US010069901B2

12 United States Patent (10) Patent No.: US 10,069,901 B2

Myers et al. 45) Date of Patent: Sep. 4, 2018
(54) APPLICATION DEMONSTRATION SYSTEM (56) References Cited
(71) Applicant: ADP, LLC, Roseland, NJ (US) U.S. PATENT DOCUMENTS
. .
(72) Inventors: Clint Myers, Suwanee, GA (US); 0,804,778 B1™ 1072004 Levl wooooovvrvvinvrivnrinns HO47LO;I/52/82
Brian Ross Feinberg, Cumming, GA 7376,581 B2 5/2008 DeRose et al.
(US) 8,074,289 B1 12/2011 Carpentier et al.
2004/0054923 Al 3/2004 Seago et al.
(73) Assignee' ADP. LI.C. Roseland. N7 (US) 2004/0255194 Al1*™ 12/2004 Genkin GO6F 11/3688
| ’ " " 714/28
. . L _ 2006/0047496 Al* 3/2006 Genkin HO4L 41/145
(*) Notice: Subject to any disclaimer, the term of this — 703/29
patent 1s extended or adjusted under 35 2006/0265190 Al* 11/2006 Heino.c......... GOG6F 11/3414
U.S.C. 154(b) by 259 days. 702/186

2012/0110110 Al 5/2012 Luna et al.

(21) Appl. No.: 14/844,414 * cited by examiner

(22) Filed: Sep. 3, 2015 Primary Examiner — Padma Mundur

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Yee & Associates, P.C.

US 2017/0070559 A1 Mar. 9, 2017 (57) ABSTRACT

A method, computer system, and computer program product

(51) Int. Cl for a standalone demonstration of an application. Requests

GO6F 15/16 (2006.01) sent from the application running on a browser to a server
HO4L 29/08 (2006'0;‘) data processing system are detected. Responses received
HO4L 29/06 (2006-O:~) from the server data processing system for the requests sent
HO4L 9/06 (2006.01) from the application are detected. The requests and the
(52) U.S. CL responses for the application are stored 1n a data structure.
CPC HO4L 67/10 (2013.01); HO4L 9/0861 The requests and the responses enable simulating the server

(2013.01); HO4L 67/02 (2013.01); HO4L data processing system to perform the standalone demon-
67/141 (2013.01); HO4L 67/42 (2013.01) stration of the application running on the browser on a client
(58) Field of Classification Search data processing system using the data structure without

CPC ... HO4L 67/10; HO4L 9/0861; HO4L 67/141; communicating with the server data processing system.
HO4L 67/02; HO4L 67/42

See application file for complete search history. 24 Claims, 12 Drawing Sheets

100
N\

APPLICATION ENVIRONMENT

102 COMPUTER SYSTEM

124 SERVER DATA 130 106
N PROCESSING SYSTEM J

WEB SERVER]4—- CONTENT |

RESPONSES

|

i REQUESTS DATA i
; 126 EXPECTED | -138 | 136 |
| 120

|

DATA

CLIENT DATA 112
PROCESSING SYSTEM ,/

APPLICATION BROWSER /

DEMONSTRATION [1
SYSTEM WEB PAGE | USER | INPUT

APPLICATION | NPT | | DEVICE [,
140 122

DATA STRUCTURE 138 104
144 110

:

DISPLAY SYSTEM
GRAPHICAL USER INTERFACE |\1 14 116

Y Y

CUENT | OPERATOR |

¢ N
134 109

U.S. Patent Sep. 4, 2018 Sheet 1 of 12 US 10,069,901 B2

100

APPLICATION ENVIRONMENT

102 COMPUTER SYSTEM

124 SERVER DATA 130

PROCESSING SYSTEM
WEB SERVER CONTENT

106

| ' _
! | RESPONSES 128
I DATA
- REQUESTS |
; 196 | | |expecTen | ~138 | 196
; —— | DATA
| | |
! | | —
 CLIENTDATA 112
PROCESSING SYSTEM / o0
APPLICATION BROWSER)
DEMgﬁglEGT’ON | WEB PAGE Il@%ﬁf INPUT
APPLICATION || DEVICE
140 122
104
DATA STRUCTURE 108
144 110
DISPLAY SYSTEM
I GRAPHICAL USER INTERFACE I\ 14 [-116
T e
134 109

