12 United States Patent

Ruan et al.

US010101969B1

US 10,101,969 B1
Oct. 16, 2018

(10) Patent No.:
45) Date of Patent:

(54) MONTGOMERY MULTIPLICATION
DEVICES

(71)
(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

(56)

Applicant: Xilinx, Inc., San Jose, CA (US)

Inventors: Ming Ruan, Shanghai (CN); Fengshou
Guo, Shanghail (CN)

Assignee:

Notice:

XILINX, INC., San Jose, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 86 days.

Appl. No.: 15/076,345

Filed:

Int. CI.

Mar. 21, 2016

GO6F 7/72

U.S. CL

CPC

(2006.01)

Field of Classification Search

CPC

GO6F 7/728 (2013.01); GO6F 7/722

(2013.01)

See application file for complete search history.

References Cited

GO6F 7/722; GO6F 7/728

2004/0267855 Al* 12/2004 Shantz GO6F 7/5324
708/523

2007/0233769 Al 10/2007 Moshier et al.

2008/0195848 Al* 8/2008 Fayad GOO6F 7/722
712/221

OTHER PUBLICATTIONS

Perin, Guilherme et al., “Montgomery Modular Multiplication on
Reconfigurable Hardware: Fully Systolic Array vs Parallel Imple-

mentation,” Proc. of the 2010 VI Southern Programmable Logic
Conference, Mar. 24, 2010, pp. 61-66, IEEE, Piscataway, New

Jersey, USA.
Tenca, Alexandre F. et al., “A Scalable Architecture for Montgom-

ery Multiplication,” Proc. of the First International Workshop on
Cryptographic Hardware & Embedded Systems, Aug. 12, 1999,
Springer-Verlag, London, U.K.

* cited by examiner

Primary Examiner — Chuong D Ngo

(74) Attorney, Agent, or Firm — David O’Brien; Robert
M. Brush

(57) ABSTRACT

A system 1ncludes an 1ntegrated circuit configured to receive
a multiplicand number, a multiplier number, and a modulus
at one or more data inputs. The multiplicand number 1s
partitioned into a plurality of multiplicand words. Each
multiplicand word has a multiplicand word width. The
multiplier number 1s partitioned into a plurality of multiplier

U.S. PATENT DOCUMENTS words. Each multiplier word has a multiplier word width
different from the multiplicand word width. A plurality of
5,101,431 A 3/1992 Even outer loop iterations of an outer loop is performed to iterate
5,321,752 A * 6/1994 Iwamura GO6F 7/722 : g -
120/78 through the plurality of the multiplicand words. Each outer
69063977 B2 * 11/2005 Chen GOGF 7/773 loop iteration of the outer loop includes a plurality of inner
380/255 loop 1terations of an 1mner loop performed to 1terate through
7,046,800 B1* 5/2006 Tencacc......... GO6F 7/728 the plurality of the multiplier words. A Montgomery product
380/28 of the multiplicand number and the multiplier number with
3 . .
7,174,015 Bl 2/2007 Koc oo, G06F3;6 7/32 respect to the modulus 1s determined.
7,552,377 Bl 6/2009 Jones 20 Claims, 9 Drawing Sheets
v[0] m[0] m’ y{1:u] y[u+1:2u] yi(n-1)u+1:nu]
308 10 312 mf1:u] miu+1:2u] m{(n-1)u+1:nu]
326 328
316 \7 / 338 Y ¥ _y Y 338
IR D I 1) 330 x{i] X1} x{i] / x{i]
x[T} peNL_all b) S o o qi -
Ao e Y I e 2 qfl . _afl . aal R
32{::/ rO LU PE 342 PE PE 342
2l SO F o LC ol 306.1 FCnl 3062 S S—»l 306-n i
‘iaza 358 | 304 r Sy / r r : r r
: - - - - '
A x[i} \ N\ s
A T afil 364 336
X ‘ C : ¥ 348 348
XEE S si0] < slu] 1 S[2u] sj{n-1)u] & sfnuj
+—X s{0] i AN 355 \ 348 6
360
300
v ' 1 !
s{0] s[1:u] slu+1:2u] s[(n-1)u+1:nuj

US 10,101,969 B1

Sheet 1 of 9

Oct. 16, 2018

U.S. Patent

L "Old

jojeisueiy sng 10d |

<
0T ¢
£

ﬁ#
Q133

%0 et 8

m-ﬁdﬂ#
0 By oy

£,

) L e o

_ 1oJ
|90} 3450
%7 g0

4

L B0) SWvNE

EEEEEmE=E=YICT)

B N e i
™,

0/ ZOHNOD

L ! R - e

o o i o " . .
* =)
.En.- " b b -

[y A ..m £ “.J_-__...._.. o) I -...r._... .ﬁn"...H fen .-l..___ .u__.- ’ * ’
- L) .m__ﬂ-.-k.- r-._.-_l. . E L Pl ol ’ R l-.
- ..-l '] " ' r w - . k] .-l._v_.r- ..n_ﬂ-._ by .-lr " .rﬁ " -y
. " ' i F I W) R . 4 P o o o = T .)
‘ r \._,...u..._. h b -ﬂr.h o o ._u.. " ._u.. " o .__nn"...u. %
.‘i-h. . '- - .-lli. . ".__..._ - 4 Yy .-_J - __...__. a.._- ._ﬂi l-_.) Mt |.1|.. i |.1i. }".__.J
RN 1§ 1

0L NOLLAGIYLSIA MO010 / DIANOD

001

U.S. Patent Oct. 16, 2018 Sheet 2 of 9 US 10,101,969 B1

Algorithm 200: Multiple-Word Montgomery Multiplication

Input: integers X, Y, M, w1, w2, R1, and R2, where
wi<=w2; R1 = 2% R2 = 2%
X = Bist x[i] (R

Y = 2“’“‘1 ylil (R2);

1.8[0]1 =0
2. mv, where (m * m{0}) mod R1 = -1
3.fori =0 to L1
3.1, z1 = x{i] * y[0] + s[O];
3.2 qli] = (z1 * m’) mod 2%}
3.3. z2 = z1 + gfi} * m|0}];
3.4, r = (z2 mod 2%') >> w1
35.c=22>>w2
~ 3.6.forj= 110 L1
361 21 = x[il * yli} + slil
3.6.2. z2=2z1+qg[i]* m{j] + ¢;
2044 3.6.3. s[i-1] = ((z2 mod 2¥1) << (W2 — wi)) | T

t

t

k

t

t

k

+

hy "

...‘
. . 1

3.6.4. r={z2 mod 2%) >> w1.
E 3.6.5. c=2z2>> wZ;
" 3.7. end
3.8. z=s[L,] + ¢;
3.9. s[L,~1] = ({z mod 2% << (W2 ~w1)) | 1;
3.10. s[{Ly] =z >> w1,
4 end

FIG. 2

US 10,101,969 B1

Sheet 3 of 9

Oct. 16, 2018

U.S. Patent

__._3 L-U}|S

[nu:p+n(L -u)jw

[nusp4+n(L-u)lA

QraE

U.S. Patent Oct. 16, 2018 Sheet 4 of 9 US 10,101,969 B1

E
FiG. 3B

392

Tnlninlnln o Tn T o Tl T T T T T e T

386

US 10,101,969 B1

Sheet 5 of 9

Oct. 16, 2018

U.S. Patent

v Oid

A
=d

91

[0]s

Gat

A _

90¥

—i {SNq ZN}

J] x E
L]
..."
I_._..

R R R R R R R R R R L R R G G R R G G R G G R R G R R R G R R G R B G G R G G G G G G G G G R R R R G R g R R g g g

XN

US 10,101,969 B1

Sheet 6 of 9

Oct. 16, 2018

U.S. Patent

G Oid

{ L9008
Ad O
(n{1-%)is

124>

{L+3)-90€

3 0} 4
-

*3-90¢

Sl

A

{ L+%)~00¢g
“$ci 01 O

R 2 e

+— 909

(839 ZN)

(L+%)-90¢

w-m.n_ 0}
Hls

Ore
age {11908
3d
0] 1
14> RCE
LI L en(-piw
\
W L+n(-)]A
.......... Omwm”
716 Nm%_w
(SHG IN)
XN - b
cis - vee {1-%)-90¢
Aww_ﬂ Nzu ,‘ w&
XOW |a—shqusy
_____________________ \ BYe {1+3%)-20¢
b ZaYe) g WL
¢09 | mwiwu_
HIUS fuq moy

e e i e e e e b R L b ol L o o

U.S. Patent Oct. 16, 2018 Sheet 7 of 9 US 10,101,969 B1

B

m
,.
s B

v TIME

FIG. 6

.
e
e L
e e .
. L !
. e e
. L L
. e e
. L L
. e e
L . A.
1 1 1 1 @
e . .
e o i ﬂ.,._
............
_:V)
e e e e K .
................ e m"_m
................ .
I.l
L e e L . m\
.... m .
..
- 1 1 1 1 1 0 1 1 1 1 1 T.
1 mT-..
.. .. T.....
.. .T.......
-- ..-.T......
.T
¥ .T._M......
.T-.. ...-..
0 ..T......
..........)
. . .
.........
-........
-..............
-......
-..........
-....
-......
-..
e
.
. e o o
— L o o .
. .
........ ;
.
.
.
. .
.........
. .
.
. .
— L o e i
. .
....... -
. . .
— e o L .
- L o 1 o
. 4
. . K .
:
: o
. . . .
:
. e .
e . e .
......
.
e e e e .
............
......_. . X
............ . F
i ﬁ . x ¥
e e L e . i
........... ™
' 1 ' ' ! ot . . oy
.......)
' ' ! . Tl..;. R
o . F
I._I.k ¥
1..q....ﬁw.,_.$ X,
b o o ¥ .,_. X
.1.... ¥ ... ¥ X,
I.I& o x * x
.I.........&... ¥ X ... ¥
I.I.#..&k tq... X
. __........._......_............_.... x » @ﬁ\
w....,.......k......k......k... X
.w.. X et %w
I.....&.....&.....&.....&.qi x
. 1.;......&......&......&...1.4...&.4 ¥ .N W
I...........k...#..&k..&k..&.f.&k Y .&.ﬂ Yy
......3.1.....&................4.......4.....& x o
...k......k......k......k...............k......k... ¥ @.# t_....
...kk...#.....i...t....&i...&.....k ¥ 'y * ...tq...
....1....1....1...............................1 x W ._...,_&ﬂ_..__.ﬂinnﬂ
zﬂﬁﬂnﬂnﬂﬂnﬂ . w..m* * ey
....1....1.....&................41....4...1 x o Tty
............k......k......k......k........&...k... ¥ X M).
...kk...#.....i...k......i.i.k.....& T ¥ ¥
....1....1....1............#................1 x bhlﬂ N
zﬂnﬁﬂﬂnﬂﬂnﬂh X n v T 55 08
......3.1...&#.................&....4.....& ¥ ¥ ¥ m.... .,1..1_.
...k.........#...k......k......k......k.....é ¥ ... t_.... ¥ t_.._..k
...k...&#...i..&....&k.....&q..i ¥ ...) x .I.kk...k
...i.....&.....&.....................k........& x x x ._...,1._...,1._.....
...k...&k......&......k......kki............ i_..t_. u_.......k......k
...kk...#...i..&#..&k....f....f tq o ...t_. kk...k#...k
#HHHHHHHHH Hﬂﬁwﬁuz
...#k...k#.....i...............i....k... f...k#...k P ik....._.
#HHHHHH H.HHH: Huf
.._.t_....t_.......k....._.k... ...kt_.kk kk...kk...# kt_.k o
JHHHH HHHHHHH? :th
...t_.....,_.u_.... ...f...#...#...i k..q...#t_.i... tq...k e
#H H&.ﬁm%ﬁrﬁnﬂu E,H:
xk....._. ...kk...k#...i kk...k#...k ...kk....._.
...3.1....1i................ .,_..q._...,_&n..& i P .I.i....
...k......k......k ¥ ...k......k......k... k....qk#...k#hlﬂnk#.qk#.qk
zHHHP H:HHH.HHP X xH S
._I...i......& w k...&i_....&... k......k...&k... ¥ t_.tq
zHHHi *HHHHHHHH HHH:
...k......k......k... ...k......k......k... u_.......t_....k k......k......k......k
...kk...k#.....i ...kk...k#.....i I.....,_.u_. k....I.... .I.kk...k
._...,1._...,1._..... x ._...,_.t...,_& .,_.t_. .11...... i...&._.....
....._..................._. xﬁ#““......&... Iy ...#........WHMM#&#
o ...kt_.kk ...kk...k#...i k...kk...k kk...k#...k
P ..11._....11......... .,_..q._...,_&n..&q...............
ol ._1...._1... t_.._..k o k......k......k... o_1...._1
...k ...kk.....i o t....i f...#...#.-w f...k#...k
P ..I.#...ﬁt ._...,_.t...,_& .1._...1....1 ol .11......
._I...i......& k...&i_....&... k......k...&k......& i t_.tq
...kt_.kk ¥ k...kk...kk...# kk...#...kt_. ...kk...kk...k
.E_&.q..& ._,. .q._...,_&.q..&._....&q............... Iy X P
.I.......u_. Xk......k......k... u_.......t_....k .qmu ol ¥
...t_. u_......_. .q...kk...kk...i f...kt..# u e
X ._,. o1 .1............... % P P
P .q ...k......k...&k......&... u_.......k......k ¥ ol o
...k ...kk...#...#..&k kk...k#...k u_.....,_.k....._.
X ._...,_..q._...,_&&..&.....& .,_..q._...,_&.q1...... .I.i....
¥ Palal k......k......k......k... t_.._..k u_.......t_....k .I.......u_.
...kt.. I.....,_.u_. t_......_.u_. Pl u_.......k......k f...k#...k
.I&... .11......E_....1....1....1....1...............
.I.......u_.I....@ .,_.._I. k......k......k......&......k......k...&k
...kt_.kk t....,_. ...t_. x kk...#...i..&#..&k....f......
.I&i_.ﬂl tI. tq1_. .,_..q._...,_&.q..&.....&.....&..... e
._1....1... ol t_..I.... k......k......k......k......k......k......k
...kk...kk u_.......k......k f...k#...k u_....k.........u_......_.
.I&...1..................E_.... ¥ .1.1_. tI.
...i_..q k......k...i............ t..._I *W.I.......)
...tq... u_.......u_.......k......k..&k kt_.k ...t_. ¥
P ._....1._...,_...1..11.1 e .,_.....E_.... Py o u
ol k#*k#*k#*k#*ﬂ# k......i_....ﬂ t_....
u_.......u_.......k....._.&...i ™ I........- i
....1....1.......4................4 .1.1_. ur
...k...&k......&......i....k W t..._I i
...t_. ¥ ...kk...kk...#... x kt_.k
X x ._....1._...,_.#......3 . o
¥ k......k......k......k... x
x [y ..3..1 ¥ i
o w.........ﬁ...... 'y
¥ .,_.._I. t_....
e u_.....,_. WHM...
...HW ¥
¥ M
i w
X
I
.._.
| o

