US010073634B2

12 United States Patent (10) Patent No.: US 10,073,634 B2

Ojalvo et al. 45) Date of Patent: Sep. 11, 2018

(54) RECOVERY FROM PROGRAMMING GO6F 3/0683; GO6F 11/1012; GO6F
FAILURE IN NON-VOLATILE MEMORY 11/1076; GO6F 11/1044; GO6F 11/1068;
GO6F 11/008; G11C 29/52

(7]) Apphcan‘[App]e Inc., Cuper‘[inoj CA (IJS) U S P e et et e e are e nenans 714/764

See application file for complete search history.
(72) Inventors: Shai Ojalvo, Moshav Olesh (IL); Evyal

Gurgi, Petah-Tikva (IL); Yoav Kasorla, (56) References Cited

Ktar Netar (IL) U.S. PATENT DOCUMENTS
(73) Assignee: Apple Inc., Cupertino, CA (US) 7.594.157 B2* 9/2009 ChOi .oocvvvvverennn G11C 11/5678

365/185.09

(*) Notice: Subject to any disclaimer, the term of this 7.873.782 B2 1/2011 Terry et al.

patent 1s extended or adjusted under 35 7,924,628 B2 4/2011 Danon et al.

U.S.C. 154(b) by 0 days. 7,045,825 B2 5/2011 Cohen et al.

(Continued)

(21) Appl. No.: 14/821,008

_ OTHER PUBLICATTONS
(22) Filed: Aug. 7, 2015
Sai1 Krishna Mylavarapu et al; “FSAF: File System Aware Flash

(65) Prior Publication Data Translation Layer for NAND Flash Memories™; Design, Automa-
tion & Test in Europe Conference & Exhibition; Apr. 2009; pp.
US 2015/0355858 Al Dec. 10, 2015 399-404: IEEE: United States.
Primary Examiner — Demetrios C Kerveros
Related U.S. Application Data (74) Attorney, Agent, or Firm — Meyertons, Hood,
(63) Continuation of application No. 14/048,492, filed on Kiviin, Kowert & Goetzel, P.C.
Oct. 8, 2013, now Pat. No. 9,135,113. (57) ABSTRACT
51y Int. CL A method includes storing data encoded with an Error
(1) 2
” Correction Code (ECC) 1n analog memory cells, by bufler-
GO6l’ 11/00 (2006.01) _ : _ analog Iy ¢ Y
GO6F 11/10 (2006.01) ing the data 1n a volatile butfer and then writing the bufltered
GO6F 3/06 (2006.01) data to the analog memory cells while overwriting at least
G11C 29/5) (2006.01) some of the data 1n the volatile bufler with success indica-
(52) U.S. Cl) tions. Upon detecting a failure in writing the buflered data
IS _ to the analog memory cells, recovered data 1s produced by
CPC s GOOF 3/0619 (2013.01); GO6F 3/064 reading both the volatile buller and the analog memory cells,

(2013.01); GO6F 3/0659 (2013.01); GOGF assigning reliability metrics to respective bits of the recov-
3/0683 (2013.01); GOG6F 11/1012 (2013.01); ered data depending on whether the bits were read from the
GO6F 1171044 (2013.01), GO6F 11/1068 volatile buller or from the analog memory cells, and apply-
(2013.01); GO6F 11/1076 (2013.01); G1IC ing ECC decoding to the recovered data using the reliability

29/52 (2013.01); GOGF 11/008 (2013.01) metrics. The recovered data 1s re-programmed.
(58) Field of Classification Search

CPC ... GO6F 3/0619; GO6F 3/064; GO6F 3/0659; 20 Claims, 3 Drawing Sheets
20
S
COMPUTER _
CPU .26 24
83D STORAGE -
SSD CONTROLLER
iy [HosTINT .38 50
s SOFT METRICS 42 3
ECC PROCESSOR RAM)

| MEM INT b d6

¢
30
WAND FLASH| |NAND FLASH| |NAND FLASH| |NAND FLASH

/O DATA AND CONTROL

NAND FLASH 34
RW UNIT .

PAGE BUFFER |»~~__,,?4

MEMORY

ARRAY 78

US 10,073,634 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,078,940 B2 12/2011 Uchikawa et al.
8,200,904 B2 6/2012 Lasser
8,228,728 Bl 7/2012 Yang et al.
8,281,227 B2 10/2012 Thatcher et al.
8,341,500 B2* 12/2012 Byom GOG6F 11/1072
365/185.33
8,392,662 B2 3/2013 Jang et al.
8,407,563 B2 3/2013 Karabed et al.
8,429,501 B2 4/2013 Tseng et al.
8,549,380 B2 10/2013 Motwani
8,595,573 B2 11/2013 Shalvi et al.
8,694,854 Bl 4/2014 Dar et al.
8,750,050 B2 6/2014 Kamano et al.
8,856,621 B2 10/2014 Eun et al.
8,869,004 B2 10/2014 Chao
8,874,994 B2 10/2014 Sharon et al.
2007/0300130 Al* 12/2007 Gorobets GOG6F 11/1068
714/766
2009/0049364 Al* 2/2009 Jo .oviiiiiiiiiiinnnn, GOG6F 11/1072
714/763
2011/0072188 Al 3/2011 Oh et al.
2011/0252289 Al 10/2011 Patapoutian et al.
2012/0124450 Al* 5/2012 Yang GO6F 11/1012
714/773
2012/0260149 Al* 10/2012 Chang GOO6F 11/1068
714/773
2013/0042054 Al 2/2013 Jung et al.
2013/0159815 Al* 6/2013 Jungooooovvvvnnnn, GO6F 11/10
714/773
2014/0059406 Al* 2/2014 Hyun ... G11C 11/5621
714/773

* cited by examiner

U.S. Patent Sep. 11, 2018 Sheet 1 of 3 US 10,073,634 B2

20
COMPUTER
26 24
SSD STORAGE
SSD CONTROLLER
o HOST INT o 38 50

SOFT METRICS 42
.