FI1G. 1

U.S. Patent Sep. 4, 2018 Sheet 2 of 12 US 10,069,901 B2

140
APPLICATION
DEMONSTRATION
SYSTEM
RECORDER l
200
SERVER EMULATOR
106
202
SERVER DATA
PROCESSING SYSTEM
FIG. 2
REQUESTS DATA I
126 EXPECTED | ~138 |~ 136
— DATA
104
300
CLIENT DATA PROCESSING SYSTEM
TABLE
BROWSER REQUESTS 198
112
KEYS
RECORDER 302
WEB PAGE 200
RESPONSES
108 - 304
128
110

FIG. 3

U.S. Patent Sep. 4, 2018 Sheet 3 of 12 US 10,069,901 B2

104

CLIENT DATA PROCESSING SYSTEM

TABLE
120
SERVER EMULATOR 302
202
RECORDS
] RESPONSES |\ 1og [-304
| REQUESTS E 300
REQUEST ‘
KEY RESPONSE
404 I
|
!
|
mmmmm -
~ BROWSER
WEB PAGE
112

108

110

FI1G. 4

U.S. Patent

126

500 RequEsTs

Ny

Sep. 4, 2018

Sheet 4 of 12

UNIVERSAL RESOURCE LOCATORS
UNIVERSAL RESOURCE LOCATOR

510

506

UNIVERSAL
RESOURCE LOCATOR

506

COMPONENTS
210

PATH

600
PARAMETERS

602

VALUES I

604

COMPONENTS KEYS
L"‘“T“““‘J 302

TIER OF KEYS
504

FIRST TIER
KEY

612

606

SECOND TIER
KEY

614
608

THIRD TIER

KEY
616

610

FIG. 6

US 10,069,901 B2

300

TABLE

TIERS
OF KEYS

202

TIER OF KEYS l

504

FIG. 5

618

s

REQUEST

UNIVERSAL
RESOURCE LOCATOR

620

COMPONENTS
622

PATH

?

624
PARAMETERS

626
VALUES

628

US 10,069,901 B2

Sheet 5 of 12

Sep. 4, 2018

U.S. Patent

¢0.

14074

X[&% X suv ¢0

L DId

9l0SU0D SJpNY S30IN0SAY SAIY0Id aulBwI] SeoInog yomIBN swewsd [B

004

Aleiqry swio4 |jnj ayy
$S8098 0] a8y oI

SN0 _gﬂ

diusIoquIBly e

‘Buipying wea) ul abebua pue

sanov oN (1) SBIIUNWWIOD JiBl} Ul 80uBJBIP & 8)Ew O} Paiasjunjoa

BABY SIOQLUBLI LIBS) UOJBH [[B JO PJIY} BUO ‘SUjUOW XIS
1sed auj U] "jie] -y-ldopy pue Yied-y-1dopy - spsloid
pUNoJ-Jeak OM] 0] PAJJILULIOD OS[e LWes) 8Y| "JUdAS
Aeq] aoualayli & axep, au) buunp seuo Jajews
leIoASS pue s398l04d abiej saiy) palejdwod 8910
e101069) ‘uooe ay) ‘Welboid
4O oWl Pied JesjunjoA

INO JO Uydune| sy} aouIg

S3000AVd TVINIWT1ddNS

AYVIWANS TVANNY) (3ON3sav)
(VARV 3ILYT) (QUVOIWILAW)
A d44SNVAL) (LNOHONNT)

Aunwwon

(o0) (N0) e ﬁma&; 3o
GL0Z ‘62 Inr “Aepsaupam v/ Bunyey

awi] AW sjuang Auedwon

*AI0)S USAIE)0)

2l0UM =2Ul
ules)| a1sy oIy

E.m_____.on Auedwo)

'PaSSaIPPE 8(SN ey} senssi [ejustuuoiaug Buimo.b Apides ay) 0] SUOIN|OS [BAJ %89S 0] JOPJO Ul LUSIAOE
abeinoous pue sseualeme dljgnd asesasoul 0} Wie am ‘senssi usaih jo Aeue ue USLILIOJAUS 81 JNOTE §)
Buipiebal uonewojul Juaind pue aaisuayaidwod buueys pue bulpiroid | N
Aq Jeueid uno Joj ainjn; s|geurelsns e o) bugnquiuod pue sws|gold Uusaiy) 09
[BJUSLILOJIAU Juabin jsow S uues ay) buissaippe 0) PajOASD SI UBSIL) 05)