U
S

10

, 69

B

1

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
1
1 v
T ! .-
3 ' ' .
3 ! ! ! "
T ot ' ' ' v
11
i ' ' ' ' ' v
.1
b A ' ' ' ' ' ' . !
“1 ...
....
ﬂ1
...
T1
b
11 !
T ...
..... !
1
T1........ !
b
"1.... !
....
b ...1 !
1 ' ' ! i ' ' ' ' ' .
T
b ! A ' ' ' ' f . '
............. . !
T]]]]] L] . . L]
T .1.......... !
! ' H ' ' ' ' . . !
T -----1 ------ --
3 1 il .. T il N . . !
T ---------1 -- --
T ' ' A ' ' H . . !
T ------------- --
ﬂ 1 ' ' Lt ' ' ' . !
.............. ..
H ! ' i ' ' f - .
1 ! ! ! ! ! '
T A ' ' '
ﬂ]]]]] [}]
' f .mm
T] [}] .
1 .
b f .H ' ...w.
' '
' ' ! ' E“I
' ! T h
. Qa .,.rm.h
' . ' = A =%
f ! ! 1 ! ! G
' ' ot v ' ' .
'1....
' ' ot ' ' v ' f
............1 '
' f . ' ' ' ' . ' '
] ----1 --] '-H.'-b-
. e 5
... '1.“lll. mr.b.b.}.b.
' 1 ' . .1. ... ' ' 1 ' ot ... Tb.b.b.b.b.b.b.
....... ' 1............ ' ' Tb.l.b.b.b.}..:.b.
...... Iq..... T...._........_.._........_.._...._.
........... ' ﬁ.-.. 1........ T.;.....l.........-..l......-...;......-.....
] .] . L] .]] L]] .l.-h . L] . . -l -1]] L] '-.'-.'-b-.'-.'-b-.'-.'-*.'-.'-*.'- &
.............. ' i .-_11.... Tb.b.}.b.b.b.l.b.b.b.}.b.b.b.}.b.
! ' ' ' ' 41. ...
.... ' ! ' ' ' Lul..........._..........._......... l..........._......._.
' ' ! ' ' ' ' ! ..|.._.._........_.._........_.._.. .._.._........_.._...._.
........ ! . . ' Lul..........._..........._..... l..........._......._.
' ' ' ' ! ' ' ' Lu.._..........._..........._..... .._..........._......._.
............ ' .._.... Lll..-..........-..........-.. l..-.......;..-.....
' 1 ' ... ' - ' 1 ' ..__ T . Lu.._.................._......_. ..1......_..._..._......._.
................-L. Lul..........._..........._..... l..........._..........._.
' ' ' ... ' ' ' - ' ' ' ' ' . T le.b.b.b.b.b.b.b. b.b.b.b.b.b.
..... ' ' lll.b..:.b.}.b.b.b. .'.b.b.}.b.b.
! ' ' ' ' ' ! ' ' ' . Lu.._..........._..........._..... .r.._......._..._......._.
.... ! ' ' r Lll.b.##}.###}.lh“###}.##
' ' !] .h..u.Lr. ' ' ' - Lu.._..........._..........._....._..........._.........
........ o ! ' o Lul..........._..........._......... l..........._. i
1 ' ' 1 ! 1 ' l.. ' . . . le.b.b.b.b.b.b.b. .r.:. b..:..:.
............-ﬁ..-. Lul......-...;......-......... .-..........-...;.
' ' ' ' ' ' O ! ...-.lq_.. ..._. Lu.............................
................ ' .m.. ' !|l.._........_.._........_.._.. ._......l.._........_.._........_.
' 1 ' ' 1 ' ' 1 - ' ll.:.b..:.b.b.b. b.b..'.b.b.b.b.b.b.b.b.
..... ! ' ... ' ' ' ' Lul..........._. .._..........._.....l..........._..........._.
....... Ll.:...” b..:..:.b..:. b..rb.b.b.b.b.b.
- 1 - ... ' b.b.}.b.b.b. l.b.b.b.}.b.b.
] .] .]] L]]]]]] L]] L] . -- [}] [}] .] .] **HHHH”HH.'- *HH*HH”.'-*
...... 'I..I..
........-m..ql... . ev..._..._....
.......... ' ' ' l..........._..........._.l..........._..........._.
1 [' 1 [' 1 [' 1 .. . ' 1 F.-.l. b.b.b.b.b.b.b.b. b.-bf...:.b.b.b.b.b.
....... ' ' l..........._..........._.........l..._......._..._......._.
' ... ' ' ' ' ' ' ' ' ' ' . ' [l ! L . . . H##HHHH”H&.H“”H”&.”HHH”
.......
..... ' ' i b.b.b.b.b.b.b.b. i i
...... ! ' ' ! l..........._..........._. .._......._.
' 1 ”##HHHHHH&..T! HHHHHH&.
.... ! '
]] [} . . .]] [}]] [}]] [}] [}] -ﬁ-]]] .] .] . . . ” **HHHH” HHHHHHHHH”**
........ ' _H."m ' '
.....:.b..:. .:..:.b..:.b.b..:.b.b.b.b.b.b.b.
............ ' 'I.....l-... ar HHHHHHHHH&HHHHHH#
........
------------- 1 NWJN ------- ------- --1------ ----- ”HH”HH”HH”H*”HH”HH*H*
......... ' ..
' 1 1 ! b.l.b.}.tll.b.b.b.}.b.b.b.}.b.b.b.}.b.b.b.}.b.
.””””.“.”.”... ”“”m NNT-W. ”...“ . ' ' . ' ' ! ' ' .wm. ' t ”HH”HH”HH”HHHHH #”HH”H&.H#&.
............. L '
........ H_ m“_m ... + .. .:.b.b.b.b.b.b.b.b.}.tlb.b.b.b.b. .:.b..:. .:..:.
............. b.l.b.b.b.}.b.b.b.l.b.}.ll}.b.b.b. .:..;. i
........ @ ..H. ..m.. w .. HHHHHHHHH”HH}}”HHH## i W.... ”......_.
............. . !
.... 1 ' ' 1 1 ' ”.H. 1 ' ' 1:.b..:.b.b.b.b.b.b.b.b.b. }.ll.:.b..:.b. b.b.b.b.b.
............. ! ...i_..... ' ' ' L r k##k##k##&##k}.ﬁn}li.##k l..........._..........._.
... ' ' ' ' ' ' H 1 ' ' 1 .j“]. ot ###HHHHHH”HHHHHH&.}“b...l.:.“”””b.}. ”HHHHHHHH&.&.
............. ' '
.... ' ' ' ' . ' . ' ' ' ' “I... ' ' ' ..-.. ' ot '_........._..........._.........._.........._.........._............r.._......... .._..........._......._..........._..........._.
-
............. ' ' b.l..:.b..:. b.b.}.b.b.b.l.b.b.b.}.b.b.b.}.b. }.b. }.b.b.l.b.b.l.b.b.b.}.b.b.
ot ! 1 ' ' 1 . o . .. ' ' o . r ' ' 1 . 1 ' ' ' - ! ' ot ! . ”HH”HH”&.#&.&.H”H ##”HH”&.&.&. iy ”HH&.H&.”HH&.HH”HH&.H#&.
............. '
! ' ' ' ' ' 1 ' ' 1 ! 1 ' ' ':.b.b..:.b.b.b.b.b.b.b. .:..:. .:..:.b. i }.le.“b.b.b.b.b.b.b.b.b.b.b.b.b.b.b.b.
------------ 1 ------ ----+l-.-- ------- ----------- ----- ”HH”HH”HH”HH”**** b-b-.'- b-.'- ”HH*HIH”HH”HH”HH”HH”HH*H**
.......
............. ' b.l..:.b..:.l.b..:.b.}.b.b.b.}.b.b.b. .:.b.b. }..:..:.b.l.b.}.tll.b.b.b.}.b.b.b.}.b.b.b.l.b.b.b.}.b.b.
o o ! ' ! ! . ! ! ! . ! ' ' ' ﬁ...“. ! ! ' ! ! . .m ! ! ! ' ! ! PindI....P...HI....&......&......&...#&...#&...
............. L.hl...l....... ' " ##HHHHH”HHHHHHHHHHH&.&. i ”HHHHHHHHHH&.”&.HHHHHHHHHH”HHHHHH.:.
........
] [}]] [}]] [}]]]] 1]] [}]] [} [}]] [}]] [}]] []]] [}] [}] [}]] [}]] [}] -lw]] [}]] [}] [}]] [} = [}]] [} H **H”HH”HH”*}-”HH”HH”** ”HH”HH”HH”HH”HH*H*”HH”HH”HH”HH”HH*H**
........ w.......... -.......
...... ... Wt ' - -...........:..:.b.l.b.b. b.b.}..:.b. .:.b..:. }.b.b.b.l.b.b.b.}.b.b.b.}.b.b.b.}.b.}.l.b.b.b.}.b.b.b.}.b.b.b.l.b.b.b.}.b.b.
ot ! 1 ' 1 . T o . .. ' ' 1 ' [l - 1 . ! ot ! 1 ' .l.“]-. . - ot | - o . T o ' .:..:.H”b.l. .'..:.HH.:. ar ” .:..:.H”HH”HH”HH”HH”HH”H”#H#”HH”HH”HH”HH”HHHH#&.
! ... ! ' '
o . ' i B “... o o o . . ' ' " ' ! ! ' ' ' - ' .. ' ! ! ! ! !M ¥ i ol ...
a ! ! i Ot ! ot ! ' ! Ot Ot ! ! ! ! ! ! ' ! ! " ! Lt ' Lt”..
o ' . . . ' = o " = ! a ' K ' ! ! ' ' A ! — o ot v4 ¥_...._.......
o
... Lt i-....:...... i”... ...
B . ' ! ' ' ' ' -I-.. ! o ! . ! ! ! ' ! ' ' ' ' - ' . ! ! >,
... - 1....... ' n.......... - _u .:.b.b.l. l.b.#b.}.#b.b.l.b.b.b. #b.}.#b.b.l.b.b.#l.b.#b.}.#b.b.}.b.}. ...'.l ™ b..:.
’ = o ¥ B o [L i o i et : WA ”HHHHHHHHHHH”H**zﬂnﬁﬁﬁnﬂnﬂ . ¥
... ! ' ! '
» - s 4 o o B i 5 g g < m w m *HHHHHHHHHHH”HHHHH*HHHHHHHH# g
... Lt -....... ! ._
o . ' ! ' ' ! Ot ! ! ! ! . ' ' ' ' ' ' ' ! ! ' ! ! . Lt . BP
... -n.. I.l.b..:. #b.b.l.b.b.#l.b.#b.}.#b.b.}.b.b.# #b.}.#b.b.l.b.b.#l.b.#b.}.#b.b.}.b.}.url.
! . ' ot ' Lt = ' . = Lt o ! ' ! - ! ' ' ' ' ' ' ' .. ! ”P __..................k......k......}.f...
] [}]]] 1] [}] [}]] [}]]] [}]] [}]] [} [}]] [}]] = [}]] [}] [}]] [}]] [}]] [}]] [}]] [}]] [} ”HH”HH”.'-.'-.'-b-H”HH”HH”HH”HH”HH”****H”HH”HH”HH”HH”HH”HH
... ' -.... r
L]]]] [} 1 [}]] [}]] [}]] [}]] [}]] L]]]] [}]] [} = L]]] [}]] [}]]]] [}]] [}]] [}]] [}]])] [}] ”HHHHHHHHHH.'-.'-.'-b-HHHHHHHHH”HHHHHHH****”HHHHHHHHHHH”HH H”b-}-
... -....... ! x
... ' r __.|1.r......_..........._..........._......._.l.........l......................................_..........._..........._.........l........._..........._.....
K . ' . of “MH. o K o . . . L ' ' ' ' . " T ' ' ' ﬂ m 'l.r...
. i - o ot i o 1 o i o} . ”HHH****H”HH”HHHHH”****H”HHHHHHHH##HHH wzﬁﬁﬂi
..........__Il_. -.........] ' r -
' o ! ' Lt ! ' Lt ! ! Lt ! o ! L Wt ! ! ! ! ! ! ! ' H.ul ' q........................lr..................#.........#...... ¥
Lt o ."u“.;ﬁ ' ! ! ' ! ' ' i . ' | - ' ' ' .t ' ! . o = __................................lt..........f.....k......k......k Pyl
5 e i i 7 7 o i ._.__ i - m ”HHHHHHHHHHH****HHHHHHHH”HH:zﬂnﬂuﬁnﬂﬂrn HHH# #HVH#
...... r =
Lt ! m “_ ! ' ! ! ! ! ' " ! ! Lt ' ! Lt ' ! ' .m. ..lt.f.....k...............k......k
o ' . ' o . ! ! A ot . o o ! ! ' ! ! ! ! __..._.............._..._..._.......................#.........II.............I..............I. .. ¥_......_....._. xT
3% g g8 e g - g E, *H*HHHHHHHHH”HHHHHHH****”HHuﬁﬁhﬁﬁﬁ szﬁnr ﬂﬁz
.... r -
Lt Lt o l_.._. a : ! Lt ! ot ! a ot ! Lt ! a ot_...r......................................._...._......_..... ar P_.
.... ' r
o ol 3 X [o o = .,”HHHHH*H*”HHHHHHHHVHHHV szzHHH HHHH#;HHH# HH*HH
o ! ' ! ' ! . ! ! ' ! ot . o L H __..._............_.................b..............I..........k.I..............I.I.....I i_...._......_.....
! ! " ! ! ! ! ! ! Lt ! . 1 1 ..I........I..........}..........#...k...r......}.... i Py
o % X .__ ._._ i ””HHHHH”HH”HH”H*”*H”HHHHHHHHHH; o HHHHHHHHHHR*HH: “
..... ' oy
! ! - ' ' ' ! 1 1 ' ! 1 . ._..r..............._ ¥
't B T i i .*H”HH”HH”HH”HH”HH”H*”*HHHHHHHPHH# H”****H”HHHHHHHR*HH
.... oy
! ! ! ! ! ! ' ! ! ! ' w ...I........I..........}..........#...k...r......}....
! ! ' . ! : ! 1_........ ...r........... X