NAND FLASH NAND FLASH NAND FLASH NAND FLASH

34 34 34 34

/O DATA AND CONTROL

NAND FLASH

PAGE BUFFER l

MEMORY

ARRAY 76

FIG. 1

U.S. Patent Sep. 11, 2018 Sheet 2 of 3 US 10,073,634 B2

100 GET DATA FOR STORAGE FROM
HOST

104~ STORE DATA PAGE IN PAGE BUFFER

08 ' PROGRAM STORED DATA
RECOVERED PAGE TO MEMORY CELLS

PAGE

APPLY ECC DECODING TO

COMBINED PAGE USING
THE RELIABILITY METRICS

COMBINED
PAGE

GENERATE COMBINED
PAGE AND ASSIGN 116
RELIABILITY METRICS

120

112

YES —PROGRAMMING FAILED?

NO

124~ ACK SUCCESS TO HOST

128

ADDITIONAL
PAGES AVAILABLE?

YES

NO

FIG. 2

U.S. Patent Sep. 11, 2018 Sheet 3 of 3 US 10,073,634 B2

START GENERATING
COMBINED PAGE

IDENTIFY PAGE BUFFER LOCATIONS IN
WHICH CELL PROGRAMMING HAS FAILED

150

FOR IDENTIFIED LOCATIONS RESTORE
CELL DATA FROM PAGE BUFFER AND 154
ASSIGN A HIGH RELIABILITY METRIC

FOR OTHER LOCATIONS RESTORE CELL DATA BY
READING PROGRAMMED CELLS FROM MEMORY 158

AND ASSIGN A REDUCED RELIABILITY METRIC
COMBINE DATA RESTORED FROM .
PAGE BUFFER AND MEMORY
OUTPUT COMBINED PAGE 68
AND RELIABILITY METRICS
READY FOR
ECC DECODING

FIG. 3

US 10,073,634 B2

1

RECOVERY FROM PROGRAMMING
FAILURE IN NON-VOLATILE MEMORY

PRIORITY INFORMAITON

This application claims priority to, and 1s a continuation

of, U.S. provisional patent application Ser. No. 14/048,492,
entitled “RECOVERY FROM PROGRAMMING FAIL-

URE IN NON-VOLATILE MEMORY,” filed Oct. 8, 2013,
which 1s hereby incorporated by reference 1n 1ts entirety as
though fully and completely set forth herein.

TECHNICAL FIELD

The present disclosure relates generally to data storage,
and particularly to methods and systems for programming
non-volatile memory.

BACKGROUND

When writing data to a non-volatile memory, the data 1s
typically first cached 1n a bufler and 1s then programmed to
analog memory cells of the memory. Occasionally, a pro-
gramming operation may fail and re-programming of the
original data 1s required. Various methods for data re-

programming following a programming failure are known in
the art. For example, U.S. Pat. No. 7,945,825, whose dis-
closure 1s incorporated herein by reference, describes meth-
ods and circuits for performing recovery associated with
programming ol non-volatile memory (NVM) array cells.
According to embodiments, there are provided methods and
circuits for programming NVM cells, including: (1) erasing
NVM array cells; (2) loading an SRAM with user data; (3)
i programming 1s successiul, then flipping bits in the
SRAM; and (4) if programming 1s not successiul, reading
data back from the array to the SRAM.

U.S. Pat. No. 7,924,628, whose disclosure 1s incorporated
herein by reference, describes a cache programming opera-
tion which requires two SRAMSs (one for the user and one
for the array) that may be combined with a multi-level cell
(MLC) programming operation which also requires two
SRAMSs (one for caching the data and one for veritying the

data), using only a total of two SRAMs (or builers). One of

the bullers (User SRAM) receives and stores user data. The
other of the two buflers (Cache SRAM) may perform a
caching function as well as a verily function. In this manner,
if a program operation fails, the user can have 1ts original
data back so that he can try to reprogram it to a different
place (address).

SUMMARY OF THE EMBODIMENTS

An embodiment provides a method including storing data
encoded with an Error Correction Code (ECC) 1n analog
memory cells, by buflering the data 1in a volatile bufler and
then writing the buflered data to the analog memory cells
while overwriting at least some of the data in the volatile
bufler with success indications. Upon detecting a failure in
writing the bullered data to the analog memory cells, recov-
ered data 1s produced by reading both the volatile buller and
the analog memory cells, assigning reliability metrics to
respective bits of the recovered data depending on whether
the bits were read from the volatile bufller or from the analog,
memory cells, and applying ECC decoding to the recovered
data using the reliability metrics. The recovered data is
re-programmed.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, producing the recovered data
includes setting a given bit 1n the recovered data to a
corresponding bit value read from the analog memory cells
if the corresponding bit value read from the volatile bufler
1s a success indication, and setting the given bit i the
recovered data to the corresponding bit value read from the
volatile bufler 1f the corresponding bit value read from the
volatile buller diflers from the success indication.

In other embodiments, assigning the reliability metrics
includes assigning to the bits that were read from the analog
memory cells lower reliability metrics relative to the reli-
ability metrics assigned to the bits that were read from the
volatile bufler. In yet other embodiments, the data includes
a portion of storage data recerved from a host, and the
method 1ncludes discarding the data after builering the data
in a volatile bufler, irrespective of whether a remaining
portion of the storage data i1s stored in the analog memory
cells.

In an embodiment, the analog memory cells are included
in a memory device, and reading the volatile buller and the
analog memory cells 1s performed by circuitry internal to the
memory device, and applying the ECC decoding 1s per-
formed by a memory controller that controls the memory
device.