UoISIA pue uoissiyy Auedwo)

_ o) YoJess _

dNl3S S1d0ddy S530048d 41d0dd WVAL AN J14SAN S304M0S48 JNOH

A LHONEW ANOHLWY (77) <) O Q & [@

7]2% ueainon=0boj;|uiy abedurew/EN IM/OWeE0Z%BUILO0Z%NMSIUBWN0g/gequis/siasniafal | P) & =

0
— 8 DIA
—
= |
@ | X ._.D muu. < GILY GO 9/0SUO) S)pNY SBOIN0SBY SOUOld eulewl] $8oIN0g yomsN seswed [B |
=
- m SOUAOY O Buipiing wesay ui abebua pue A
— - S— JAROY ON (1) ~ SONIUNWIWOO JiSY) U] 30UAIALIP B SYEW O} PAIGAIUN[OA | | |
N - 004 BB SISQWIBW WeS) UOOBJN [[B JO PAIY} 8UO ‘SLuoW XS | | |
— ¢0L] mo,mm_ooin_ .dﬁzmzm_._&:@ 1sed ay) uj “Jied] -yJdopy pue yed-y-idopy - spaloid | | |
” PUNOJ-JeaA OM} 0] POIIILULLOD OS|R Wea] Y] JUsAS
Aeiqr suuod [Iny 8y) AUYWNNS TYANNY) (3ON3sav) Keq sousiayiq e evey, sy} Buunp seuo Jejjews
S$S800E 0) a3y Y0119 [eioaas pue s1osloid abie| aaiy} palejdwo 8910
e LA eib1089) ‘uooep auy) ‘weiboid
¢08 10 SWI] pled JOaJUN|oA
. 308 === |ONNT) || INO JO YOUNE] BY) BAUIS |
e justuebeueyy sledwse] _
Z 908) AURAIIo) | Q1]
- s e, WelEL 3 dH ” InQ ujaduaseylq | Y&y - v- 3% .
L SUBlJ OABAL SOOI JUSWI0IUT oikeq |2pSaupsp v bupiepy
7 538001 [BAOIIAY o) Ay sjuong Auedwon
sbujleg Jyeueg SIOBJUOD YHEOD goauw ——————————
wuoiAug BuimosB Aipides ayj 0} SUORNIOS [BSJ %99S 0} JOPIO Ul WSIAIDE
90UBpUSYY % BWI| n
sbuiag usWjjoIUF 0Ny SIBPIACI JJOUSE £)U) O} WIE 8M 'SaNSS| UBBID JO ABLE yi511110Au8 aU1 Jn0gE S)
% HNISS 1 isusyaidwon Buueys pue Buipinoid | 18IS O O *
~ salouspusda(JusLujjoIul sbuLiay() 1yeusg OlION wzm € 0} BujnguIuo3 pue swejqo.d _
. . syjouag ¢ | BUISSAIPPE 0} PjoA3p | UsaIS) 09
< W | 08— —_—
w V0. 2INPPNJS 8djey ovwk\.mzsm ue|d 800 UOISIA pue uoissiy Auedwio?) _
_ Ne) YoIesS _ 008" dN13S S1H0d3H SS3008d F1d03d WVIL AN 4T3SAN S304N0S3IH FNOH | |
L | A womewvanoiwv () <8 & 9 B ™ @

T [34 ueaigon=0fioluy sbeduiew/eNIMOWRa0Z%eUIBO0Z%NIMSIuBWNoog/giequisdsiesnofel | §2 @) & =