! ! a ot ' . ! Ltr...
! ! ot . o . !_..._....
... ... H.ui_........r.. ... iyl
' v L ..i. V! .._.........._.........._.........._....... .. ™ .r......................................._........
! ! ! . - ! 1_..._.... ...I........I..........r.........#.........#.........}.......r...
! T ' 1 L ! .._........ ..q...................f..r.f.....k......k......k......r..
L ! 4 ! : .._..._......._..._..._...........}........I.....................r....................i...._.... .r......................................._....
. T 1 Lt !k.......q......k......k......r......k......k......r...
$3 m i **”HH”HH”HH”HH”HH”HH”**.,*HHHHHHHHHPHH H”HH”HH”HPHHHHHH?#H. an zHHz
A ' !
H rI....................q...........i..........r...... .. .r...
n **HH”HH”HH”HHHHH”HHszHHHHHHHV HHHHHHH”HHHPHHHHH, HHHH zﬁz
"
..r.............................
........._..r......................
........_..._......._.........._.........._.........._......._.........._.r....._.........._........ .._.........._........ .r....._..........__.........._........_.........._._.........._........
..r...... P H..._..........._......... .
..r........................... ar iy i
........_..._......._...._..._.....I..........r....................&H}....................._......_......._.... .r................_....
..r........................ ¥r...
**HHHHHHH##H HHHHHHHHHHH e H”*n*HHHHH”HH”Hﬂﬁﬂﬁhﬁnﬁz
..1..........}........1..........1..........r.........#.........r... i__
...q..........f......f..rk......k......k... Xr..__
iﬂﬁnﬂ ;H H**.*HH”Hﬂuﬂﬂnﬂﬂuﬂﬂr HHHHHHHHHH*H*HHHHHH.HHH*{ 4
.........._................ ¥_........I.....I..q.........k......k...rk...... .. .r.. -
........._.........._........ ¥_.........._....... ...q...r.q.. .. .r......................................._.........._.........._..__.
........._.................._..._....r...__
.........._................_........ ... r... .r..__
zHH HHHHHHH”HH::HHHHHF HH*H*HHHHH”HHHHHHHHHHHHHHH:;“
eI.r.f...............q......k......k...............k .r.. N
....._..._......._.........._.........._..........__.r..........q.......q.......q.......q.......q.......q .r....._.........._.........._.........._.
.r...#k##r#...k#...k...#k......&......k#...k... .r.............................. ol
H*H*”HH”HHHHHHH:#HH, X zHH.H”*H”HHHHHHHHHHH an
................. .r... Xr.. .r..........
.......................... .r........_.. iyl Xr.. L
....._....._..... .r........_..._......._........ iyl .._.....................r..........q.......q.......q.......q.......q.......q X .._.........._........
.._........ Py iyl .r........._...r.. o i
zni NHNHHHHHHH, sznﬂuz JHHHHHHHHH ﬂf znﬁnz L
**HHmTHhﬁHHHH HHH:;HH# o *HHHHHHH Hﬂh - zﬂﬂz rA
iﬂr ﬁ;ﬂhﬁﬂﬂﬂ. HHHHH:;HH? ol HHHHHH HHHH . o0 H:
zﬁzuznnhﬁ, HHHHHH:#HHH * Hﬁﬂﬂﬂ HHHHFH x i Hz
................H................. i) ¥] >r ... o x
........._......... iyl_..l-...r............ X
........_.........._._ .r........_..._......._........_........ .._.........._. X ... L - M.I. X
.._......_..... ﬂ iyl .r... ¥ o
sz. H”HH*H*”HH”HHHHHH:#H# ”HH”H*HHHHHHHHH: oy
.._......_....r..._........................... ... > X, w N
¥r........_.. L w .
....._............................... .r........_..._......._...._....... ... L ik w
.._......_................................... .r...r
........._...................................... .r.. ¥ L N
........_............................... .r........_..._....... L
H”HHHHHHHPHHHHHHH *”HH”HHHH””HH”HHHH*HHHHHHHH* 6
........_....................._.......... .r........_..................................... .._.......
.._......_................................... .r........._..................................._..._.... F
........._...................................... .r.........._..............................._........
........_............................... .r........_..................._.......
.._......_................................... .r........._..............._..._....
........._...................................... .r.........._........._........
........_....................._.......... .r........._._......._....
:HHHHHH HHHHHHHF zﬂunnunnﬂﬂrw f
........_............................ .r........_.. .._.... ...
.._......_......................... ™ .r.. il ... w
........._....................r........._... .._........ ..
........_..._......._. .r........._..._. P_..._. W
.._......_.....r........._........... i
iylr.........._....................... Xy i il
.._......................._......_.... .r........._..._. x X w .._......._....
:Hﬂﬂnnrwzﬂh* HHH:;H
........_....................._.......... o P_....... ¥
.._......_................................... .r........._..... @....._..._.... h
........._...................................... .r.........._..... ¥“......... ﬂu
.Tl..;.b..:.l.b.b.b.}. .:.b. .T.T:.J.b. i I
..........._............................._. .r........._..... Mk]
........._...................................... .r.........._.....
........_...................... P .r........._..._. Qﬂ
.._......_................................... .r........._.....
zﬁﬂuﬂﬁrﬁh *
.._......_................................... .r........._.
........._...................................... e .
........_....................._.......... m
.._......_............................... “
........._...........................
........_.............._....
........_...........
........._..._.
P

S
h
eet 8
of

9

ﬂ
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
1
&
o
. o
ﬂ.
......
........
..........
' '
..............
...
----.-I
....... '
1...........
.1....
....1... '
' ' ..1.. . '
........1...“
' ' f ' ..1..
............1...
' ' f ' ' f ..1 m ,....N
................1
' ' ' ' ' ' ' ' A
.....
f ' ' ' ' ' ' ' .
..... '
.. -
r -_.. o
L .ﬁ..H.
r ' ' o
.....1 .l... T
.......... .l....u.
......... '
..... .”.l”. .w..
.......
1 '
' f ' ' f ' ' ' ..1.... ... ' '
......1 m._u.. ' h
¥
¥ 1._1.......
--- [}]]]] _.1.- _.-._ -.r_ [}]
......
LY
............... ..1m........
............1
._-ﬁ
........1
...... 1?
....1
....... ...1... ."..l.nl......
f ' ' ' ' ' ' ' ..1.. ' ' ...l-_I........
.... 1hl.
.........1......... .N.
' ' ' '1.. ' n ' '
........ ...1...
f ' ' f .1. " ' ' ' '
.........1.......
....... '1..... ! ' ' ... f
......... '1...
......1. . ' ' ' ' '
........ I....n“...... .r..... FH“
......1...
....1 gﬂw......
.1...
.......1 f
1H
...........1
..... .tm......1 n....
...1.... ...
......... !1
.... ¥
....... ﬂ 1..
... r
.......1
.FI.._-
......... 1..
.........1“.... -..1
.... r
......... -......1 T
¥
........ -..........1
1
.... -..............1
r
............... 1 !
' ' ' ' ' ' ... ﬂuu‘..
.............. ...H
]] [}]] [} -- . -
...............
f ' ' ' ' '
...........
' ' ' '
.......
' '
...
-
T........_.
T.............._.
T.........................
T...........................
T._...................................
T........_......................................
T.............._................................
T.............._......_.
.............................
kb..:.b.b.b..:.b. .:..'..:..:..T:..:.b.
n......................_.... r
JHHV *H*H#
znnni . HH#
kb..:.b.b.b..:.b.b. i .:..T:..:.b.
n.._.................... X
.n......................
H.T:.l.b. l..:. i .:..'. .T:..:.}.
.n.................... ...H...........................
n............................. oy
E.T:..:.b..:.b.b. ar .:..'.
n.._.................... .._...........
JHH: HHH#
.n......................_.
n..................._......................................
.__"..........._...............................
Pl ...
*HHHHHHH#
X_..............._..._._..................._.
”HH:zuﬁnnhnnﬂz
.._......_............... ...
......_.........._................ ...
............_........._..._......_...._...............................
..................._..._......_............... ...
............................_.........._................ ...
............................._........._............._................H...........
..._......_..... ...H..............
r... i
r..................................._........._............._........
r..._......_. ir
r......................................._....................... P
r..................................._........._............. I
r..._.... e
r...r
r..................................._........._............._.......
r...r
i_.........._................]
rb..:..:.b..:.b. .:..T:..;.b.b. .:..:..'.
r.._........... i_. r]
r............... I
r............._. 2
r.._..........._....
r.._..._........
r.'..:..:.b. i
r.._........... e
r.._..._........
r..........
= *

&;
.._._._._ m. GF

o mmmw =

; mﬂw Hﬁ

) amw.t

:mmmm_”

.._.+_”

.

