or more
memory pages.

In the present example, each sub-page of the page 1s
allocated on an as-requested basis. For example, a page may
be split into a first sub-page 1n step 312. If another sub-page
1s requested, a second sub-page 1s split in step 312, and
allocated from the memory of the page that follows the first
sub-page. Accordingly, the kernel may track the available
memory in each page and sub-pages allocated from each
page, such that additional sub-pages may be split and
allocated from memory pages on an as-requested basis.

Us 10,102,116 B2

9

At action 316, the sub-page 1s mtialized. In some
examples, the sub-page 1s 1mtialized by setting the param-
eters 1n the page entry corresponding to the sub-page, such
as the count, address space, index into address space, flags,
physical address, and so forth. If the requested memory 1s
larger than the sub-page, additional memory sub-pages may
also be mtialized. In the present example, the sub-page
entry corresponding to the sub-page 1s mitialized 1n a same
page array that i1s used to store page entries of pages. In
another example, the sub-page entry 1s stored 1n a separate
page array than a page array that stores page entries. In yet
another example, the sub-page entry i1s stored within the
memory page that includes the sub-page, such as within the
sub-page itsell as 1s illustrated in FIG. 2.

Action 318 and/or 320 may also be performed in some
examples.

At action 318, an external mapping corresponding to the
sub-page entry 1s updated to 1dentify the range of memory
corresponding to the sub-page entry. In some examples, the
external mapping 1s a lookup structure such as a table (e.g.,
a hash table) or tree that associates page management data
structures (such as page arrays and sub-page arrays) with
ranges of physical memory. FIG. 3B illustrates an example
tree for associating pages 1n page arrays and sub-page arrays
with ranges of physical memory. The external mapping may
be referred to, in some examples, to determine a page frame
number corresponding to a page entry. Accessing an external
mapping to determine a page frame number 1s described in
more detail with respect to FIG. 4.

At action 320, a parameter 1s set 1n a page entry corre-
sponding to the page that includes the sub-page. In some
examples, each page entry includes a tlag parameter that
specifies whether the page includes sub-pages. Accordingly,
in step 320, when a page has been split to include sub-pages,
the flag 1s set 1n the page entry corresponding to the page to
indicate that the page includes one or more sub-pages. In
addition, sub-pages may also include a flag in their corre-
sponding sub-page entries to indicate that they are sub-pages
rather than pages.

The kernel may also determine the presence of the sub-
page(s) based upon the particular page array that includes
the page entry corresponding to the sub-page, an external
mapping, and/or an alignment indicator. Identifying a sub-
page for the purpose of calculating a page frame number 1s
described in more detail with respect to FIG. 4.

FIG. 3B 1s an organmizational diagram illustrating an
external mapping that associates ranges of physical memory
with page management structures, 1n accordance with vari-
ous examples of the present disclosure.

In the present example, the external mapping 1s a non-
binary tree. In other examples, a binary tree or other data
structure may be used to associate ranges ol physical
memory to page management structures, such as page
arrays. Further, while the tree 1n the present example 1llus-
trates a page array node 362 and a sub-page array node 364,
in other examples there are additional page arrays and
sub-page arrays included within the tree.

In the present example, the external mapping includes a
root node 360 that i1s assigned an address in memory. The
address of the root node 360 1s stored 1n memory, such that
a kernel may access and traverse the tree to retrieve physical
address data corresponding to the page and sub-page arrays.

A page array node 362 corresponds to a page array that
stores page entries for pages. A sub-page array node 364
corresponds to a sub-page array that stores page entries for
sub-pages. Additionally, the page array node 362 and sub-

10

15

20

25

30

35

40

45

50

55

60

65

10

page array node 364 may include child nodes that represent
additional page array or sub-page array data structures.

In the present example, each page array node (e.g., page
array node 362) and sub-page nodes (e.g., sub-page array
node 364) 1s associated with a range of physical memory. As
illustrated, both the page array node 362 and the sub-page
array node 364 include a parameter that identifies a range of
physical memory that 1s associated with the node.

For example, the page array node 362 has a range of
physical memory parameter that specifies a start address
corresponding to the first page included 1n the page array and
an end address that specifies the end of the last page that 1s
included in the page array. Similarly, the sub-page array
node 364 has a range of physical memory parameter that
specifles a start address corresponding to the first sub-page
included i1n the sub-page array and an end address that
specifies the end of the last sub-page that 1s included 1n the
page array.