In another embodiment, reading the analog memory cells
includes reading the bits from the analog memory cells using
one or more dedicated read thresholds, which are dedicated
for recovery from programming failures and differ from
normal read thresholds used for data readout. In yet another
embodiment, re-programming the recovered data includes
writing the recovered data to a group of the analog memory
cells other than the analog memory cells in which the failure
has occurred. In yet another embodiment, producing the

recovered data includes writing the recovered data in-place
in the volatile butler.

There 1s additionally provided, in accordance with an
embodiment, apparatus including a memory, which includes
multiple analog memory cells, and storage circuitry. The
storage circuitry 1s configured to store data encoded with an
Error Correction Code (ECC) 1n the analog memory cells by
buflering the data 1n a volatile bufler and then writing the
buflered data to the analog memory cells while overwriting
at least some of the data in the volatile builer with success
indications, and 1s further configured to produce recovered
data upon detecting a failure in writing the buflered data to
the analog memory cells, by reading both the volatile bufler
and the analog memory cells, assigning reliability metrics to
respective bits of the recovered data depending on whether
the bits were read from the volatile bufler or from the analog
memory cells, and applying ECC decoding to the recovered
data using the reliability metrics, and to re-program the
recovered data.

The embodiments disclosed herein will be more fully
understood from the following detailed description, taken
together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram that schematically illustrates a
memory system, in accordance with an embodiment;

FIG. 2 1s a flow chart that schematically illustrates a
method for programming a non-volatile memory, in accor-
dance with an embodiment; and

FIG. 3 1s a flow chart that schematically illustrates a
method for recovering from a programming failure, in
accordance with an embodiment.

US 10,073,634 B2

3

DETAILED DESCRIPTION OF EMBODIMENTS

L]

Overview

A storage device such as a Solid State Drive (SSD)
typically comprises an SSD controller and one or more
non-volatile memory devices (such as NAND Flash memory
devices). In some systems, the SSD controller accepts data
for storage from a host computer and stores at least part of
the data in a volatile bufer of the Flash device, which then
writes or programs the buflered data to analog memory cells
of the Flash device. Occasionally, the programming opera-
tion fails, and the original buflered data needs to be recov-
ered and re-programmed.

Embodiments that are described herein provide improved
methods and systems for recovery from programming fail-
ure 1n a non-volatile memory. The disclosed methods may be
implemented in the SSD controller, in each of the non-
volatile devices, in the host, or jointly by two or more of
these elements.

In an example embodiment, the non-volatile memory
device comprises at least one bufler, referred to herein as a
page buller, which stores data to be programmed. As will be
described below, the disclosed methods enable data recovery
from programming failure, using both the page bufler and
the non-volatile memory. The disclosed techniques do not
rely on the availability of the original data in the SSD
controller and/or the host.

The page buller stores data in units which are referred to
as data pages. In some embodiments, programming 1s per-
formed by applying programming pulses that cause the
memory cells to reach certain programming levels (e.g., cell
threshold voltages). Typically, some of the programmed
cells reach the desired programming level after applying
fewer programming pulses than others, and are thus inhib-
ited from receiving further programming pulses.

While programming a data page, the data written in
locations of the page bufler that correspond to analog
memory cells already successtully programmed, 1s replaced
with success indications. In some embodiments, the success
indication 1s equal to the data bits of an erasure program-
ming level. Following successiul programming of the data
page, all the locations of the respective page buller are set to
the success indication value.

When programming failure occurs, cells corresponding to
page buller locations 1in which the success indication 1s
written are i1denfified as successiully programmed cells,
whereas cells that correspond to locations that are written
with data other than the success 1indication are i1dentified as
cells whose programming has failed. Note that when pro-
gramming failure occurs, part of original data may still be
stored 1 locations of the page bufler that are not yet
programmed, whereas at least some of the original data 1s
replaced with success indications and 1s therefore lost.

To recover from programming failure, the original page
data should be reliably recovered. In an embodiment, the
original data 1s reconstructed by combining the data bits 1n
the page bufler with the corresponding data bits 1n the
non-volatile memory. The resulting recovered page 1s
referred to herein as a combined data page. For bits whose
programming has failed, the respective bits 1n the page
butler still hold the original bit values, and therefore these
bit values in the combined data page are taken from the page
bufler. For bits whose programming succeeded, the respec-
tive bits 1n the page builer are overwritten with success
indications, but the non-volatile memory cells hold the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

correct bit values. Therefore, these bit values in the com-
bined data page are taken from the non-volatile memory.

In the disclosed embodiments, bit values 1n the combined
page that are taken from the non-volatile memory are
assigned reliability metrics that indicate reduced reliability,
because readout from analog memory cells has some non-
zero error probability. Bit values taken from the non-volatile
memory cells, on the other hand, are assumed to be error-
free and are therefore assigned reliability metrics that indi-
cate high reliability. In the description that follows we use
the terms “high reliability metric” and “reduced reliability
metric” to describe metrics that indicate a high or reduced
reliability level, respectively. The reconstructed (i.e., com-
bined) data page 1s then subjected to ECC decoding, using
both the high and reduced reliability metrics, before the page
1s re-programmed. In some embodiments, the ECC decoding
operation employs hard rather than soit decoding. Applying
hard or soft decoding may depend, for example, on the age
of the memory device (or individual block) relative to 1ts
expected total lifetime.

In some systems, a host computer stores data in the SSD
using host commands that are referred to as TAGs. The size
of the data delivered in a TAG command 1s typically much
larger than the data size that can be programmed to a
non-volatile memory 1n a single programming command.
Each TAG 1s assigned a descriptor, which 1s referred to as an
ETAG. An ETAG comprises pointers to the TAG data and
dynamic information regarding the progress of the TAG
command.