e L e e e il el e L L L Al b b bk L L LA AL,

U.S. Patent

6 DId

US 10,069,901 B2

- n ® © ooo-[1 | O) [5] 0v] ebeqred m;om_ " JM/OWB0Z%BUILO0Z%NIM/SIUBLINI0/GIeqUIB4/SIaSN/ /81l
N (<) epinaid YyeaH InoA ZL0Z/L) [BOIPO AJEjjoM pue yjjesn 0Odd
' 2IMonig ale
C0L (<) 18PIn0id LpjeaH Jno, eL0Z/\) eoIpely CIJOM PUE WS o fome o
(<) iapinoid yjjeay InoA eL0Z/L) Ve alejlop pue yliesH Ueld eseg YOV Al
- (<) Jepinoid Yeay InoA ZL0Z/M) [BOIDAA SIBJ[BM PUB Y)jeoH ONH
ﬂ @ 18PIAOI4 INOA 71.02/1/1 alenluepuadaq Junoooy Buipuadg sjqixal4 YSH 8ien) Juepusdaq
= 12069 @© S0INBS 1Y 2102/} ysue) Junoooy Buipuedg aigely JiSUBI] -JoInWIO)
3z © S0IAIRS daY AN Bupyieq Junoody Buipusdg sjgixely Bunped -ienwiwio)
7 © J3PIAOId JNOA ZL0Z/L/) Wnoooy sbuneg [eaipapy Junodoy Buipuadg sjqixe| i%_gs_m%
© JBPINOId JNOA GL0Z/L/L Wunodoy sbuineg [edlpepy Junodoy Buipusdg sjqixe| VS aiedyesy
@ I18PINOI4 INOA 210271/} SNOBUBJBISIN wojsny soueINsu| 184
@
= 3lva 3Lva
< NOILOY 43AA0Md 3 Tavis 3dAL ENS I3dAL Y06 3AWN
-
2 0. QILYNINYIL MOHS (13s3) (HoWv3as ©) [4]
— Ag sey
004 /7 (<) © dnjsg ueld
_ e prag| 0pg——dNlIS SLHOdR SSI00Md I1d03d WVALAN 4TISAW SIOUNOSTY IWOH
A LHOMEY ANOHINY (v7) <) O § B T ©®

" |12 ~obousin0n =00l jujy aBequIBLIENIMOWBINZ%AUO0Z%N-MNSIUBWNoOg/gequaysisniajal | §3 D) & =

U.S. Patent

)
aa
— .
= 01 'Ol
= PR R TR e S e SR ST e e TS
- (4] ~+=0601¢ Jwiy 3B UIBLL/GN AM/OWBA0Z%PUIHO0Z%N AM/SIUBWNI0Q/FI0qUIBA/SI8S N0/ //2l | |
— adA| gng
- o0 O
- 006 QI vsd3 @ 1unodoy Buipuadg ajqixa|4
-) | V6598 | adk]
¢0. 00/ JaquinN £aijod .
m ©) VS4 aleoyyjeaH]
3 sWeN ueld ebe
= 3leq pu3
-
0 G10¢/10/10 V'S4 8iedyjjeay
,w ole(HElS OWeN
7 G Bl Jjousg
@ GLOCIL juoliasINLUioy |EVIP3A X3
o
m NOLLOY dIVOANISSVYIONVYId dlvd 1HVLS SSYT10 NVd JANVN SSV'10 NY'1d
<+ J3LVYNINYIL MOHS aave® | |
3 e Sesse|) Ueld | 7
v0L7 “ (<) © dmeg ued ||
. 008——dNLIS SI¥OdIY SSIO0Ud I1dOId WVILAN J13ISAW SIOUNOSIY IWOH
A Eo_N_m._ﬁzoEz«@v CRORTEERYN @

L =0Bol; Juny ebeduiew/gNM/OWad0z%euIH00Z%NIM/SIUBWNd0q/giaquia/siesn/offel | §F) & =

U.S. Patent

U.S. Patent Sep. 4, 2018 Sheet 9 of 12 US 10,069,901 B2

START

IDENTIFY GROUPINGS

OF A REQUEST 1200
AND A RESPONSE

DETECT REQUESTS SENT -
FROM AN APPLICATION SELECT AN 1202
1100~ RUNNING ON A BROWSER UNPROCESSED GROUPING

TO A SERVER DATA IN THE GROUPINGS
PROCESSING SYSTEM

B GENERATE A TIER OF
DETECT RESPONSES KEYS FROM THE
RECEIVED FROM REQUESTINA 1204
1102 THE SERVER DATA SELECTED GROUPING
PROCESSING SYSTEM
FOR THE REQUESTS SENT STORE THE TIER OF KEYS

FROM THE APPLICATION AND THE RESPONSE IN A

RECORD IN A TABLE 1206

STORE THE REQUESTS

AND RESPONSES FOR
1104 THE APPLICATION IN
A DATA STRUCTURE

1S
ANOTHER
UNPROCESSED GROUPING

PRESENT
?