=
=
=z

—
—
—
—
—
—
—
—
—

,:,,,
;izlz'::

s
gzl
o
hm
: 1
CepieT s

__.._,
e
Vo7
__ﬂ_ﬁm
. _."_..
4
01

E
-

O
ct
o
18

R

’
:ﬂ:
B

. e
—
—
—
—
—
—
—
—
—

".F"”
‘%
&
&
W

:

) g:g:g
o : f-f-f
in
o
P)
f m'

V
.._mw
...ﬁw

P
Py
A Fa
...EW
.” .v_
\'J
W..m:m_w_h
3N
TN
V
.__L_mm
...um
P
PY
__.._.hm,w
sy,
S
-

L
P
aak

U
.S
. P

atent

-

{0
H._._w
2
i.w.
Q.
s
33
o
Qe
lﬁw.
&

-8
0
c
3
o
2
0
%
3
o

o

8 Old

[nu +n(i-uils [niils e

in{p+urienule

[nuz: L en{y-uz)is

US 10,101,969 B1

Sheet 9 of 9

Tnusy +n(L -uilt

fnuspan(L-u)iA

Oct. 16, 2018

fnuz: L +n{p-uz)iw [+u): ?3&& ZLe

Inugz: +n(-uz)iA n(p+u)s+nuld grg”

008

U.S. Patent

US 10,101,969 Bl

1

MONTGOMERY MULITPLICATION
DEVICES

TECHNICAL FIELD

Examples of the present disclosure generally relate to
integrated circuits (“ICs”) and, 1n particular, to an embodi-
ment related to ICs performing residual modular multipli-
cation including Montgomery multiplication.

BACKGROUND

Montgomery multiplication 1s one of the fundamental
operations used in cryptographic algorithms, such as RSA
and Elliptic Curve Cryptosystems. The security of a cryp-
tographic system which 1s based on the multiplication and
subsequent factoring of large numbers 1s related to the size
of the numbers employed, for example, the number of bits
or digits in the number. However, while 1t 1s desirable to
include a large number of bits 1n each of the operands, the
speed of Montgomery multiplication of these numbers
becomes significantly slower as the number of bits
1ncreases.

Accordingly, 1t would be desirable and useful to provide
an 1improved way of implementing Montgomery multiplica-
tion.

SUMMARY

In some embodiments 1 accordance with the present
disclosure, a system includes an integrated circuit config-
ured to receive a multiplicand number, a multiplier number,
and a modulus at one or more data inputs; partition the
multiplicand number 1nto a plurality of multiplicand words,
where each multiplicand word has a multiplicand word
width; partition the multiplier number ito a plurality of
multiplier words, where each multiplier word has a multi-
plier word width different from the multiplicand word width;
perform a plurality of outer loop 1iterations of an outer loop
to 1terate through the plurality of the multiplicand words,
where each outer loop 1iteration of the outer loop includes a
plurality of inner loop iterations of an 1nner loop performed
to iterate through the plurality of the multiplier words; and
determine a Montgomery product of the multiplicand num-
ber and the multiplier number with respect to the modulus.

In some embodiments, the integrated circuit 1s configured
to partition the modulus into a plurality of modulus words,
where each modulus word has the multiplier word width;
and iterate through the plurality of modulus words using the
plurality of mner loop iterations of the mner loop.

In some embodiments, the integrated circuit 1s configured
to provide multiplication operations using one or more N1
bit by N2 bit multipliers, where N1 and N2 are different
integers; and determine the multiplicand word width and the
multiplier word width based on N1 and N2.

In some embodiments, the integrated circuit 1s configured
to provide N1 as the multiplicand word width, and provide
N2 as the multiplier word width, where N1 1s less than N2.

In some embodiments, the integrated circuit 1s configured
to compute a quotient for each outer loop iteration of the
outer loop using a quotient processing element (“PE”);
provide the quotlent to at least one of a plurahty of tailing
PEs; and perform inner loop iterations of the inner loop
using the plurality of tailing PEs.

In some embodiments, each tailing PE includes one of the

one or more N1 bit by N2 bit multipliers.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the integrated circuit 1s configured
to divide the plurality of multiplier words 1nto a plurality of
multiplier word groups, wherein each multiplier word group
includes a same number of multiplier words; and provide a
multiplier word group to each tailing PE.

In some embodiments, the integrated circuit 1s configured
to perform a portion of the mner loop iterations by a tailing
PE to iterate through the multiplier words of the multiplier
word group provided to the tailing PE.

In some embodiments, the integrated circuit 1s conﬁgured
to perform a multlphcatlon operation of a first mner loop
iteration of an inner loop using the multiplier of a tailing PE,
during a first clock cycle. A multiplication operation of a
second inner loop iteration of the inner loop 1s performed
using the multiplier of the tailing PE during a second clock
cycle next to the first clock cycle.

In some embodiments, the integrated circuit 1s configured
to perform a multiplication operation of an inner loop
iteration of a first inner loop using the multiplier of a tailing
PE during a first clock cycle. A multiplication operation of
an 1ner loop iteration of a second 1nner loop 1s performed
by the multiplier of the tailing PE during a second clock
cycle next to the first clock cycle.

In some embodiments 1 accordance with the present
disclosure, a method includes receiving, by an integrated
circuit, a multiplicand number, a multiplier number, and a
modulus at one or more data mputs; partitioning the multi-
plicand number into a plurality of multiplicand words,
wherein each multiplicand word has a multiplicand word
width; partitioning the multiplier number into a plurality of
multiplier words, wherein each multiplier word has a mul-
tiplier word width different from the multiplicand word
width; performing a plurality of outer loop iterations of an
outer loop to iterate through the plurality of the multiplicand
words, wherein the performing each outer loop 1teration of
the outer loop includes performing a plurality of mner loop
iterations of an mner loop to iterate through the plurality of
the multiplier words; and determining a Montgomery prod-
uct of the multiplicand number and the multiplier number
with respect to the modulus.

In some embodiments, the method further includes par-
tltlomng the modulus into a plurality of modulus words,
wherein each modulus word has the multiplier word width;
wherein the performing the plurality of 1inner loop iterations
of the mmner loop includes iterating through the plurality of
modulus words.

In some embodiments, the method further includes pro-
viding multiplication operations using one or more N1 bit by
N2 bit multipliers, wherein N1 and N2 are different integers;
and determining the multiplicand word width and the mul-
tiplier word width based on N1 and N2.

In some embodiments, the determining the multiplicand
word width and the multiplier word width based on N1 and
N2 includes providing N1 as the multiplicand word width
and providing N2 as the multiplier word width, wherein N1
1s less than N2.

In some embodiments, the method further includes com-
puting a quotient for each outer loop iteration of the outer
loop using a quotient processing element (“PE”); providing
the quotient to at least one of a plurality of tailing PEs; and
performing inner loop iterations of the mner loop using the
plurality of tailing PEs.

In some embodiments, the method further includes divid-
ing the plurality of multiplier words into a plurality of
multiplier word groups, wherein each multiplier word group
includes a same number of multiplier words; and providing
a multiplier word group to each tailing PE.

US 10,101,969 Bl

3

In some embodiments, the performing the inner loop
iterations of the inner loop using the plurality of tailing PEs
includes performing, by each tailing PE, a portion of the
inner loop 1terations to iterate through the multiplier words
of the provided multiplier word group.

In some embodiments, the method further includes per-
forming, by the multiplier of a tailing PE, a multiplication
operation of a first mner loop iteration of an nner loop
during a first clock cycle; and performing, by the multiplier
of the tailing PE, a multiplication operation of a second 1nner
loop 1teration of the mner loop during a second clock cycle
next to the first clock cycle.

In some embodiments, the method further includes per-
forming, by the multiplier of a tailing PE, a multiplication
operation of an inner loop iteration of a first iner loop
during a first clock cycle; and performing, by the multiplier
of a tailing PE, a multiplication operation of an inner loop
iteration of a second nner loop during a second clock cycle
next to the first clock cycle.

Other aspects and features will be evident from reading
the following detailed description and accompanying draw-
Ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating an exemplary
architecture for an IC according to some embodiments of the
present disclosure.

FIG. 2 1s a pseudo code for a Montgomery multiplication
operation according to some embodiments of the present
disclosure.

FIG. 3A 1s a block diagram illustrating an exemplary
Montgomery multiplication device or a portion thereof
according to some embodiments of the present disclosure.

FIG. 3B 1s a block diagram illustrating an exemplary
registered multiply adder according to some embodiments of
the present disclosure.

FIG. 4 1s a block diagram illustrating an exemplary
processing element according to some embodiments of the
present disclosure.

FIG. 5 1s a block diagram illustrating an exemplary
processing element according to some embodiments of the
present disclosure.

FIG. 6 1s a timing diagram of an exemplary Montgomery
multiplication device or a portion thereof according to some
embodiments of the present disclosure.

FIG. 7 1s a timing diagram of an exemplary Montgomery
multiplication device or a portion thereof according to some
embodiments of the present disclosure.

FIG. 8 1s a block diagram illustrating an exemplary
Montgomery multiplication device formed by cascading two
Montgomery multiplication wunits according to some
embodiments of the present disclosure.

DETAILED DESCRIPTION

Various embodiments are described heremnaiter with ref-
erence to the figures, in which exemplary embodiments are
shown. The claimed invention may, however, be embodied
in different forms and should not be construed as being
limited to the embodiments set forth herein. Like reference
numerals refer to like elements throughout. Like elements
will, thus, not be described in detaill with respect to the
description of each figure. It should also be noted that the
figures are only intended to facilitate the description of the
embodiments. They are not mntended as an exhaustive
description of the claimed mvention or as a limitation on the

10

15

20

25

30

35

40

45

50

55

60

65

4

scope of the claimed invention. In addition, an 1illustrated
embodiment needs not have all the aspects or advantages
shown. An aspect or an advantage described 1n conjunction
with a particular embodiment 1s not necessarily limited to
that embodiment and can be practiced 1n any other embodi-
ments even 1f not so 1illustrated, or if not so explicitly
described. The features, functions, and advantages may be
achieved mndependently 1n various embodiments or may be
combined 1n yet other embodiments.

Before describing exemplary embodiments illustratively
depicted in the several figures, a general introduction 1is
provided to further understanding. As demands for speed
increase, Montgomery multiplication operations 1n the form
of configurable (or programmable) hard macros 1n system on
chip (“SoC”), field programmable gate array (“FPGA™), or
other ICs likewise increases. For example, a plurality of
digital signal processing (“DSP”) slices including multiply
adders (also referred to as multiplier-accumulators or
MACs) may be used to implement Montgomery multipli-
cation. The MAC may include N1-bit by N2-bit multipliers.
In such implementations, N1 and N2 may not be the same,
and the most significant bits of the N1-bit by N2-bit multi-
pliers may not be utilized. Furthermore, 1n some solutions,
idle clock cycles 1n the MAC may limit the efliciency of the
operation.