In principle, the TAG data to be programmed 1n the
non-volatile memory and the respective ETAG can be
cached locally, e.g., 1n a volatile memory of the SSD
controller (and/or in a memory of the host) until all the data
1s successiully programmed, so that in case of a program-
ming failure the original data can be recovered and re-
programmed. The size of the TAG data, however, can be on
the order of 1 MB, and therefore accepting new TAG might
be delayed until all data of former TAGs 1s successtully
programmed. Another difliculty with this caching approach
1s that a most significant bit (MSB) data page and the
respective least significant bit (LSB) data page (that 1s first
programmed to the same group of cells) may relate to
different TAG commands. In such cases, when failure occurs
during the programming of a MSB data page, the data of the
respective LSB data page (which is required for MSB page
programming) may not be available.

Yet another problem with the above-mentioned approach
1s related to managing the ETAGs by the SSD controller. As
explained above, ETAGs maintain pointers to the original
data and therefore should be stored until programming
succeeds. Since the SSD controller has limited memory and
computation resources, the number of ETAGs that the SSD
controller can manage simultaneously 1s also limited. For
example, 1n an example embodiment, the SSD controller
may allocate a single ETAG descriptor per non-volatile
memory device. As a result, the need to save ETAGs until
successiul programming 1s acknowledged, limits the number
ol concurrent TAGs that the SSD controller can handle.

Using the disclosed techniques, a non-volatile memory
device can iternally reconstruct the original page data for
re-programming, and there 1s no longer need to cache TAG
data and ETAG descriptors. As a result, memory and com-
putation resources can be reduced, or made available for
other tasks of the SSD controller. Moreover, since the
disclosed techniques eliminate the delay created by the need
to wait for the acknowledgement of successtul programming
of large amounts of data (1.e., Tag data), the number of

US 10,073,634 B2

S

concurrent host commands that the SSD controller can
handle increases significantly. Additionally, the use of reli-

ability metrics for ECC decoding improves the reliability of
the data recovered for re-programming.

System Description

FIG. 1 1s a block diagram that schematically illustrates a
memory system, in accordance with an embodiment. In the
present example, the memory system comprises a computer
20 that stores data 1n a Solid state Drive (SSD) 24. Computer
20 may comprise, for example, a mobile, tablet or personal
computer. The computer comprises a Central Processing
Unit (CPU) 26 that serves as a host. In the description that
tollows, the terms CPU and host are used interchangeably.

In alternative embodiments, the host may comprise any
other suitable processor or controller, and the storage device
may comprise any other suitable device. For example, the
host may comprise a storage controller of an enterprise
storage system, and the storage device may comprise an
SSD or an array of SSDs. Other examples of hosts that store
data 1n non-volatile storage devices comprise mobile
phones, digital cameras, media players and removable
memory cards or devices.

SSD 24 stores data for CPU 26 1n a non-volatile memory,
in the present example 1n one or more NAND Flash memory
devices 34. In alternative embodiments, the non-volatile
memory 1n SSD 24 may comprise any other suitable type of

non-volatile memory, such as, for example, NOR Flash,
Charge Trap Flash (CTF), Phase Change RAM (PRAM),

Magnetoresistive RAM (MRAM) or Ferroelectric RAM
(FeRAM).

An SSD controller 30 performs the various storage and
management tasks of the SSD. The SSD controller 1s also
referred to generally as a memory controller. SSD controller
30 comprises a host iterface 38 for communicating with
CPU 26, a memory interface 46 for communicating with
Flash devices 34, and a processor 42 that carries out the
various processing tasks of the SSD.

SSD 24 further comprises a volatile memory, in the
present example a Random Access Memory (RAM) 50. In
the embodiment of FIG. 1, RAM 30 1s shown as part of SSD
controller 30, although the RAM may alternatively be sepa-
rate from the SSD controller. RAM 50 may comprise, for
example, a Static RAM (SRAM), a Dynamic RAM
(DRAM), a combination of the two RAM types, or any other
suitable type of volatile memory. RAM 50 may store data
received from host 26 and not yet delivered for storage in
Flash devices 34. When programming failure occurs, pro-
cessor 42 may use RAM 50 to recover the original data to
be re-programmed.

In some embodiments, SSD controller 30 comprises an
Error Correction Code (ECC) unit 54, which encodes the
data for storage using a suitable ECC and decodes the ECC
of data retrieved from the memory. Any suitable type of
ECC, such as, for example, Low Density Parity Check
(LDPC), Reed-Solomon (RS) or Bose-Chaudhuri-Hoc-
quenghem (BCH), can be used. In some embodiments, data
bits retrieved from Flash device 34 and delivered for decod-
ing by ECC unit 54 are additionally assigned reliability
metrics. For example, the reliability of retrieved data bits
may be based on the reliability of the memory from which
the data bits are read as explained below.

The bottom part of FIG. 1 depicts an exemplary detailed
block diagram of NAND Flash device 34. In the present
example, device 34 comprises a reading/writing (R/W) unit
70, which converts data for storage 1n the memory device to

10

15

20

25

30

35

40

45

50

55

60

65

6

storage values and writes them into analog memory cells of
a Flash memory array 76. In alternative embodiments, the
R/W umit does not perform the conversion, but 1s provided
with voltage samples, 1.e., with the storage values for storage
in the cells. In the present example, R/W unit 70 accepts data
for storage from SSD controller 30 via memory interface 46
and stores the data to a volatile (e.g., RAM) page builer 74
prior to programming the data to the memory cells. The R/'W
unit typically (although not necessarily) programs the cells
using an iterative Program and Verily (P&V) process, as 1s
known 1n the art. When reading data out of array 76, R/'W
unit 70 converts the storage values of the memory cells 1nto
digital samples having a resolution of one or more bits. Data
1s typically written to and read from the memory cells 1n
groups that are referred to as pages. In some embodiments,
the R/W unit can erase a group of cells in memory array 76,
¢.g., a block comprising multiple pages, by applying one or
more negative erasure pulses to the cells.