YES

END

FIG. 11 1208

END

FIG. 12

U.S. Patent Sep. 4, 2018

START

IDENTIFY COMPONENTS IN
A UNIVERSAL RESOURCE
LOCATOR IN A REQUEST

1300

GENERATE A FIRST KEY USING
1302 A PATH, PARAMETERS, AND
VALUES IN THE UNIVERSAL
RESOURCE LOCATOR

GENERATE A SECOND
KEY USING THE PATH

1304 AND THE PARAMETERS
IN THE UNIVERSAL

RESOURCE LOCATOR

GENERATE A THIRD KEY USING
THE PATH IN THE UNIVERSAL

1306 RESOURCE LOCATOR

END

FIG. 13

Sheet 10 of 12

RUN AN APPLICATION 1500
ON A CLIENT DATA
PROCESSING SYSTEM

RECEIVE A REQUEST
FROM THE CLIENT DATA
PROCESSING SYSTEM AT
A SERVER EMULATOR

1502

IDENTIFY A RESPONSE IN
A DATA STRUCTURE
STORED ON THE CLIENT
DATA PROCESSING 1504
SYSTEM USING THE
REQUEST ASAKEY TO
IDENTIFY THE RESPONSE

" RETURN THE RESPONSE

TO THE APPLICATION 1506

FIG. 15

1400~ DETECT A COMMAND TO
GENERATE INDICATORS

DETECT AUSER INPUT

1402~ SELECTING A FEATURE
IN THE APPLICATION
FOR EMPHASIS
STORE AN INDICATOR
1404 FOR THE FEATURE IN

A DATA STRUCTURE

END

FI1G. 14

US 10,069,901 B2

U.S. Patent

1600 ~

START

IDENTIFY A UNIVERSAL
RESOURCE LOCATORIN
A REQUEST GENERATED

BY AN APPLICATION

DURING A STANDALONE

DEMONSTRATION

1602 ~_

GENERATE A COMPARISON
KEY USING A PATH,
PARAMETERS, AND

VALUES IN THE UNIVERSAL

RESOURCE LOCATOR

1604 ~_

YES

1610

1606

COMPARE THE COMPARISON
KEY TOKEYS INATABLE

DOES
THE COMPARISON
KEY GENERATED FROM
THE UNIVERSAL RESOURCE

LOCATOR IN THE REQUEST MATCH

AKEY IN ATABLE OF KEYS AND
RECORDS CONTAINING
RESPONSES?

NO

GENERATE A COMPARISON
KEY USING THE PATH
AND THE PARAMETERS
IN THE UNIVERSAL
RESOURCE LOCATOR

1612

1608

COMPARE THE
COMPARISON KEY TO
THE KEYS IN THE TABLE

Sep. 4, 2018

IDENTIFY THE RESPONSE
IN THE RECORD WITH THE

Sheet 11 of 12

1614

DOES THE

COMPARISON
MATCH AKEY IN

US 10,069,901 B2

THE TABLE OF KEYS AND

RECORDS CONTAINING

RESPONSES
7

GENERATE A COMPARISON KEY 618
USING THE PATH IN THE

UNIVERSAL RESOURCE LOCATOR

COMPARE THE COMPARISON KEY | ~ 1620

TO THEKEYS IN THE TABLE

DOES THE

COMPARISON

MATCH AKEY IN

THE TABLE OF KEYS AND

RECORDS CONTAINING

RESPONSES
?

NO

1622

YES
IDENTIFY THE RESPONSE IN THE

RECORD WITH THE KEY THAT
MATCHES THE COMPARISON KEY

IDENTIFY THE
RESPONSE IN THE
~—{ RECORD WITH THE

KEY THAT MATCHES
THE COMPARISON KEY

KEY THAT MATCHES THE
COMPARISON KEY

"
(END)
FIG. 16

1616

U.S. Patent

1700

1704

Sep. 4, 2018

DATA PROCESSING SYSTEM

1716

PROCESSOR UNIT

}

1702

1706

MEMORY

Sheet 12 of 12

STORAGE DEVICES

US 10,069,901 B2

1708

PERSISTENT
STORAGE

!