As described below 1n additional detail, in some embodi-
ments, the operands of the Montgomery multiplication (e.g.,
the multiplicand, multiplier and modulus) may be parti-
tioned into words having different word widths to utilize the
tull calculation capability of the MAC. In some examples,
the different word widths may be determined based on the
input precision of the multipliers. Furthermore, the compu-
tations for the multiple words of the operands may be
pipelined such that idle clock cycles in the MAC are reduced
or eliminated. Moreover, Montgomery multiplication units
may be configured to operate in multiple modes to support
operands having different widths.

With the above general understanding borne i1n mind,
vartous embodiments for Montgomery multiplication are
generally described below. While the description below 1s
directed at particular examples implemented with configu-
rable (or programmable) hard macros, other applications
(e.g., with software implementations) where Montgomery
multiplication may be required may benefit from the present
disclosure as described herein.

Because one or more of the above-described embodi-
ments are exemplified using a particular type of IC, a
detailed description of such an IC 1s provided below. How-
ever, 1t should be understood that other types of ICs may
benellt from one or more of the embodiments described
herein.

Programmable logic devices (“PLDs”) are a well-known
type of integrated circuit that can be programmed to perform
specified logic tunctions. One type of PLD, the field pro-
grammable gate array (“FPGA”), typically includes an array
of programmable tiles. These programmable tiles can
include, for example, input/output blocks (“I1OBs™), configu-
rable logic blocks (“CLBs”), dedicated random access
memory blocks (“BRAMSs”), multipliers, digital signal pro-
cessing blocks (“DSPs™), processors, clock managers, delay
lock loops (“DLLs”), and so forth. As used herein, “include™
and “including” mean including without limitation.

Each programmable tile typically includes both program-
mable 1nterconnect and programmable logic. The program-
mable interconnect typically includes a large number of
interconnect lines of varying lengths interconnected by
programmable 1nterconnect points (“PIPs”). The program-

US 10,101,969 Bl

S

mable logic implements the logic of a user design using
programmable elements that can include, for example, func-
tion generators, registers, arithmetic logic, and so forth.

The programmable 1interconnect and programmable logic
are typically programmed by loading a stream of configu-
ration data ito internal configuration memory cells that
define how the programmable elements are configured. The
configuration data can be read from memory (e.g., from an
external PROM) or written into the FPGA by an external
device. The collective states of the individual memory cells
then determine the function of the FPGA.

Another type of PLD 1s the Complex Programmable
Logic Device, or CPLD. A CPLD includes two or more
“function blocks” connected together and to input/output
(“I/O) resources by an interconnect switch matrix. Each
function block of the CPLD includes a two-level AND/OR
structure similar to those used i Programmable Logic
Arrays (“PLAs”) and Programmable Array Logic (“PAL”)
devices. In CPLDs, configuration data 1s typically stored
on-chip 1n non-volatile memory. In some CPLDs, configu-
ration data 1s stored on-chip in non-volatile memory, then
downloaded to volatile memory as part of an initial con-
figuration (programming) sequence.

In general, each of these programmable logic devices
(“PLDs”), the functionality of the device 1s controlled by
configuration data provided to the device for that purpose.
The configuration data can be stored in volatile memory
(e.g., static memory cells, as common in FPGAs and some
CPLDs), in non-volatile memory (e.g., FLASH memory, as
in some CPLDs), or in any other type of memory cell.

Other PLDs are programmed by applying a processing
layer, such as a metal layer, that programmably intercon-
nects the various elements on the device. These PLDs are
known as mask programmable devices. PLDs can also be
implemented 1n other ways, e.g., using fuse or antifuse
technology. The terms “PLD” and “programmable logic
device” include but are not limited to these exemplary
devices, as well as encompassing devices that are only
partially programmable. For example, one type of PLD
includes a combination of hard-coded transistor logic and a
programmable switch fabric that programmably intercon-
nects the hard-coded transistor logic.

As noted above, advanced FPGAs can include several
different types of programmable logic blocks in the array.
For example, FIG. 1 illustrates an exemplary FPGA archi-
tecture 100. The FPGA architecture 100 includes a large
number of different programmable tiles, including multi-
gigabit transceivers (“MGTs”) 101, configurable logic
blocks (“CLBs”) 102, random access memory blocks

(“BRAMs™) 103, mput/output blocks (“IOBs™) 104, con-
figuration and clocking logic (“CONFIG/CLOCKS™) 105,
digital signal processing blocks (“DSPs™) 106, specialized
input/output blocks (“I/O0”) 107 (e.g., configuration ports
and clock ports), and other programmable logic 108 such as
digital clock managers, analog-to-digital converters, system
monitoring logic, and so forth. Some FPGAs also include
dedicated processor blocks (“PROC™) 110.

In some FPGAs, each programmable tile can include at
least one programmable interconnect element (“INT™) 111
having connections to mput and output terminals 120 of a
programmable logic element within the same tile, as shown
by examples included at the top of FIG. 1. Each program-
mable interconnect element 111 can also include connec-
tions to interconnect segments 122 of adjacent program-
mable interconnect element(s) 1 the same tile or other
tile(s). Each programmable interconnect element 111 can
also include connections to interconnect segments 124 of

10

15

20

25

30

35

40

45

50

55

60

65

6

general routing resources between logic blocks (not shown).
The general routing resources can include routing channels
between logic blocks (not shown) comprising tracks of
interconnect segments (€.g., interconnect segments 124) and
switch blocks (not shown) for connecting interconnect seg-
ments. The interconnect segments of the general routing
resources (e.g., interconnect segments 124) can span one or
more logic blocks. The programmable interconnect elements
111 taken together with the general routing resources imple-
ment a programmable interconnect structure (“program-
mable interconnect”) for the illustrated FPGA.

In an example implementation, a CLLB 102 can include a
configurable logic element (“CLE”) 112 that can be pro-
grammed to implement user logic plus a single program-
mable interconnect element (“INT”) 111. A BRAM 103 can
include a BRAM logic element (“BRL”) 113 1n addition to
one or more programmable interconnect elements. Typi-
cally, the number of interconnect elements included 1n a tile
depends on the height of the tile. In the pictured example, a
BRAM tile has the same height as five CLBs, but other
numbers (e.g., four) can also be used. A DSP tile 106 can
include a DSP logic element (“DSPL”) 114 1n addition to an
appropriate number ol programmable interconnect ele-
ments. An 10B 104 can include, for example, two instances
of an mput/output logic element (“IOL”) 115 1n addition to
one instance of the programmable mterconnect element 111.
As will be clear to those of skill 1n the art, the actual I/O pads
connected, for example, to the I/O logic element 115 typi-
cally are not confined to the area of the input/output logic
clement 115.

In the example of FIG. 1, an area (depicted horizontally)
near the center of the die (e.g., formed of regions 105, 107,
and 108 shown 1n FIG. 1) can be used for configuration,
clock, and other control logic. Column 109 (depicted verti-
cally) extending from this horizontal area or other columns
may be used to distribute the clocks and configuration
signals across the breadth of the FPGA.

Some FPGAs utilizing the architecture illustrated 1n FIG.
1 include additional logic blocks that disrupt the regular
columnar structure making up a large part of the FPGA. The
additional logic blocks can be programmable blocks and/or
dedicated logic. For example, PROC 110 spans several
columns of CLBs and BRAMs. PROC 110 can include
various components ranging from a single microprocessor to
a complete programmable processing system of micropro-
cessor(s), memory controllers, peripherals, and the like.

In one aspect, PROC 110 1s implemented as a dedicated
circuitry, €.g., as a hard-wired processor, that 1s fabricated as
part of the die that implements the programmable circuitry
of the IC. PROC 110 can represent any of a variety of
different processor types and/or systems ranging in com-
plexity from an individual processor, e€.g., a single core
capable of executing program code, to an entire processor
system having one or more cores, modules, co-processors,
interfaces, or the like.

In another aspect, PROC 110 1s omitted from architecture
100, and may be replaced with one or more of the other
varieties of the programmable blocks described. Further,
such blocks can be utilized to form a “soft processor” 1n that
the various blocks of programmable circuitry can be used to
form a processor that can execute program code, as 1s the
case with PROC 110.

The phrase “programmable circuitry” can refer to pro-
grammable circuit elements within an IC, e.g., the various
programmable or configurable circuit blocks or tiles
described herein, as well as the interconnect circuitry that
selectively couples the various circuit blocks, tiles, and/or

US 10,101,969 Bl

7

clements according to configuration data that 1s loaded nto
the IC. For example, portions shown i FIG. 1 that are
external to PROC 110 such as CLBs 103 and BRAMs 103
can be considered programmable circuitry of the IC.

In some embodiments, the functionality and connectivity
of programmable circuitry are not established until configu-
ration data 1s loaded 1nto the IC. A set of configuration data
can be used to program programmable circuitry of an IC
such as an FPGA. The configuration data 1s, 1n some cases,
referred to as a “configuration bitstream.” In general, pro-
grammable circuitry 1s not operational or fTunctional without
first loading a configuration bitstream into the IC. The
configuration bitstream eflectively implements or instanti-
ates a particular circuit design within the programmable
circuitry. The circuit design specifies, for example, func-
tional aspects of the programmable circuit blocks and physi-
cal connectivity among the various programmable circuit
blocks.

In some embodiments, circuitry that 1s “hardwired” or
“hardened,” 1.e., not programmable, 1s manufactured as part
of the IC. Unlike programmable circuitry, hardwired cir-
cuitry or circuit blocks are not implemented aiter the manu-
tacture of the IC through the loading of a configuration
bitstream. Hardwired circuitry 1s generally considered to
have dedicated circuit blocks and interconnects, for
example, that are functional without first loading a configu-
ration bitstream into the IC, e.g., PROC 110.

In some 1nstances, hardwired circuitry can have one or
more operational modes that can be set or selected according
to register settings or values stored in one or more memory
clements within the IC. The operational modes can be set,
for example, through the loading of a configuration bait-
stream 1nto the IC. Despite this ability, hardwired circuitry
1s not considered programmable circuitry as the hardwired
circuitry 1s operable and has a particular function when
manufactured as part of the IC.

FIG. 1 1s intended to 1llustrate an exemplary architecture
that can be used to implement an IC that includes program-
mable circuitry, e.g., a programmable tabric. For example,
the numbers of logic blocks 1n a row, the relative width of
the rows, the number and order of rows, the types of logic
blocks mCluded in the rows, the relatlve s1zes of the logic
blocks, and the interconnect/logic implementations included
at the top of FIG. 1 are purely exemplary. For example, 1n
an actual IC, more than one adjacent row of CLBs 1is
typically included wherever the CLBs appear, to facilitate
the eflicient implementation of user logic, but the number of
adjacent CLB rows varies with the overall size of the IC.
Moreover, the FPGA of FIG. 1 illustrates one example of a
programmable IC that can employ examples of the inter-
connect circuits described herein. The interconnect circuits
described herein can be used in other types of programmable
ICs, such as complex programmable logic devices (CPLDs)
or any type of programmable IC having a programmable
interconnect structure for selectively coupling logic ele-
ments.

It 1s noted that the IC that may implement the Montgom-
cry multiplication 1s not limited to the exemplary IC
depicted 1n FIG. 1, and that IC having other configurations,
or other types of IC, may also implement the Montgomery
multiplication.

Referring to FIG. 2, illustrated 1s a pseudo code for an
algorithm 200 to perform multiple-word Montgomery mul-
tiplication according to some embodiments. As illustrated in
FIG. 2, the process of the algorithm 200 may receive inputs
including a first operand X (also referred to as the multipli-
cand number X), a second operand Y (also referred to as the

10

15

20

25

30

35

40

45

50

55

60

65

8

multiplier number Y), a modulus M, a first word width w1l
(also referred to as the multiplicand word width wl), and a
second word width w2 (also referred to as the multiplier
word width w2). In some embodiments, w1 1s equal to w2.
In some embodiments, w1 1s less than w2. The process may
also receive integers R1 and R2, where R1 is equal to 2™
and R2 is equal to 2"*. The process of the algorithm 200 may
provide an output S for the Montgomery multiplication
which is equal to X*Y*R1~** mod M.