Memory array 76 may comprise a Single-Level Cell
(SLC) memory array that stores 1 bit/cell using two pro-
gramming levels, or a Multi-Level Cell (MLC) memory
array that stores N bits/cell in 2 programming levels. For
example, a 2 bits/cell device uses four programming levels,
and a 3 bits/cell device uses eight programming levels.

In some embodiments, 1n order to program data to a group
of multi-bit cells, the data 1s organized in separate data
pages, each corresponding to a respective significance bit. In
some embodiments, R/W unit 70 programs a least significant
bit (LSB) data page to a selected group of cells 1n the
memory array, and later the R/W unit programs a most
significant bit (MSB) data page to the same group of cells.
In some embodiments, prior to programming the MSB page,
the LSB page data 1s read from the respective group of cells
and used for determining the appropriate programming
levels.

In a disclosed embodiment, when the programming of a
certain data page fails, SSD controller 30, R/W unit 70, or
both, recover the content of the original data page by
retrieving data from both page bufler 74 and memory array
76. Since the storage values 1n the Flash memory cells of
array 76 can only be programmed and read with limited
precision and are subject to various kinds of distortion,
memory array 76 typically has lower storage reliability than
page buller 74. Therefore, when R/W unit 70 assigns reli-
ability metrics (to be used for decoding by ECC unit 54) to
the retrieved data, the R/W unit assigns data bits read out of
memory array 76 reliability metrics that indicate lower
reliability level compared to the reliability metrics assigned
to data bits read out of page bufler 74.

SSD controller 30, and in particular processor 42, may be
implemented 1n hardware. Alternatively, the SSD controller
may comprise a microprocessor that runs suitable software,
or a combination of hardware and software elements.

The configuration of FIG. 1 1s an exemplary configura-
tion, which 1s shown purely for the sake of conceptual
clanity. Any other suitable SSD or other memory system
configuration can also be used. Elements that are not nec-
essary for understanding the principles of the present dis-
closure, such as various interfaces, addressing circuits, tim-
ing and sequencing circuits and debugging circuits, have
been omitted from the figure for clarity. In some applica-
tions, e.g., non-SSD applications, the functions of SSD
controller 30 are carried out by a suitable memory controller.

In the exemplary system configuration shown 1n FIG. 1,
memory devices 34 and SSD controller 30 are implemented
as separate Integrated Circuits (ICs). In alternative embodi-
ments, however, the memory devices and the SSD controller

US 10,073,634 B2

7

may be integrated on separate semiconductor dies 1n a single
Multi-Chip Package (MCP) or System on Chip (SoC), and

may be interconnected by an internal bus. Further alterna-
tively, some or all of the SSD controller circuitry may reside
on the same die on which one or more of memory devices
34 are disposed. Further alternatively, some or all of the
functionality of SSD controller 30 can be implemented 1n
software and carried out by CPU 26 or other processor in the
computer. In some embodiments, CPU 26 and SSD control-
ler 30 may be fabricated on the same die, or on separate dies
in the same device package.

In some embodiments, processor 42 and/or CPU 26
comprises a general-purpose processor, which 1s pro-
grammed 1n soltware to carry out the functions described
herein. The software may be downloaded to the processor in
clectronic form, over a network, for example, or it may,
alternatively or additionally, be provided and/or stored on
non-transitory tangible media, such as magnetic, optical, or
clectronic memory.

Recovering Original Data Page Upon Programming
Failure

We now describe techniques for recovering the original
data to be used 1n re-programming upon programming
tailure, 1n accordance with embodiments of. When program-
ming an LSB page, Flash memory cells are programmed to
assume one of two predefined programming levels. The page
data bits are first cached 1n page butler 74. In an example
embodiment, erased cells assume a negative erasure pro-
gramming level (negative threshold voltage) and store a “1”
bit value. Cells that store a “0”” bit value are programmed to
assume a positive programming level (positive threshold
voltage).

Programming 1s typically performed by R/W unit 70, by
applying programming (or erasure) pulses to the Flash
memory cells. After applying a programming pulse (or
possibly multiple pulses) the R/W unit 1dentifies cells that
already assume the desired level and replaces their respec-
tive bit value 1n the page buller to “1” to indicate successiul
programming and to prevent applying further programming.

Thus, when the programming of the full page succeeds,
all the bits i the page bufler are set to “1”. On the other
hand, when programming of the page fails, “0” bits in the
page buller correspond to cells that are not yet programmed
or to cells whose programming has failed (e.g., did not reach
the programming level). Thus, “1” bits in the page buller
indicate successiul programming (or cells 1n the erasure
state) and therefore the original bits may be recovered from
the respective Flash memory cells, whereas “0” bits indicate
that the original bits can be recovered from the page builer.

In some embodiments, following failure in programming,
a LSB page, system 20 recovers the original page data by
retrieving the (partially over-written) bit values from page
builer 74, retrieving the (partially erroneous) bit values from
the Flash memory, and combining them to produce a com-
bined page. For each bit in the combined page, system 20
chooses whether to take the corresponding bit value from the
page buller or from the Flash memory. In addition, system
20 assigns each bit value 1n the combined page a respective
reliability metric, depending on whether 1t was taken from
the page bufler or from the Flash memory. ECC unit 54 then
decodes the combined page using the reliability metrics
assigned to the various bits.

The reliability metrics may depend, for example, on the
error correcting code used, and/or on the structure of ECC
unit 54. In some embodiments, ECC umt 54 employs a

10

15

20

25

30

35

40

45

50

55

60

65

8

LDPC or RS code, which may use soit Log-Likelihood
Ratio (LLR) metrics for the reliability metrics. In such
embodiments, an extreme soit value may be assigned as the
high reliability metric and lower sotit values may be assigned
as the reduced reliability metrics. In alternative embodi-
ments (e.g., when ECC unit 54 employs other error correct-
ing codes), binary hard metrics that indicate high and
reduced reliability levels may be used. The decision whether
to use hard or soft decoding may depend, for example, on the
age of the memory device relative to 1ts expected total
lifetime, or on the accumulated number of erasure and
programming cycles the device has gone through. Alterna-

tively, any other suitable method for deciding whether to use
hard or soit ECC decoding can be used.