In the present example, the external mapping 1s updated
as pages and sub-pages are allocated, and may be referred to
by the kernel during page access operations.

Turning now to FIG. 4, a flow diagram of a method 400
for determining a page frame number 1s 1llustrated according
to aspects of the present disclosure. The method 400 may be
performed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic and
microcode), software (such as instructions run on a com-
puter system, specialized hardware, dedicated machine, or
processing device), firmware, or a combination thereof.

At action 402, the kernel receives a request to access
memory, such as by reading from a memory location or
writing to a memory location. In the present example, the
request 1s mitiated by the kernel itself or a process executed
by the kernel. In the present example, the memory location
specified 1n the request 1s a virtual address of the memory.

At action 404, the address of the page entry corresponding
to the request 1s i1dentiiying. In some examples, the page
entry 1s stored 1 a page array. The page array may be
indexed by virtual addresses, such that an mput of a virtual
address will identily a page entry in the page array. In some
examples, the upper bits of the virtual address are used to
identify the page entry. For example, 1n a 32-bit system, the
upper seven bits of the virtual memory address may be used
to locate page entries 1n the page array. In other examples,
the location of the page entry may be looked up via a data
structure such as a table (e.g., a hash table), tree, linked list,
or other data structure.

At action 406, the page entry 1s accessed to read data from
the page entry. For example, the page entry may be fetched
such that parameters may be read from the page entry.

At action 408, a page frame number 1s read from the page
entry. The page frame number may be stored 1n a parameter,
such as a physical address parameter that 1s stored in the
page entry. In other examples, a page entry does not store the
page frame number, and the page frame number 1s deter-
mined based on the actions performed in blocks 410, 412
and 414.

At action 410, the kernel determines whether the page
corresponding to the page entry includes a sub-page.

In some examples, the kernel reads a flag (e.g., pg_split)
from the page entry to 1dentily whether the flag 1s set, thus
indicating that the page corresponding to the page entry 1s a
split page or contains split pages.

In another example, the address of the page array that
stores the page entry is 1tself an indicator regarding whether
the page entry corresponds to a sub-page. For example, a
first page array may be configured to store page entries of

Us 10,102,116 B2

11

pages. A second page array may be configured to store page
entries of sub-pages. Accordingly, based upon the page array
that stores the page entry, the kernel may 1dentity whether
the page entry corresponds to a page or a sub-page.

In another example, an external mapping such as a lookup
structure may be accessed to determine whether the page
entry corresponds to a page or a sub-page. The lookup
structure may be, for example, a tree, table (e.g., a hash
table), or other data structure that includes for each page
entry an indicator whether the page entry corresponds to a
page or a sub-page.

In another example, an alignment indicator 1s parsed from
the address of the page entry to identily whether the page
entry corresponds to a page or a sub-page. An example of an
alignment 1ndicator 1s discussed in more detail in FIG. 5.

At action 412, the page entry 1s determined to correspond
to a page, rather than a sub-page. The kernel 1s configured
to 1dentily which bits of the virtual address are the page
frame number for a page, and which bits of the wvirtual
address are the page frame number for a sub-page. Accord-
ingly, by determining that the page entry corresponds to a
page, the kernel 1s able to determine the page frame number
by reading the bits of the virtual address that are the page
frame number for a page. As illustrated 1n FIG. 3B, the bits
of the virtual address corresponding to the page may be the
four page frame number 510 bits to the left of the twenty-one
bits of the page ofiset 508. Identifying the four page frame
number 510 bits may be performed by, for example, shifting
the virtual address to the right by twenty-one bits.

In some examples, the page frame number 1s calculated by
subtracting the start address of the page array from the
address of the page entry. The resulting address 1s an offset
into the page array. This oflset may then be divided by the
s1ze of the page entry to determine the page frame number.
In some examples, the determining of the page frame
number and offset from the virtual memory address 1s
referred to as translating the virtual memory address.

At action 414, the page entry 1s determined to correspond
to a sub-page, rather than a page, and therefore the page
frame number 1s determined for the sub-page.

For a sub-page, the page frame number may be the page
frame number of sub-page 504 bits that are to the left of the
page ollset 502. Accordingly, by i1dentifying that the page
frame number 1s for a sub-page, the kernel may use the
thirteen bits to the left of the twelve bits of the page oflset
502. Identitying the thirteen page frame number 504 bits
may be performed by, for example, shifting the wvirtual
address to the right by twelve bits.