In some embodiments, the first operand X, the second
operand Y, and the modulus M are partitioned into multiple
words. Specifically, the first operand X 1s partitioned into L
words, and each word x[1] of the L, words has w1 bits, where
L._1s an integer, and 1 1s an integer between 0 and L._-1. The
second operand Y 1s partitioned into L, words, and each
word y[j] of the L, words has w2 bits, where L, 1s an integer
and j 1s an integer between 0 and L —~1. The modulus M 1is
partitioned mto L, words, and each word m[j] of the L,
words has w2 bits. For X, Y, and M having particular widths,
by increasing the word widths wl and w2, L and L, may
decrease. The first operand X, the second operand Y, and the
modulus M may be expressed as follows:

X=3, A (R1);
Y=3,_¢"'y[j](R2Y; and

M=3,_""'m[j](R2Y.

In some embodiments, the algorithm 200 scans through
x[0:L_-1] 1n an outer loop 202 (also referred to as the main
loop 202), which corresponds to lines 3 to 4 of the algorithm
200. During an outer loop iteration of the outer loop 202
processing x[1], after processing y[0] and m[0], the algo-
rithm 200 scans through y[1:L, -1] and m[1:L -1] in an
inner loop 204, which corresponds to lines 3.6 to 3.7 of the
algorithm 200. During an inner loop iteration processing y|[j]
and m[j], a result s[] 1] 1s calculated using x[1], y[3], m[j],
and s[j], where s[]] 1s calculated during the last outer loop
iteration processing x[1—-1]. After the algorithm 200 finishes
processing x[|Lx—-1] of the outer loop 202, the output S may
be computed as follows:

S=2,_s[/1(R2Y.

As 1llustrated 1n that formula, 1n some embodiments, there 1s
a need to expand S by one bit (e.g., where M 1s greater than
15%(R2)?). As such, S may be represented by L, +1 words
including s[0] to s[L,].

In some embodiments, 1 the algorithm 200, each of the
x[1], m', and g[1] has a width of w1 bits, and each of the y[j],
s[1], and m[1] has a width of w2 bits. The first word width w1l
and the second word width w2 may be the same, or may be
different from each other. In some examples, the first word
width w1 and the second word width w2 may be determined
based on the precision of the multipliers used to implement
the algorithm 200 to fully utilize the calculation capability of
the multipliers, which 1s discussed in detail below.

Retferring to FIG. 3A, illustrated 1s an example of an
integrated circuit (IC) for performing Montgomery multi-
plication using the algorithm 200. A Montgomery multipli-
cation device 300 may include n+1 processing clements
(“PE”"), which are interconnected 1n sequence. The first PE
1s a PE 302, followed by PE 306-1, PE 306-2, . . . and PE
306-n, Where n 1s an mteger (e.g., n=10). In some embodi-
ments, the device 300 includes a multiplexer (MUX) 304
which sends data between the PE 302 and the PE 306-1.
Alternatively, 1n some embodiments, the MUX 304 1s omit-
ted, where the outputs of the PE 302 are directly provided to

US 10,101,969 Bl

9

the inputs of the PE 306-1, and the outputs of the PE 306-1
1s provide directly to the mputs of the PE 302.

In some embodiments, the PE 302 may have a structure
that 1s diferent from PE 306-1, PE 306-2, . . . , PE 306-%.
The PE 302 may be used to compute a quotient (e.g., q[1]
according to line 3.2 of the algorithm 200), and may be
referred to as a quotient PE. The PE 302 may include an X
operand iput 308, a Y operand mput 310, a modulus 1mnput
312, an m' mput 314, and an mput 324. The X operand 1nput
308 may receive words x[0:L —1] (e.g., from a memory
clement or a control unit in serial) of the operand X. The Y
operand input 310 may receive the first word y[0] (e.g., from
a memory element or a control unit) of the operand Y. The
modulus input 310 may receive the first word m[0] of the
modulus M. The m' input 314 may receive an integer m',
where (m'*m[0]) mod R1=-1. The input 324 may receive a
value s[0] (e.g., from the PE 306-1 (e.g., directly or through
a MUX 304) of the device 300.

In some embodiments, the PE 302 includes outputs 316,
318, 320, and 322. During an outer loop 1iteration processing
x[1], the output 316 may output x[1], the output 318 may
output q[1], the output 320 may output a carry c, and the
output 322 may output a remainder r. These outputs may be
sent to the mputs of the PE 306-1 (e.g., directly or using a
MUX 304).

In some embodiments, the device 300 includes PEs 306-1,
306-2, . . . 306-» connected 1n sequence to form a chain
following the quotient PE 302. These PEs 306-1,
306-2, . .. 306-» may have substantially the same structure,
and each of them may be referred to as a PE 306 or a tailing

PE 306. The k™ PE 306-% in the chain, where k is an integer
between 1 and n, may have inputs 326, 328, 330, 332, 334,
336, and 348. The mput 326 may receive u words y (k 1)
u+1:ku] of the operand Y, where u 1s an integer equal to or
greater than one (e.g., u=8). The mput 328 of the PE 306-%
may recerve u words m[(k-1)u+1: ku] of the modulus M.
During the outer loop 1teration processing x[|, the mnput 330
may receirve x[1], the mput 332 may receive q[1], the input
334 may receive a carry ¢, and the mput 336 may receive a
remainder r. The mputs 330, 332, 334, and 336 may receive
these values from a preceding PE 306 (e.g., from the k-1
PE 306-(k-1), where k>1), or from the PE 302 or the MUX
304 (e.g., where k=1). The mput 348 may recerve a value

s[ku] from a subsequent PE 306 (e.g., the k+17 PE 306-(k+
1)). For the last PE 306 in the chain (e.g., PE 306-»), the
input 348 may receive O for s[ku].

In some embodiments, the number u, together with the
second word si1ze w2 and the number n may aflect the size
of the operand Y that the device 300 may support. In some
examples, where a device 300 includes a PE 302 and n PEs
306, and each of the PE 302 and PEs 306 handles u words
of the operand Y, the number L, of words of the operand Y
1s equal to or less than n*u+1. In those examples, the device
300 may support an operand Y having a width of w2*n*u
bits. In an example where w2=26, u=8, and n=10, the device
300 may support an operand Y having a width of 2080 bats.

In some embodiments, the k¥ PE 306-% in the chain has
outputs 338, 340, 342, and 344. During the outer loop
iteration processing x[1], the output 338 may output x[1], the
output 340 may output q[1], the output 340 may output a
carry ¢, and the output 344 may output a remainder r. These
outputs may be provided to the corresponding inputs of the
subsequent k+1?” PE 306-(k+1) in the chain. In some
embodiments, the k” PE 306-k in the chain has an output
346, which may output s[(k-1)u] and send the output
s[(k-1)u] to a preceding PE 306 (e.g., to the k-1” PE
306-(k-1) 1f k>1), or the PE 302 or N[UX 304 where k=1.

10

15

20

25

30

35

40

45

50

55

60

65

10

In some embodiments, the device 300 may also include a
multiplexer (MUX) 304 disposed between the PE 302 and

the PE 306-1. The MUX 304 has a first set of mputs 352
receiving values provided by the PE 302 of the device 300,
and a second set of inputs 354 receiving values from an
external device. The MUX 304 may select (e.g., based on an
operating mode of the device 300) which set of the mputs
may be selected and sent to the PE 306-1. For example, as
illustrated 1n the example of FIG. 3A, while operating in a
stand-alone mode, the MUX 304 selects the values recerved
at the first set of inputs 352, and provides the received values
to the PE 306-1. The operating mode of the device 300 may
be a stand-alone mode or a cascaded mode, which may be
configured by a register in run-time.

In some embodiments, the MUX 304 has an input 356
receiving s[0] from the PE 306-1. The MUX 304 may select
one ol the output 358 connecting to the PE 302 and the
output 360 connecting to an external device (e.g., based on
an operating mode of the device 300), and send the received
s[0] to the selected output. For example, as 1llustrated in the
example of FIG. 3A, while operating in a stand-alone mode,
the MUX 304 may send the received s[0] to the PE 302
through the output 358.

In some embodiments, as illustrated 1n the example of

FIG. 3A, while operating 1n a stand-alone mode, the mput
348 of the last PE 306-» receives a value of zero, and the
outputs 338, 340, 342, and 344 of the last PE 306-» are not
connected to external elements. Further, while operating 1n
a stand-alone mode, the second set of mputs 354 and the
output 360 of the MUX are not connected to external
clements.

Alternatively, 1n some embodiments, the MUX 304 is
omitted. In such embodiments, the outputs of the PE 302
(e.g., outputs 316, 318, 320, and 322) are directly provided
to the corresponding inputs of the PE 306-1, and the output
346 of the PE 306-1 sends the value s[0] directly to the input
324 of the PE 302.

In some embodiments, after the outer loop 202 of the
algorithm 200 finishes the outer loop iteration processing the
last word x|[L_—-1] of the operand X, each ot the PE 302 and
PE 306 of the device 300 may prowde the corresponding
words s[j] of the output S, which i1s the result of the
Montgomery multiplication. For example, the PE 302 may
provide s[0] of the output S, and the PE 306-4 may provide
s[(k—=1)u+1:ku] of the output S.

Referring to FI1G. 3B, in various embodiments, the PE 302
and the PE 306 may be bwld using a MAC 380. As
illustrated 1n FIG. 3B, a MAC 380 may include an N1-bitx
N2-bit multiplier 382 and an adder 384. The integers N1 and
N2 may be the same (e.g., N1=N2=17) or different from
cach other (e.g., N1=17 and N2=26). A register 386 1is
configured to receive a first mput (e.g., an iteger A having
a width of N1 bits), and provide the first input to an mput of
the multiplier 382. A register 388 1s configured to receive a
second mput (e.g., an imteger B having a width of N2 bits),
and provide the second input to another mput of the multi-
plier 382. The multiplier 382 computes the product of two
numbers recerved at its mputs, and provides the product to
a register 390. The register 390 sends the received product
to an 1mput of the adder 384. The adder 384 receives a third
number (e.g., an integer C) from a register 392, adds the
product and the third number, and provide the result to a
register 394, which provides the result (e.g., A*B+C) to an
output E of the MAC 380. In some embodiments, the
register 394 also sends the result received from the adder
384 to another input of the adder 384, which may be used to
calculate a result by the adder 384 in another clock cycle. In

US 10,101,969 Bl

11

various embodiments, while inserting the registers i the
MAC 380 may cause a longer latency, it may improve the
highest clock speed of the MAC 380.

Referring to FIG. 4, illustrated therein 1s an example of
the internal structure of the PE 302. In some embodiments,
the PE 302 communicates with a control unit of the dewce
300, serially receives the words of x[0:L._-1], and starts the

pipeline mode of the device 300. The PE 302 includes a
MAC 380, which includes a N1-bit by N2-bit multiplier 382.

In some embodiments, the first word width w1l is chosen to
be equal to N1, and the second word width w2 1s chosen to
be equal to N2. Referring to FIGS. 1 and 4, in some
embodiments, during each outer loop iteration of the outer
loop 202 of the algorithm 200, the process performed by the
PE 302 may include four paths. The first path corresponds to
line 3.1 of the algorithm 200. The second path corresponds
to line 3.2 of the algorithm 200. The third path corresponds
to line 3.3 of the algorithm 200. The fourth path corresponds
to lines 3.4 to 3.5 of the algorithm 200. These paths may at
least partially overlap in time. In other words, in some
embodiments, at least a portion of the operations in different
paths may be performed 1n parallel.

In some embodiments, in the first path, the MUX 402
selects s[0] and provides s[0] to a register 392 of a MAC
380. The MUX 404 selects x[1] and provides x[1] to a register
388 of a MAC 380. The MUX 406 selects y[0] and provides
y[0] to a register 388 of a MAC 380. The MAC 380
computes z1 where z1=x[1]*y[0]+s[0], and the result z1 1s
sent to a register 394 of the MAC 380, which provides z1 to
the MUX 402. The register 394 also provides the lower wl
bits of z1 (e.g., z1 mod 2™") to the MUX 404.