Table 1 summarizes the recovery rules for reconstructing,
a LSB page, 1n accordance with an embodiment. Table 1 also
shows the rehability levels assigned to the bits of the
combined page.

TABLE 1

bit recovery rules for LSB page

Bit value
Bit value read from Source of Reliability
in page Flash reconstructed Reconstructed metric
buffer memory cell bit bit level
“1” “1” Flash memory “1” Reduced
cell
“1” “0” Flash memory “0” Reduced
cell
“0” “x” Page buffer “0” High

(“don’t care™)

The method described above for recovering an LSB page
can be extended to recovering an MSB page (or similarly
higher significance bit pages). For programming an MSB
page, page buller 74 stores both the MSB and the LSB
pages. In an embodiment, prior to programming the MSB
page to a group of cells the R/W unit reads the respective
(successiully previously written) LSB page from the group
of cells and stores both the LSB and the MSB pages 1n the
page buller. While programming memory cells to a certain
programming level, cells that have already reached the
desired level are marked 1n the page bufler as successiully
programmed by replacing the original data with a success
indication data. In some embodiments, the success 1ndica-
tion data equals the bits of the erasure state or level, e.g.,
“117.

The rules for reconstructing the original MSB and LSB bit
pair along with respective reliability metrics are summarized
in Table 2. The rules state that for locations of the page
bufler written with “11”°, the original bit pair 1s taken from
the respective Flash memory cells. For locations written
with data other than “117, the bit pair 1s taken from the page
bufler.

TABLE 2

bit recovery rules for MSB page

Bit pair Bit pair
value value read Source of Reliability
In page from Flash reconstructed Reconstructed metric
buffer memory cell bit pair bit pair level
“117 “11” Flash memory “117 Reduced
cell
“117 “10” Flash memory “10” Reduced

US 10,073,634 B2

9

TABLE 2-continued

bit recovery rules for MSB page

Bit pair Bit pair
value value read Source of Reliability
in page from Flash reconstructed Reconstructed metric
buffer memory cell bit pair bit pair level
cell
“117 “00” Flash memory “00” Reduced
cell
“117 “01” Flash memory “01~ Reduced
cell
“10” “xXxX”’ Page buifler “10” High
(“don’t care™)
“00” “xXxX”’ Page buifler “00” High
“01” “xx”’ Page buffer “01” High

The original data page that 1s reconstructed using Table 1
or 2, combines data retrieved from both the page bufler and
the Flash memory cells and 1s also referred to as a combined
data page. The combined page and the reliability metrics are
delivered to ECC decoding unit 54 to correct any read errors
that may result from reading the Flash memory cells.

When reconstructing data from the Flash memory cells,
SSD controller 30 can use default read thresholds, 1.e., the
same read thresholds used for normal read operations. In
alternative embodiments, however, the SSD controller can

use any other suitable read thresholds, e¢.g., a different set of
read thresholds used for recovery.

In some embodiments, reconstructing the combined page
using Table 1 and/or 2 1s performed by R/W unit 70. The
combined page 1s than delivered to SSD controller 30 to
recover the data page by performing ECC decoding using
ECC umt 54. SSD controller 30 can re-program the recov-
ered page or alternatively send the recovered page to host 26
to manage re-programming. In yet alternative embodiments,
the generation of the combined page can be performed by
the SSD controller mstead of R/W unit 70. Further alterna-
tively, the disclosed technique can be carried out with any
other suitable division of labor between R/W unit 70, SSD
controller 30 and/or host 26. The clement or eclements
carrving out the disclosed technique are thus collectively
referred to herein as “storage circuitry.”

FIG. 2 1s a flow chart that schematically illustrates a
method for programming a non-volatile memory, in accor-
dance with an embodiment. The method 1s described as
being carried out with a certain division of labor between
SSD controller 30 and R/W unit 70. In alternative embodi-
ments, the method can be carried out in any other suitable
way, by R/W unit 70, SSD controller 30, or by both SSD
controller 30 and R/W unit 70.

The method begins with SSD controller 30 accepting data
for storage from host 26, at an accepting host data step 100.
SSD controller 30 stores a data page unit out of the host data
in page buller 74, at a caching step 104. If at step 104 the
page 1s to be written as a MSB page, the R/W unit reads the
respective LSB page from the Flash memory cells 1n order
to determine the appropriate programming levels.

At a programming step 108, R/W unit 70 programs the
page cached in the page builer to the Flash memory cells of
array 76. The R/W unit may use any suitable programming
method for programming the Flash memory cells. For
example, R/W unit 70 may apply any suitable Programming
and Verification (P&V) process to the Flash memory cells
until they reach the desired programming levels. While
programming, bits i the page bufler that correspond to
Flash memory cells that have already reached the desired

5

10

15

20

25

30

35

40

45

50

55

60

65

10

programming level are set to “1” (or to “11” 1n MSB page
programming) to indicate that the cells are successiully
programmed and should not be subjected to additional
programming pulses.

At a failure testing step 112, R/W unit 70 checks whether
the programming of the data page has failed. In an embodi-
ment, the R/W unit 1dentifies cells whose programming has
failed by 1dentifying locations 1n the page builer 1n which
data other than the success indication i1s written. In alterna-
tive embodiments, R/W unit 70 can use any other suitable
method for recognizing programming failure.