In another example, the kernel may determine the page
number corresponding to the page that includes the sub-
page, such as by the mechanism described at action 412.
Next, the index of the sub-page into the page may calculated.
This may be performed by, for example, subtracting the start
address of the page array from the address of the sub-page
entry. The resulting address 1s an oflset into the page array.
This oifset may then be divided by the size of the sub-page
entry to determine the index into the page. Next, the bits of
the index into the page are combined with the bits page
frame number of the page. For example, 11 the page frame
number of the page 1s 0010 and the bits of the index into the
page are 0 0000 0001, the bits may be combined by inserting,
the page frame number of the page to the left of the bits of
the index. The resulting address in this example would be
0010 0 0000 0001. This address 1s the page frame number of
the sub-page.

In another example, 1f the page entry 1s stored 1n kernel
virtual memory, such as vmalloc, the address of the page

10

15

20

25

30

35

40

45

50

55

60

65

12

entry may be used to determine the page frame number of
the page described by the page entry. For example, the start
address of the page array may be subtracted from the address
of the page entry to obtain an offset into the page array,
which 1s divided by a page entry of a page or sub-page to
determine a page frame number as described 1n actions 412
and 414. In another example, the page entry of the page or
sub-page 1n the kernel virtual memory includes a stored
parameter that specifies the page frame number correspond-
ing to the page or sub-page. In this example, the page frame
number 1s retrieved from the parameter. The parameter may
be, for example, a physical address stored in the page entry
that specifies the page frame number.

In another example, a lookup structure, such as a table
(c.g., a hash table), linked list or tree, 1s used to determine
the page frame number. For example, each page entry may
correspond with an entry 1n the lookup structure. The lookup
structure may be accessed to retrieve the page frame number
of the page that includes the sub-page. The index into the
page corresponding to the sub-page may be calculated as
described above. The page frame number of the page may
then be combined with the calculated index, mn order to
determine the page frame number of the sub-page. For
example, 11 the page frame number of the page 1s four bits,
the four bits of the page frame number of the page may be
inserted to the left of the calculated index in order to
determine the page frame number for the sub-page.

In another example, the page entry 1s 1n a section such as
a hotplug or disontiguous memory section. In this example,
the address of the section that includes the page array that
includes the page entry is be retrieved. The start address of
the page array may be subtracted from the address of the
page entry to obtain an oflset mnto the page array, which 1s
divided by a page entry of a page or sub-page to determine
a page Irame number as described 1n actions 412 and 414.
In another example, the page entry of the page or sub-page
in the section includes a stored parameter that specifies the
page Iframe number corresponding to the page or sub-page.
In this example, the page frame number 1s retrieved from the
parameter. The parameter may be, for example, a physical
address stored 1n the page entry that specifies the page frame
number.

In some examples, the determining of the page frame
number and oflfset from the virtual memory address 1s
referred to as translating the virtual memory address.

At action 416, in the present example, the page frame
number and offset are returned to the kernel. In other
examples, the page frame number and oflset may be returned
to a particular process or program that requested access to
the page or sub-page.

At action 418, in the present example, the kernel uses the
page frame number to access the page or sub-page that 1s
located at the address 1n physical memory that 1s specified by
the page frame number. In some examples, the page frame
number and oflset are passed to another module or program
to perform the access. In some examples, accessing an oilset
ol a page or sub-page includes reading data from the oilset
within the page or sub-page, writing data to the oflset within
the page or sub-page, and/or executing an 1nstruction located
at the oflset within the page or sub-page. For example, 11 the
request to access the memory 1s a read request, the kernel
may read the oflset at the determined page frame number. IT
the request to access the memory 1s a write request, the
kernel may write to the oflset at the determined page frame
number. If the request to access the memory 1s an execute
request, the kernel may read an instruction from the offset at
the determined page frame number, and execute the read

Us 10,102,116 B2

13

instruction. In some examples, a read, write or execute
request may specily a range of offsets of the page/sub-page.
Accordingly, while the above disclosure refers to reading
and writing data to an offset, and executing an instruction at
an oflset, similar principles may be applied to perform read,
write and execute operations to a range of offsets of the
page/sub-page, and also to a range of oflsets located 1n a
plurality of pages/sub-pages.

FIG. SA 1s an organizational diagram 1llustrating a layout
of a virtual memory address, 1mn accordance with various
examples of the present disclosure.