In some embodiments, 1n the second path, the MUX 402
selects 0 from the register 424 and provides 0 to the register
392 of the MAC 380. The MUX 404 selects the lower wl
bits of z1 and sends 1t to the register 386 of the MAC 380.
The MUX 406 selects m' and outputs m' to a register 388 of
the MAC 380. The MAC 380 computes q[1], where q[i1]=
(z1*m') mod 2". The register 394 of the MAC 380 then
provides q[1] to the MUX 404 and to the output 318.

In some embodiments, in the third path, the MUX 402
selects z1 from the register 424, and provides zl to the
register 392 of the MAC 380. The MUX 404 selects g[1] and
provides ([1] to the register 386 of the MAC 380. The MUX
406 selects m[0] and provides m[0] to the register 388 of the
Mac 380. The MAC 380 computes z2, where
72=71+q[1]*m][0], and the result z2 1s sent to the register 394
of the MAC 380.

In some embodiments, in the fourth path, the w1? to w2”
bits of the number 72 are extracted as the remainder r, which
1s provided at the output 322 of the PE 302. The higher w2
bits of the result z2 are provided as the carrier ¢ at the output
320 of the PE 302. In some embodiments, q[1], ¢, and r are
time multiplexed on a single data bus.

Referring to FIG. §, illustrated therein 1s an example of
the mternal structure of the PE 306-%. The PE 306-% includes
a MAC 380, which includes a N1-bit by N2-bit multiplier
382. In some embodiments, the first word width w1 1s
selected to be equal to N1, and the second word width w2
1s chosen to be equal to N2. In some embodiments, during
initialization, the RAM 520 of the PE 306-% stores y[(k-1)
u+1:ku] of the operand Y received at the input 326, and
stores m[(k—1)u+1:ku] at the input 328 and stores m[(k—1)
u+1:ku] of the modulus M received at the input 328.

In some embodiments, during the outer loop iteration
processing x[1—-1], the RAM 504 may store s[ku] recerved at
the mput 348 (e.g., through the shift 502) from the next PE

(e.g., from PE 306-(k+1)). During the outer loop iteration

5

10

15

20

25

30

35

40

45

50

55

60

65

12

processing x[1—-1], the RAM 504 may also store s[(k—1)u+
1:ku-1] computed by the PE 306-% itself (e.g., sent by the

register 394 to the shift 502, and then to the RAM 504). In
some embodiments, during the outer loop 1teration process-
ing x[1], the PE 306-% receives x[1], q[1], ¢, and r at mputs
330, 332, 334, and 336 respectively.

Referring to FIGS. 1 and 5, 1n some embodiments, for
cach 1 between (k—1)u+1:ku, during the inner loop 1teration
processing v[1] and m]j], the process performed by the PE
306-% may include three paths. The first path corresponds to
line 3.6.1 of the algorithm 200. The second path corresponds
to line 3.6.2 of the algorithm 200. The third path corresponds
to lines 3.6.3 to 3.6.5 of the algorithm 200. These paths may
at least partially overlap in time. In other words, 1n some
embodiments, some operations 1n different paths may be
performed 1n parallel.

In some embodiments, at the first path, the RAM 504
provides s[j] computed during the i-17 i

iteration of the outer
loop 202 to the MUX 506. The MUX 506 selects s[j] and

sends s[1] to a register 392 of the MAC 380. The MUX 514
selects x[1] and sends x[1] to a register 386 of the MAC 380.
The RAM 520 provides y[j] to the register 388 of the MAC
380. The MUX 3528 selects 0 and provides 0 to the adder 384
of the MAC 380. The MAC 380 computes z1, where
z1=x[1]*v[1]+s[j]. The register 394 sends z1 to the MUX
528.

In some embodiments, at the second path, the MUX 512
selects a carrier ¢ based on whether the present inner loop
iteration 1s the first inner loop 1iteration of the inner loop 204
at the PE 306-%, where 1=(k-1)u+1. If j=(k-1)u+1, then the
MUX 3512 selects the carrier ¢ received at the mput 334.
Otherwise, the MUX 3512 selects a carrier ¢ provided to the
MUX 512 from the register 394. The MUX 512 provides the
selected carrier ¢ to the register 392 of the MAC 380. The
MUX 514 selects g[1] and sends q[1] to the register 386 of
the MAC 380. The RAM 520 provides m|[j] to the register
388. The MUX 528 selects z1 and provides z1 to the adder
384. The MAC 380 computes z2, where z2=z1+q[1]*m[j]+c.

In some embodiments, at the third path, the register 394
may provide z2 to the shift 502 and MUX 512. The higher
w2 bits of z2 are provided to the MUX 512 as the carry c for
the next inner loop iteration processing y[j+1] and m[j+1].
In some examples, 1t 1s determined that the present inner
loop 1teration 1s not the first inner loop iteration of the inner
loop 204 (e.g., 115 not equal to (k—1)u+1). In those examples,
the lower erh bits of z2 are prowded to the shift 502 and
then to the RAM 504, which 1s saved together with the
remainder r computed during the last inner loop iteration
(e.g., retrieved from the RAM 504) as s[j-1]. The w1? to
w2™ bits of z2 is also provided to the RAM 504 through shift
502, which are saved as the remainder r in the RAM 504 and
may be used in the next inner loop iteration processing
y[1+1] and m[j+1].

In some examples, 1t 1s determined that the present inner
loop iteration 1s the first mner loop iteration of the inner loop
204 at the PE 306-%, where j=(k—1)u+1. In those examples,
the register 394 provides z2 to the register 530. The register
530 also receives the remainder r from the input 336. The
value s[(k—1)u] 1s computed using the lower wl bits of z2
and the remainder r received from the mput 336, and 1is
provided to the output 346, which 1s then sent to the
preceding PE (e.g., PE 306-(k-1)). The value s[(k-1)u] may
then be sent to the preceding PE for the next outer loop
iteration.

In some examples, it 1s determined that the present inner
loop iteration 1s the last inner loop 1teration of the inner loop
204 at the PE 306-£, where j=ku. In those examples, the

US 10,101,969 Bl

13

register 394 provides z2 to the register 530. The highest w2
bits of z2 may be provided as the carrier ¢ at the output 342,
which 1s sent to the next PE (e.g., to the PE 306-(k+1)). The

w1” to w2 bits of z2 may be provided as the remainder r
at the output 344, which 1s sent to the next PE (e.g., to the
PE 306-(k+1)).

As 1illustrated 1n FIGS. 2, 3A, 3B, 4, and 5, 1in various
embodiments, the operand X, the operand Y, and the modu-
lus M are partitioned mto words of word widths w1l and w2
according to the precision of multipliers used 1n the PEs. For
example, for N1-bit by N2-bit multipliers, w1 1s selected to
be N1 and w2 i1s selected to be N2, where N1<N2. The
algorithm 200 loops L *L, times, where L, /L =N2/NI
where X and Y have the same width. Compared to an
implementation for performing Montgomery multiplication
where both wl and w2 are selected to be N1 and L, *L_ loops
are required, a latency saving of N2/N1 1s achieved. For
example, for a Montgomery computation device 300 usmg
1'7-bit by 26-bit multipliers, the operand X 1s processed as L

X

words each having a word width of 17 bits, and each of the
operand Y and the modulus M 1s processed as L, words each
having a word width of 26 bits. As such, the Montgomery
computation device 300 implementing the algorithm 200
may be 1.53 (26/17) times faster than a process that per-
forms Montgomery multiplication where both w1l and w2
are selected to be 17 bits.

Furthermore, as i1llustrated in FIGS. 3A, 3B, 4, and 5, 1n
various embodiments, by using registered MACs 380, the
latency of the device 300 may be reduced by increasing the
clock frequency. Moreover, by packing the calculation of u
words of the operand Y 1n a single PE 306 in a pipelined
manner, 1dle clock cycles are reduced and higher speed 1s
achieved. Additionally, reduction in resource consumption 1s
achieved by reducing the number of the PE 306 required by
device 300.

Referring to FIG. 6, illustrated 1s an exemplary high level
timing diagram of a device 300 implementing the algorithm
200. As 1llustrated 1n the example of FIG. 6, during the first
outer loop 1teration processing x[0], the PE 302 provides
q[0] to the PE 306-1. The PE 306-1 performs u inner loop
iterations to 1iterate through the u words of the operand Y.
The PE 306-1 computes s[0] during the first mnner loop
iteration processing y[1] and m[1], and provides s[0] to the
PE 302 which 1s used in the next outer loop iteration
processing x[1]. The PE 306-1 then computes s[1], s[2],
s[u—1] without any idle clock cycles. During the inner loop
iteration processing v[u] and m|u], the PE 306-1 provides
x[0], q[0], ¢, and r to the PE 306-2. Similarly, the PE 306-2
and the PE 206-» compute the value of s[j] without having
any 1dle clock cycles.

Referring to FIG. 7, illustrated 1s an exemplary detailed
timing diagram of a device 300 implementing the algorithm
200. In the 1llustrated example, each of the multiplier 382 of
the PE 302, PE 306-1, and PE 306-2 1s an N1-bit by N2-b1t
multiplier, where N1 1s 17, and N2 1s 26. Each of the PE
306-1 and the PE 306-2 uses a pipelined architecture to
process the u words of the Y operand, where u=6. As shown
by the columns corresponding to the multiplier 382 and the
adder 384 of each of the PE 306-1 and PE 306-2, both the
multiplier 382 and the adder 384 are fully utilized without
any 1dle clock cycles.

In some examples, the multiplier 382 of the PE 306 1s
tully utilized without any 1dle clock cycles between the inner
loop 1terations for y[j] and y[1+1]. In an example, 1n the PE
306-1, after the multlpher 382 performs an operation of the

inner loop iteration for y[1] (e.g., computing p2) at clock

10

15

20

25

30

35

40

45

50

55

60

65

14

cycle 10, the multiplier 382 performs an operation of the
next mner loop iteration for y[2] (e.g., compute pl) at clock
cycle 11.

In some examples, the multiplier 382 of the PE 306 1s
tully utilized without any idle clock cycles between the last
inner loop iteration (e.g., for y[6]) for the i” outer loop
iteration and the first inner loop iteration (e.g., for y[1]) for
the (i+1)” outer loop iteration. For example, in the PE 306-1,
the multiplier 382 performs an operation of the last inner
loop 1teration (e. 2., computing p2 for y[6]) of an outer loop
iteration processing x[1] at clock cycle 20. The multiplier
382 may then perform an operation of the first inner loop
iteration (e.g., computing pl for y[1]) of the next outer loop
iteration processing x[1+1] at clock cycle 21.

In some embodiments, during the same clock cycle, the
multiplier 382 and the adder 384 of the same MAC 380 of
a PE 306 may perform operations for different inner loop
iterations (e.g., different y words) and/or diflerent outer loop
iterations (e.g., different x words). For example, during
clock cycle 21, the adder 384 of the PE 306-1 performs an
operation of an 1nner loop iteration processing y[6] (e.g.,
performing the addition in line 3.6.2 of the algorithm 200,
where 1=6). During the same clock cycle 21, the multlpher
382 of the PE 306-1 performs an operatlon of a different
iner loop iteration (e.g., processing y[1]) and a different
outer loop iteration (e.g., processing x[1+1]) by performing
the multiplication in line 3.6.1 of the algorithm 200, where
1=1.

Retferring to FIG. 8, 1n some embodiments, to support
large operands, two or more Montgomery multiplication
devices 300 are cascaded. In the example illustrated 1n FIG.
8, Montgomery multiplication devices 300-1 and 300-2 are
configured 1 a cascaded mode (e.g. by a configuration
bitstream from a memory), and form a combined Montgom-
ery multiplication device 800. Each of the devices 300-1 and
300-2 includes a PE 302 and n PE 306, and supports an
operand Y having a width of w2*n*u. For example, where
w2 1s 26, n 1s 10, and u 1s 8, each of the devices 300-1 and
300-2 supports an operand Y having a width o1 2106 bits. By
cascading the device 300-2 to the device 300-1, a Mont-
gomery multiplication device 800 1s formed, which uses the
PE 302 of the device 300-1 as 1ts first PE receiving y[0],
m[0], m' and the words of X. The Montgomery multiplica-
tion device 800 may also include a chain of 2z PE 306. As
such, the Montgomery multiplication device 800 may sup-
port an operand Y having a width of w2*2*n*u bits. For
example, where w2 1s 26, n 1s 10, and u 1s 8, the Montgom-
ery multiplication device 800 may support an operand Y
having a width of 4160 bits.