If at step 112 the R/W unit concludes that the program-
ming 1s successiul, the SSD controller sends a success
acknowledgement message to host 26, at an acknowledg-
ment step 124. At a page availability checking step 128, SSD
controller 30 checks whether there are any additional data
pages to be programmed. If at step 128 SSD controller 30
finds that there 1s at least one additional page to program, the
method loops back to step 104 to store the next page to be
programmed 1n page buller 74. Otherwise, the method loops
back to step 100 to accept subsequent data from host 26.

If at step 112 above, the R/W unit detects that the
programming of the data page has failed, the SSD controller
recovers the original page data at steps 116 and 120, as
described below, and loops back to step 104 to re-program
the recovered page. In some embodiments, the SSD con-
troller programs the recovered page in a block or word line
other than the block or word line 1n which the programming
has failed. In alternative embodiments, however, the SSD
controller may erase the block in which programming failure
has occurred and re-program the block with the recovered
data (and possibly other data).

As described above, page recovery after programming
failure 1s performed at steps 116 and 120. At a combined
page generation step 116, the SSD controller combines data
read from the page buller 74 and from respective Flash
memory cells 1n array 76 to generate a combined data page.
For example, SSD controller 30 can use the recovery rules
depicted 1n Table 1 and 2 above. While reconstructing the
original data page, data reconstructed from the page buller
1s assigned with high reliability metrics and data recon-
structed from the memory 1s assigned reduced reliability
metrics. FIG. 3 below details an example method for the
implementation of step 116.

SSD controller 30 uses the combined page and the
assigned reliability metrics to derive the recovered page, at
a page recovery step 120. The SSD controller applies ECC
decoding to the combined page using the reliability metrics
to derive an error-free recovered page which 1s re-pro-
grammed at step 104 as explained above.

FIG. 3 1s a flow chart that schematically illustrates a
method for recovering from a programming failure, in
accordance with an embodiment. The method of FIG. 3 can
be used, for example, 1n the method of FIG. 2 as a detailed
implementation of step 116. The method starts with R/W
umt 70 1dent1fylng locations in the page builer 1n which
programming has failed, at a failed cells 1dentification step
150. The identification of cells whose programming has
failed can be performed by 1dentifying locations 1n the page
buffer 1n which data other than the success indication 1s
written.

For the locations identified at step 150, R/W umit 70
restores the original data by reading the corresponding bit
values from page buller 74, at a restoring ifrom page builer
step 154, and assigns the restored data bits high reliabil

lity
metrics. At a restoring from memory step 158, SSD con-
troller 30 restores the original data, for locations in the page

US 10,073,634 B2

11

builer that were not i1dentified at step 150, by reading the
corresponding bit values from the Flash memory cells of
array 76, and assigns the restored data bits reduced reliabil-
ity metrics. At steps 154 and 158, R/W unit 70 can use the
rules defined in Table 1 and 2 above to identify cells that has
passed or failed the programming.

At a combination step 162, the R/W unit combines the
data restored at steps 154 and 138 to generate a combined
page. In an embodiment, the combined page 1s stored
in-place 1n page buller 74. The combined page and the
respective assigned reliability metrics are output at an out-
putting step 166, ¢.g., made accessible to the SSD controller,
and the method then terminates.

The methods described above are exemplary methods,
and other methods can be used 1n alternative embodiments.
For example, instead of identifying cells whose program-
ming has succeeded or failed using a success indication
written 1n the page bufler, the SSD controller can directly
read programmed levels of the cells and identify cells that
did not reach either of the desired programming levels.
Alternatively, The SSD controller can store the success
indications in a memory other than the page buliler.

As another example, when programming an MSB page,
instead of setting a two bit (e.g., “11”) to indicate program-
ming success, the R/W unit or the SSD controller can use a
single <17 blt similarly to programmmg a LSB page, and
thus maintaining the original LSB page 1in the page bufler.

In some embodiments, all the data bits retrieved from the
Flash memory to generate the combined data page are
assigned the same value of reduced reliability metric. In
alternative embodiments, different values of reduced reli-
ability metric can be assigned to different bits retrieved from
the Flash memory cells. In an example embodiment, a first
read operation assigns equal metrics to all the bits read from
memory array 76. If ECC decoding of the combined page
(that was created using these bits) fails, one or more addi-
tional read operations are performed (possibly with diflerent
read thresholds) to create soft reliability metrics that may
differ among the read bits. Then soft ECC decoding 1is
applied using the read bits and the soft metrics.

In embodiments 1n which ECC unit 54 resides 1n the SSD

controller, data (e.g., bits read from array 76 or a combined
page 1 combining 1s carried out in R/W unit 70 of the Flash
device) 1s transferred via memory interface 46 to the SSD
controller. The data 1s then subjected to ECC decoding by
ECC unit 54 and sent back via the memory interface to the
Flash device for reprogramming. Thus, in such embodi-
ments, upon each pro gramming failure the memory interface
1S typlcally used once 1n each direction.
In alternative embodiments, ECC unit 54 1s implemented
in FLASH device 34. In such embodiments, upon program-
ming failure the Flash device signals the event to the SSD
controller, e.g., using the status register. In response, the
SSD controller sends to the Flash device via memory
interface 46 a programming command that includes an
alternative Flash address (but without the data). The Flash
device imternally recovers the failing page (including ECC
decoding) and reprograms the recovered page to the alter-
native address. Assuming that signaling of a programming,
tailure to the SSD controller 1s fast and eflicient, usage of the
memory interface 1s required in only one direction.

It will be appreciated that the embodiments described
above are cited by way of example, and that the present
disclosure 1s not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the disclo-
sure ncludes both combinations and sub-combinations of
the various features described hereinabove, as well as varia-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions and modifications thereol which would occur to per-
sons skilled 1n the art upon reading the foregoing description
and which are not disclosed in the prior art. Documents
incorporated by reference in the present patent application
are to be considered an integral part of the application except
that to the extent any terms are defined 1n these incorporated
documents 1n a manner that contlicts with the definitions
made explicitly or implicitly 1n the present specification,
only the definitions in the present specification should be
considered.