In the present example, the virtual memory address 1s split
into a page frame number 502 and a page offset 504. The
page frame number 502 includes a pre-determined amount
of bits of the virtual memory address having a higher
significance than a pre-determined amount of bits of the

il

virtual memory address corresponding to the page oflset
504. In the present example, the page frame number 502
identifies a physical memory address corresponding to a
page or sub-page of memory and the page oflset identifies a
location within that page or sub-page. The descriptions for
this figure refer to pages, but are equally applicable to
sub-pages. Each page/sub-page 1n memory has a page frame
number that identifies the physical address of the page/sub-
page 1n the memory and oflsets that identify locations within
the page/sub-page. A page oflset 504 may also be referred to
as a memory oilset or an oilset.

The page oflset 504 1dentifies an offset within the page
identified by the page frame number 502. Each page has a
page size, which 1s the amount of memory occupied by the
page. The page has a start offset, at the beginning of the
page, which 1n the present example 1s zero. The page also
has an end offset, which 1s an oflset corresponding to the end
of the page. The end oflset may depend upon the page size.
For example, 11 the page 1s a 4 KB page, the end offset of the
page may be 0x1000, as 1llustrated in FIG. 2. For example,
if the page 1s a 2M page, the end offset of the page may be
0x200000, as 1s 1llustrated in FIG. 2. The page oflsets from
the start offset to the end oflset may be used to store code
and/or data 1n the memory page.

In some examples, the virtual address further includes
additional portions, such as a portion that identifies the
location of a page entry, which corresponds to the page, 1n
a page management data structure. For example, the page
entry may be located 1n a page array as 1s illustrated 1n FIG.
1.

In some examples, the virtual address 1s 32 bits. In other
examples, the wvirtual address 1s 64 bits. In yet other
examples, the virtual address includes fewer or additional
bits. While the examples 1n FIG. 5B and FIG. 5C, below,
illustrate virtual memory addresses having 32 bits, 1n other
examples the virtual addresses may have different numbers
of bits (e.g., 64 bits). In a virtual memory address having an
amount of bits other than 32, the layout of the virtual address
may include a different amount of bits corresponding to the
page frame number, page oilset, and alignment indicator
portions.

FIG. 5B 1s an organizational diagram 1llustrating a layout
of a virtual memory address of a sub-page, in accordance
with various examples of the present disclosure.

As shown 1n the present example, the address (0x201000)
1s a 32-bit address that includes an upper thirteen bits that
identily the page frame number 506 of a sub-page and a
lower 12 bats that identify a page oflset 508. The page oflset
508 15 a page address that may be used to store code and/or
data of the sub-page. The alignment indicator 510 indicates

10

15

20

25

30

35

40

45

50

55

60

65

14

that the virtual address corresponds to a sub-page because
the bits 1n the alignment indicator include at least one bit that
1S NON-Zero.

In some examples, the alignment indicator 510 portion of
the address may be parsed by the kernel to determine
whether any of the plurality of alignment indicator bits are
non-zero, thus indicating that the address corresponds to a
sub-page rather than a page. Parsing the alignment 1indicator
510 may include, for example, shifting the bits of the virtual
address and comparing the shifted bits of the virtual address
to zero.

In some examples, the bits to the left of the page frame
number (e.g. the seven bits on the left) are bits that may be
used to identify a page entry 1n a page management data
structure.

FIG. 5C 1s an organizational diagram illustrating a layout
of a virtual memory address of a page, in accordance with
various examples of the present disclosure.

As shown i1n the present example, the address
(0x1400000) 1s a 32-b1t address that includes an upper four
bits that identify the page frame number 512 of the page and
a lower 21 bits that identily page oflset 514. The page oflset
514 1s a page address that may be used to store code and/or
data of the page. The alignment indicator 516 indicates that
the address may correspond to a page rather than a sub-page
because the bits 1n the alignment indicator are all zero.

In some examples, the alignment indicator 516 portion of
the address may be parsed to by the kernel determine
whether any of the bits are non-zero. Parsing the alignment
indicator 516 may include, for example, shifting the bits of
the virtual address and comparing the shifted bits of the
virtual address to zero. I the bits are all zero, the kernel may
coniirm that the address corresponds to a page rather than a
sub-page. The kernel may, for example, parse a tlag or other
indicator from a page entry, or access an external mapping
structure to confirm that the address corresponds to a page.

In some examples, the bits to the left of the page frame
number (e.g. the seven bits on the left) may be used to
identily a page entry 1n a page management data structure.