As 1llustrated 1n the example of FIG. 8, 1n the cascaded
mode, the device 300-1 receives y[O:nu] of the operand Y
and m[O:nu] of the modulus M, and the device 300-2
receives y[nu+1:2nu] of the operand Y and m[nu+1:2nu] of
the modulus M. The MUX 304 of the second MMU 300-2
1s used to provide the values received from the device 300-1
to the device 300-2, and to provide the value computed in the
device 300-2 to the device 300-1. For example, the last PE
(e.g., PE 306-n) of the device 300-1 provides intermediate
results (e.g., using outputs 338, 340, 342, and 344 to provide
x[1], g[1], ¢, and r) to the MUX 304 of the device 300-2. The
MUX 304 selects the intermediate results received from the

device 300-1, and provides the received intermediate results
to the first PE 306 (e.g., PE 306-1) of the device 300-2. For

turther example, in the device 300-2, the PE 306-1 sends
s[nu] to the MUX 304. The output 360 of the MUX 304 then
sends the recerved s[nu] to the device 300-1 (e.g., to an 1nput

of the PE 306-» of the device 300-1). In the cascade mode,

US 10,101,969 Bl

15

the mputs 310, 312, and 314 of the PE 302 of the device
300-2 may not be connected to any external elements.

In some embodiments, the cascaded devices may have
identical or substantially the same structure. For example,
the cascaded devices may have the same u and n. In some
embodiments, the cascaded devices may have different
values for u and/or n. For example, a first device 300-1 may
have n1 PE 306, each receiving ul words of the operand Y.
For further example, a second device 300-2 may have n2 PE
306, cach receiving u2 words of the operand Y. In various
embodiments, ul and u2 may be different, and/or nl1 and n2
may be different. In such examples, the combined device

800 may support an operand Y having a width of w2*
(ul*nl1+u2*n2) bits. While the examples of FIG. 8 are

directed at cascading two Montgomery multiplication
device, 1t will be understood by those skilled 1n that art that
any number of Montgomery multiplication devices may be
cascaded to support large integers.

It 1s noted that various configurations (e.g., M, N1, N2,
wl, w2, R1, R2, L, L,, u, n) illustrated 1n FIGS. 2-8 are
exemplary only and not imntended to be limiting beyond what
1s specifically recited i the claims that follow. It will be
understood by those skilled 1n that art that other configura-
tions may be used.

Various advantages may be present 1n various applications
of the present disclosure. No particular advantage 1s required
for all embodiments, and different embodiments may ofler
different advantages. One of the advantages 1n some
embodiments 1s that by partitioning the operands into words
of different word widths according to the multipliers, the full
computing capacity of the multipliers are utilized. Another
advantage 1n some embodiments 1s that by using registered
MACs, the latency i1s reduced by increasing the clock
frequency of the Montgomery multiplication device. More-
over, by packing the calculation of multiple words of an
operand 1n a single processing element 1n a pipelined
manner, 1dle clock cycles are reduced. Additionally, less
processing elements are required where multiple words of an
operand are processed in one processing element, which
leads to reduction in resource consumption. Yet another
advantage 1n some embodiments 1s that by cascading two or
more Montgomery multiplication devices to form a com-
bined Montgomery multiplication device, larger integers
may be supported.

Although particular embodiments have been shown and
described, it will be understood that 1t 1s not intended to limit
the claimed 1nventions to the preferred embodiments, and it
will be obvious to those skilled in the art that various
changes and modifications may be made without department
from the spirit and scope of the claimed inventions. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than restrictive sense. The claimed
inventions are intended to cover alternatives, modifications,
and equivalents.

What 1s claimed 1s:

1. A method, comprising:

receiving, by an integrated circuit (IC), a multiplicand
number, a multiplier number, and a modulus at one or
more data inputs, wherein the IC includes a plurality of
processing eclements (PEs), and wherein each PE

includes only one multiplier, only one adder, and a

registered multiplier-accumulator circuit (MAC)

including the multiplier, the adder, and a first register

configured to receive a product from the multiplier and

send the product to a first input of the adder;

10

15

20

25

30

35

40

45

50

55

60

65

16

partitioning, the multiplicand number 1nto a plurality of
multiplicand words, wherein each multiplicand word
has a multiplicand word width;

partitioning the multiplier number ito a plurality of

multiplier words, wherein each multiplier word has a
multiplier word width different from the multiplicand
word width;

performing, using a quotient PE of the plurality of PEs, a

plurality of outer loop iterations of an outer loop to

iterate through the plurality of the multiplicand words,

wherein the performing each outer loop 1teration of the

outer loop includes:

performing, using a plurality of tailing PEs of the
plurality of PEs, a plurality of inner loop iterations of
an mner loop to iterate through the plurality of the
multiplier words, wherein during each inner loop
iteration performing, by the registered MAC of a
tailing PE, a multiply-accumulate operation associ-
ated with a multiplier word corresponding to the
inner loop iteration; and

determining a Montgomery product of the multiplicand

number and the multiplier number with respect to the
modulus.

2. The method of claim 1, further comprising:

partitioning the modulus mto a plurality of modulus

words, wherein each modulus word has the multiplier
word width;
wherein the performing the plurality of inner loop 1itera-
tions of the mner loop 1ncludes:
iterating through the plurality of modulus words.

3. The method of claim 1,

wherein the multiplier of the registered MAC 1s an N1 bt
by N2 bit multiplier, wherein N1 and N2 are different
integers; and

determining the multiplicand word width and the multi-

plier word width based on N1 and N2.

4. The method of claim 3, wherein the determining the
multiplicand word width and the multiplier word width
based on N1 and N2 includes:

providing N1 as the multiplicand word width; and

providing N2 as the multiplier word width;

wherein N1 1s less than N2.

5. The method of claim 3, comprising:

computing a quotient using a divisor 2" and a dividend

generated based on a multiplier word and a multipli-
cand word for each outer loop 1teration of the outer loop
using the quotient PE; and

providing the quotient to a first tailing PE.

6. The method of claim 5, further comprising;:

dividing the plurality of multiplier words 1nto a plural

of multiplier word groups, wherein each multipl
word group includes a same number of multipl
words; and

prowdmg a multiplier word group to each tailing P.

7. The method of claim 6, wherein the performing the
inner loop iterations of the mner loop using the plurality of
tailing PEs 1ncludes:

performing, by each tailing PE, a portion of the inner loop

iterations to iterate through the multiplier words of the
provided multiplier word group.

8. The method of claim 6, further comprising:

performing, by the multiplier of the registered MAC of a

tailing PE, a first multiplication operation of a first
iner loop iteration of a first mner loop during a first
clock cycle; and

performing, by the multiplier of the registered MAC of

the tailing PE, a second multiplication operation of a

1er
1er

LlJ

US 10,101,969 Bl

17

second 1nner loop iteration of the first inner loop during,
a second clock cycle next to the first clock cycle.
9. The method of claim 6, further comprising;:
performing, by the multiplier of the registered MAC of a

18

wherein the plurality of tailing PE circuits are configured
to 1terate through the plurality of remaining modulus
words 1n the plurality of inner loop iterations.

12. The IC of claim 10, wherein the multiplier of the

talhng PE, a first multlphcatlon operation of a first 5 registered MAC is an N1 bit by N2 bit multiplier,

iner loop iteration of a first mner loop during a first

clock cycle; and
performing, by the multiplier of the registered MAC of
the tailing PE, a second multiplication operation of a
second 1nner loop iteration of a second inner loop
during a second clock cycle next to the first clock cycle.
10. An mtegrated circuit (IC), comprising:
one or more inputs configured to receive a multiplicand
number, a multiplier number, and a modulus;
a Montgomery multiplication circuit configured to gen-
erate a Montgomery product of the multiplicand num-
ber and the multiplier number with respect to the
modulus, wherein the Montgomery multiplication cir-
cuit includes:
a partition circuit configured to:
partition the multiplicand number 1nto a plurality of
multiplicand words, each multiplicand word hav-
ing a multiplicand word width;

partition the multiplier number to an 1mitial multi-
plier word and plurality of remaining multiplier
words, each multiplier word having a multiplier
word width different from the multiplicand word
width;
a plurality of processing element (PE) circuits includ-
ing a quotient PE circuit and a plurality of tailing PE
circuits, each PE circuit including only one adder,
and a registered multiplier-accumulator circuit
(MAC) including a multiplier, the adder, and a first
register configured to receive a product from the
multiplier and send the product to a first input of the
adder:;
wherein the quotient circuit 1s configured to:
recerve the plurality of the multiplicand words and
the mitial multiplier word;

iterate through the plurality of the multiplicand
words 1n a plurality of outer loop 1terations respec-
tively; and

for each outer loop iteration, compute a quotient
using a divisor 2°' and a dividend generated using
the 1imitial multiplier word and a multiplicand word
corresponding to the outer loop 1iteration; and

wherein the plurality of tailing PE circuits are con-

nected 1n sequence and configured to:

recerve the quotient from the quotient PE circuit and
the plurality of remaining multiplier words, and

for each outer loop iteration, iterate through the
plurality of remaining multiplier words 1n a plu-
rality of mner loop 1terations respectively.

11. The IC of claim 10, wherein the partition circuit 1s
turther configured to partition the modulus into an mitial
modulus word and a plurality of remaining modulus words,
wherein each modulus word has the multiplier word width,

wherein the quotient PE circuit 1s configured to compute
the quotient using the imitial modulus word for each

outer loop iteration, and

10

15

20

25

30

35

40

45

50

55

wherein N1 and N2 are different integers,
wherein the multiplicand word width 1s equal to N1, and
wherein the multiplier word width 1s equal to N2.

13. The IC of claim 12, wherein N1 1s less than N2.
14. The IC of claim 12, wherein the multiplier of the
registered MAC of the quotient PE circuit 1s configured to:
for each outer loop 1teration, perform a multiplication of
the mitial multiplier word and the multiplicand word
corresponding to the outer loop 1teration.
15. The IC of claim 10, wherein the Montgomery multi-
plication circuit 1s configured to:
divide the plurality of remaining modulus words into a
plurality of modulus word groups, wherein each modu-
lus word group includes a same number of modulus
words; and
provide a first modulus word group of the plurality of
modulus word groups to a first tailing PE circuit.
16. The IC of claim 10, wherein the Montgomery multi-
plication circuit 1s configured to:
divide the plurality of remaining multiplier words into a
plurality of multiplier word groups, wherein each mul-
tiplier word group includes a same number of multi-
plier words; and
provide a first multiplier word group of the plurality of
multiplier word groups to a first tailing PE circuit.
17. The IC of claim 16, wherein the first tailing PE circuit
1s configured to:
perform a portion of the mner loop iterations by iterating
through the multiplier words of the first multiplier word
group.
18. The IC of claim 16, wherein the multiplier of the first
tailing PE circuit 1s configured to:
perform a first multiplication operation of a {first inner
loop 1teration of a first mner loop during a first clock
cycle; and
perform a second multiplication operation of a second
inner loop iteration of the first inner loop during a
second clock cycle next to the first clock cycle.
19. The IC of claim 16, wherein the multiplier of the first
tailing PE circuit 1s configured to:
perform a first multiplication operation of a first inner
loop 1teration of a first mner loop during a first clock
cycle; and
perform a second multiplication operation of a second
iner loop iteration of a second inner loop during a
second clock cycle next to the first clock cycle.
20. The IC of claam 10, wherein the registered MAC
includes:
a second register coupled to a first input of the multiplier;
a third register coupled to a second input of the multiplier;
a fourth register coupled to a second input of the adder;
and
a fifth register coupled to an output of the adder.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