The mvention claimed 1s:

1. An apparatus, comprising;:

a buller memory;

a plurality of memory devices; and

a controller configured to:

receive a page of data for storage

store the page of data in the buller memory to generate
a bullered data page;

program the page of data 1n at least one memory device
of the plurality of memory devices;

store, based on successiul programming of a given data
bit 1included 1n the page of data, a particular logic
valuein a respectlve data bit of a plurality of data bits
in the builer memory;

check the bufler memory to determine 1f programming,
the page of data was successiul;

retrieve previously programmed data from the at least
one memory device 1n response to a determination
that programming the page of data was unsuccessiul;

combine the previously programmed data with the
buflered data page to generate a combined page;

decode an Frror Correction Code (ECC) associated
with the combined page to generate a recovered
page; and

program the recovered page in the at least one memory
device.

2. The apparatus of claim 1, wherein to combine the
previously programmed data with the buflered data page, the
controller 1s further configured to assign a respective reli-
ability metric to each data bit of the combined page.

3. The apparatus of claim 2, wherein to assign a respective
reliability metric to each data bit of the combined page, the
controller 1s further configured to assign a high reliability
metric to a given bit 1n response to a determination the given
bit was retrieved from the bullered data page and that the
page of data corresponds to a Least-Significant-Bit (LSB)
page.

4. The apparatus of claim 2, wherein to assign a respective
reliability metric to each data bit of the combined page, the
controller 1s further configured to assign a high reliability
metric to a given bit pair in response to a determination the
grven bit pair was retrieved from the buflered data page and
that the page of data corresponds to a Most-Significant-Bit
(MSB) page.

5. The apparatus of claim 1, wherein the particular logic
value comprises a logic 1value.

6. The apparatus of claim 1, wherein each memory device
of the plurality of memory devices includes a non-volatile
memory.

7. A method, comprising;:

recerving a page ol data for storage;

storing the page of data in a bufler memory to generate a

buflered data page;

programming the page of data in at least one memory

device of a plurality of memory devices;

US 10,073,634 B2

13

storing, based on successiul programming of a given data
bit included 1n the page of data, a particular logic value
in a respective data bit of a plurality of data bits in the
builer memory;

checking the builer memory to determine if programming,

the page of data was successiul;

retrieving previously programmed data from the at least

one memory device 1n response to a determination that
programming the page ol data was unsuccessiul;
combining the previously programmed data with the
buflered data page to generate a combined page;
decoding an Error Correction Code (ECC) associated with
the combined page to generate a recovered page; and
programming the recovered page in the at least one
memory device.

8. The method of claim 7, wherein combining the previ-
ously programmed data with the bullered data page com-
prises assigning a respective reliability metric to each data
bit of the combined page.

9. The method of claim 8, wherein assigning a respective
reliability metric to each data bit of the combined page
comprises assigning a high reliability metric to a given bit 1n
response to determining the given bit was retrieved from the
butlered data page and that the page of data corresponds to
a Least-Signmificant-Bit (LSB) page.

10. The method of claim 8, wherein assigning a respective
reliability metric to each data bit of the combined page
comprises assigning a high reliability metric to a given bit
pair 1 response to determining the given bit pair was
retrieved from the buflered data page and that the page of
data corresponds to a Most-Significant-Bit (MSB) page.

11. The method of claim 8, wherein the respective reli-
ability metric includes a Log-Likelihood Ratio (LLR).

12. The method of claim 7, wherein the particular logic
value comprises a logic 1 value.

13. The method of claim 7, further comprising sending an
acknowledgement message to a host in response to deter-
mimng the page of data was successiully programmed.

14. A system, comprising:

a host; and

a storage device that includes a bufler memory and a

plurality of memory devices,

wherein the storage device 1s configured to:

receive a page of data for storage from the host;

store the page of data 1n the bufler memory to generate
a bullered data page;

10

15

20

25

30

35

40

45

14

program the page of data 1n at least one memory device
of the plurality of memory devices;

store, based on successtul programming of a respective
data bit included in the page of data, a particular
logic value 1n a respective data bit of a plurality of
data bits in the bufler memory;

check the builer memory to determine 1f programming,
the page of data was successtul;

retrieve previously programmed data from the at least
one memory device 1n response to a determination
that programming the page of data was unsuccesstul;

combine the previously programmed data with the
buflered data page to generate a combined page;

decode an Frror Correction Code (ECC) associated
with the combined page to generate a recovered
page; and

program the recovered page in the at least one memory
device.

15. The system of claim 14, wherein to combine the
previously programmed data with the bullered data page, the
storage device 1s further configured to assign a respective
reliability metric to each data bit of the combined page.

16. The system of claim 15, wherein to assign a respective
reliability metric to each data bit of the combined page, the
storage device 1s further configured to assign a high reli-
ability metric to a given bit in response to a determination
the given bit was retrieved from the buflered data page and
that the page of data corresponds to a Least-Significant-Bit

LSB) page.

17. The system of claim 15, wherein to assign a respective
reliability metric to each data bit of the combined page, the
storage device 1s further configured to assign a high reli-
ability metric to a given bit pair 1n response to a determi-
nation the given bit pair was retrieved from the butlered data
page and that the page of data corresponds to a Most-
Significant-Bit (MSB) page.

18. The system of claim 14, wherein the particular logic
value comprises a logic 1 value.

19. The system of claim 14, wherein the storage device 1s
turther configured to send an acknowledgement message to
a host 1n response to a determination that the page of data
was successiully programmed.

20. The system of claim 14, wherein each memory device
of the plurality of memory devices includes a non-volatile
memory.

	Front Page
	Drawings
	Specification
	Claims