COMMUNICATIONS

UNIT

1710

1722

1720

COMPUTER READABLE MEDIA

| —
t

INPUT/OUTPUT
UNIT DISPLAY

1712

i

COMPUTER
PROGRAM PRODUCT

PROGRAM CODE

1718

COMPUTER READABLE
STORAGE MEDIA

172
1724 °

COMPUTER READABLE
SIGNAL MEDIA

FIG. 17

1714

US 10,069,901 B2

1
APPLICATION DEMONSTRATION SYSTEM

BACKGROUND INFORMATION

1. Field

The present disclosure relates generally to an improved
computer system and, 1n particular, to a method and appa-
ratus for running an application. Still more particularly, the
present disclosure relates to a method and apparatus for
running an application without communication with a server
data processing system that normally provides responses to
the application to operate.

2. Background

Many organizations develop soltware. Some organiza-
tions are solely i1n the business of developing and selling
software. Other organizations provide services 1 addition to
developing software. For example, an organization may
provide payroll and human resource services to clients. The
organization may also offer clients software 1n the form of
applications for use with the services. These applications
may be, for example, web applications that are 1n a web page
running on a browser.

In developing applications, sales people in the organiza-
tion market the application to current clients, potential
clients, or a combination thereof. For example, a sales
person may demonstrate the operation of an application to a
client. The sales person may desire to demonstrate selected
features 1n the application that may be of interest to the
client.

The demonstration of the application may take place in
different locations. For example, the sales person may meet
the client at the client’s business. In another example, the
sales person may meet the client at a coflee shop, a restau-
rant, a convention center, or some other location.

Depending on the location, demonstrating features of the
application may be more difficult than desired. The appli-
cation uses an mternet connection to access a web server 1n
performing functions.

In some locations, an internet connection may be unavail-
able. An internet connection may be present but may be
slower than desired for demonstrating the application. These
conditions make demonstrating features 1n the application
more dithcult than desired. For example, 1f the connection 1s
unavailable, the different features of the application may not
operate. Also, if the connection 1s slower than desired, then
the client may not view the operation of the application in
optimal conditions. For example, long delays 1n displaying
information during other operations may occur.

Further, even when an internet connection 1s present, the
sales person often desires to have a predictable experience
for the client when demonstrating features of the applica-
tion. For example, the demonstration may involve the appli-
cation retrieving records from a web server. If the data 1n the
records 1s changed or the records are removed, then the
results displayed in the demonstration may not be the ones
desired for presentation to a particular client.

For example, if the client 1s in the healthcare industry, the
sales person may desire to demonstrate the application using
data about the healthcare industry. If the data on the web
server 1s changed to data about automotive manufacturing
prior to the demonstration, then the demonstration of the
application using the data may not provide the desired
experience for the presentation to the client.

As a result, the demonstration of the application may be
unpredictable. The speed or smoothness in operation of the
application may not be predictable because the quality of the

10

15

20

25

30

35

40

45

50

55

60

65

2

internet connection may be unknown for the demonstration.
In another example, the data displayed by the application

may not be predictable.

Therefore, 1t would be desirable to have a method and
apparatus that take into account at least some of the 1ssues
discussed above, as well as other possible 1ssues. For
example, it would be desirable to have a method and
apparatus that overcome a technical problem with demon-
strating an application that provides a predictable experience
to the client.

SUMMARY

An embodiment of the disclosure provides a method for
a standalone demonstration of an application. Requests sent
from the application running on a browser to a server data
processing system are detected. Responses received from
the server data processing system for the requests sent from
the application are detected. The requests and the responses
for the application are stored 1n a data structure. The requests
and the responses enable simulating the server data process-
ing system to perform the standalone demonstration of the
application running on the browser on a client data process-
ing system using the data structure without communicating
with the server data processing system.

Another embodiment of the disclosure provides a method
for a standalone demonstration of an application. The appli-
cation 1s run on a browser on a client data processing system.
A server emulator receives a request from the client data
processing system at the server emulator in which the
request 1s directed to a server data processing system. The
server emulator identifies a response 1 a data structure
stored on the client data processing system using the request
as a key to i1dentity the response. The data structure stores
requests previously sent to the server data processing system
and responses for the application received from the server
data processing system. The server emulator returns the
response to the application. The requests and the responses
stored 1n the data structure enable simulating the server data
processing system to perform the standalone demonstration
of the application running on the browser on the client data
processing system using the data structure without commu-
nicating with the server data processing system.