In other examples, the machine may be connected (e.g.,
networked) to other machines 1n a LAN, an intranet, an
extranet, or the Internet. The machine may operate in the
capacity of a server or a client machine in client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be
a personal computer (PC), a tablet PC, a set-top box (STB),
a Personal Digital Assistant (PDA), a cellular telephone, a
web appliance, a server, a network router, switch or bridge,
or any machine capable of executing a set of instructions
(sequential or otherwise) that specily actions to be taken by
that machine. Further, while a single machine 1s 1llustrated,
the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein.

Computer system 600 includes processing device (pro-
cessor) 602, main memory 604 (e.g., read-only memory

(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM), double

data rate (DDR SDRAM), or DRAM (RDRAM), and so
forth), static memory 606 (e.g., flash memory, static random
access memory (SRAM), and so forth), and data storage
device 618, which communicate with each other via bus
630.

Processor 602 represents one or more general-purpose
processing devices such as a microprocessor, central pro-
cessing unit, or the like.

Us 10,102,116 B2

15

More particularly, processor 602 may be a complex
instruction set computing (CISC) microprocessor, reduced
istruction set computing (RISC) microprocessor, very long
instruction word (VLIW) microprocessor, or a processor
implementing other instruction sets or processors imple-
menting a combination of instruction sets. Processor 602
may also be one or more special-purpose processing devices
such as an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA), a digital signal
processor (DSP), network processor, or the like. Processor
602 1s configured to execute 1nstructions for performing the
operations and steps discussed herein.

Computer system 600 may further include network inter-
face device 608.

Computer system 600 also may include video display unit
610 (e.g., a liquid crystal display (LCD) or a cathode ray
tube (CRT)), alphanumeric mput device 612 (e.g., a key-
board), cursor control device 614 (e.g., a mouse), and signal
generation device 616 (e.g., a speaker).

Data storage device 618 may include a computer-readable
storage medium on which 1s stored one or more sets of
istructions (e.g., software) embodying any one or more of
the methodologies or functions described herein. The
instructions may also reside, completely or at least partially,
within main memory 604 and/or within processor 602
during execution thereolf by computer system 600, main
memory 604 and processor 602 also constituting computer-
readable storage media. The instructions may further be
transmitted or received over network 620 via network inter-
tace device 608.

While data storage device 618 1s shown 1n an example to
be a single medium, the term “data storage device” should
be taken to include a single medium or multiple media (e.g.,
a centralized or distributed database, and/or associated
caches and servers) that store the one or more sets of
instructions.

The term “computer-readable storage medium™ shall also
be taken to include any medium that 1s capable of storing,
encoding or carrying a set of instructions for execution by
the machine and that cause the machine to perform any one
or more of the methodologies of the present disclosure. The
term “computer-readable storage medium™ shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, optical media, and magnetic media.

In the foregoing description, numerous details are set
forth. It will be apparent, however, to one of ordinary skill
in the art having the benefit of thus disclosure, that the
present disclosure may be practiced without these specific
details. In some i1nstances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present disclosure.

Some portions of the detailed description have been
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
An algonithm 1s here, and generally, conceived to be a
self-consistent sequence of steps leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at
times, for reasons of common usage, to refer to these signals
as bits, values, elements, symbols, characters, terms, num-
bers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied

10

15

20

25

30

35

40

45

50

55

60

65

16

to these quantities. Unless specifically stated otherwise as
apparent {from the following discussion, it 1s appreciated that
throughout the description, discussions utilizing terms such
as “determining,” “measuring,” ‘“‘generating,” “setting,”
“performing,” “computing,” “comparing,” “applying,” “cre-
ating,” “ranking,” “classifying,” and the like, refer to the
actions and processes of a computer system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (e.g., electronic) quanti-
ties within the computer system’s registers and memories
into other data similarly represented as physical quantities
within the computer system memories or registers or other
such information storage, transmission or display devices.
Certain examples of the present disclosure also relate to
an apparatus for performing the operations herein. This
apparatus may be constructed for the intended purposes, or
it may comprise a general-purpose computer selectively
activated or reconfigured by a computer program stored 1n
the computer. Such a computer program may be stored in a
computer readable storage medium, such as, but not limited
to, any type of disk including tloppy disks, optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions.
Although 1llustrative embodiments have been shown and
described, a wide range of modification, change and substi-
tution 1s contemplated in the foregoing disclosure and in
some 1nstances, some features of the embodiments may be
employed without a corresponding use ol other features.
One of ordinary skill in the art would recognize many
variations, alternatives, and modifications. Thus, the scope
of the mvention should be limited only by the following
claims, and it 1s appropriate that the claims be construed
broadly and 1n a manner consistent with the scope of the
embodiments disclosed herein.
What 1s claimed 1s:
1. A method for accessing memory of a computer, the
method comprising:
receiving a memory allocation request;
comparing a memory size corresponding to the memory
allocation request to a memory size threshold;

allocating a memory page that has a size larger than the
memory size threshold, the memory page having a page
entry 1n a page management data structure;

allocating a portion of the memory page, the portion of the

memory page corresponding to a sub-page of the
memory page;

setting a parameter 1 the page entry, the parameter

indicating that the memory page includes one or more
sub-pages; and

creating a sub-page entry corresponding to the sub-page

within the allocated portion of the memory page.

2. The method of claim 1, wherein the sub-page entry
comprises the following parameters: an address space cor-
responding to the sub-page; an 1ndex into the address space;
and one or more tlags corresponding to the sub-page.

3. The method of claim 1, wherein the memory page has
a size of two megabytes and the sub-page has a size of four
kilobytes.

4. The method of claim 1, wherein the page entry has a
struct data type.

5. The method of claim 1, wherein the page entry includes
a parameter that identifies a page frame number correspond-
ing to the memory page.

6. The method of claim 1, wherein the page management
data structure 1s a page array.

22 4 22 94

Us 10,102,116 B2

17

7. The method of claim 1, wherein a virtual address of the
memory page includes an alignment indicator, the alignment
indicator including a plurality of bits that are all set to zero.

8. The method of claim 1, wherein a virtual address of the
sub-page includes an alignment indicator that includes one
or more bits that are set to one.

9. The method of claam 1, wherein the sub-page entry
includes a parameter that identifies a page frame number
corresponding to the sub-page.

10. The method of claim 1, further comprising;:

updating a lookup structure, wherein the lookup structure

identifies a range of physical memory corresponding to
the page management data structure.

11. A computer program product stored on a non-transi-

tory computer-readable medium, the computer program
product comprising machine readable mstructions that when
executed by a processor cause the processor to:

determine that a memory size corresponding to the

memory allocation request 1s below a memory size
threshold;

allocate a memory page, the memory page having a page

entry 1n a page array;

allocate a sub-page of the memory page, the sub-page

included within a range of physical memory allocated
to the memory page; and
set a parameter 1n the page entry to indicate that the
memory page includes one or more sub-pages; and

create a sub page entry corresponding to the sub-page
within the range of physical memory allocated to the
memory page.

12. The medium of claim 11, the processor further to:
create the sub-page entry at a start oflset of the sub-page,
wherein the sub-page entry includes at least the following
parameters: an address space corresponding to the sub-page;
an index into the address space; and one or more flags
corresponding to the sub-page.

10

15

20

25

30

35

18

13. The medium of claim 12, wherein the page entry
includes a page frame number corresponding to the memory
page, and wherein the sub-page entry includes a page frame
number corresponding to the sub-page.

14. The medium of claim 11, wherein the memory page
has a size of two megabytes and the sub-page has a size of
four kilobytes.

15. The medium of claim 11, wherein a virtual address of

the memory page includes a plurality of alignment bits that
are all set to zero, wherein a virtual address of the sub-page
includes at least one alignment bit that 1s set to one.

16. A system for managing memory pages, the system
comprising:

a processor and a memory, the memory including a

sub-page that 1s stored within a memory page;

the memory including a page array that includes a page

entry corresponding to a memory page;

the page entry including a parameter that indicates that the

memory page 1s split into one or more sub-pages;

the processor to create a sub-page entry 1n a sub-page of

the one or more sub-pages, the sub-page entry includ-
ing at least the following parameters: an address space
corresponding to the sub-page; an index into the
address space; and one or more tlags corresponding to
the sub-page.

17. The system of claim 16, wherein the page entry
identifies a page frame number of the memory page, and
wherein the sub-page entry identifies a page frame number
of the sub-page.

18. The system of claim 16, wherein the memory page has
a s1ze ol two megabytes and the sub-page has a size of four
kilobytes.

19. The system of claim 16, wherein a virtual address of
the memory page includes a plurality of alignment bits that
are all set to zero, wherein a virtual address of the sub-page
includes at least one alignment bit that 1s set to one.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