Another embodiment of the disclosure provides a com-
puter system comprising an application running on a
browser and a recorder. The recorder detects responses
received from a server data processing system for requests
sent from the application and stores the requests and
responses for the application 1n a data structure. The requests
and the responses enable simulating the server data process-
ing system to perform a standalone demonstration of the
application running on the browser on a client data process-
ing system using the data structure without communicating
with the server data processing system.

Another embodiment of the disclosure provides a com-
puter system comprising a client data processing system, an
application running on a browser on the client data process-
ing system, and a server emulator. The server emulator
receives a request from the client data processing system at
the server emulator 1n which the request 1s directed to a
server data processing system and 1dentifies a response 1n a
data structure stored on the client data processing system
using the request as a key to 1dentily the response. The data
structure stores requests previously sent to the server data
processing system and responses for the application recerved
from the server data processing system. The server emulator
also returns the response to the application. The requests and

US 10,069,901 B2

3

the responses stored 1n the data structure enable simulating,
the server data processing system when performing a stand-

alone demonstration of the application running on a browser
on the client data processing system using the data structure
without communicating with the server data processing
system to obtain the responses.

Yet another embodiment of the disclosure provides a
computer program product for a standalone demonstration
ol an application. The computer program product comprises
a computer readable storage media, and first program code,
second program code, and third program code stored on the
computer readable storage media. The first program code
detects requests sent from an application running on a
browser to a server data processing system. The second
program code detects responses received from the server
data processing system for the requests sent from the appli-
cation. The third program code stores the requests and the
responses for the application 1n a data structure. The requests
and the responses enable simulating the server data process-
ing system to perform the standalone demonstration of the
application running on the browser on a client data process-
ing system using the data structure without communicating
with the server data processing system.

The features and functions can be achieved independently
in various embodiments of the present disclosure or may be
combined 1n yet other embodiments in which further details
can be seen with reference to the following description and
drawings.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

The novel features believed characteristic of the illustra-
tive embodiments are set forth 1n the appended claims. The
illustrative embodiments, however, as well as a preferred
mode of use, further objectives and features thereof, waill
best be understood by reference to the following detailed
description of an 1illustrative embodiment of the present
disclosure when read 1n conjunction with the accompanying
drawings, wherein:

FIG. 1 1s an illustration of a block diagram of an appli-
cation environment in accordance with analyst embodiment
in accordance with an illustrative embodiment;

FIG. 2 1s an illustration of a block diagram of an appli-
cation demonstration system in accordance with an 1llustra-
tive embodiment;

FIG. 3 1s an illustration of a block diagram of data flow
for creating a data structure for a standalone demonstration
in accordance with an illustrative embodiment;

FIG. 4 1s an illustration of a block diagram of data flow
for a demonstrating an application 1n accordance with an
illustrative embodiment;

FIG. 5 1s an illustration of a block diagram of a data
structure 1n accordance with an illustrative embodiment;

FIG. 6 1s an illustration of a block diagram of data flow
for generating a tier of keys from a umiversal resource
locator 1n accordance with an illustrative embodiment;

FIG. 7 1s an illustration of an application 1n a web page in
a browser 1n accordance with an illustrative embodiment;

FIG. 8 15 an 1llustration of an application 1n a web page in
a browser 1n accordance with an 1illustrative embodiment;

FI1G. 9 15 an 1llustration of an application 1n a web page in
a browser 1n accordance with an illustrative embodiment;

FIG. 10 1s an illustration of an application 1n a web page
in a browser 1n accordance with an illustrative embodiment;

FIG. 11 1s an 1llustration of a flowchart of a process for a
standalone demonstration of an application in accordance
with an 1llustrative embodiment:;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 12 1s an illustration of a flowchart of a process for
generating a data structure 1n accordance with an illustrative

embodiment;

FIG. 13 1s an 1llustration of a flowchart of a process for
generating a tier of keys 1n accordance with an illustrative
embodiment;

FIG. 14 1s an illustration of a flowchart of a process for
creating indicators for features 1n an application 1n accor-
dance with an illustrative embodiment;

FIG. 15 1s an illustration of a flowchart of a process for
demonstrating an application 1 accordance with an 1llus-
trative embodiment;

FIG. 16 1s an illustration of a flowchart of a process for
identifying a response 1n a data structure during a standalone
demonstration of an application in accordance with an
illustrative embodiment; and

FIG. 17 1s an illustration of a block diagram of a data

processing system 1n accordance with an 1llustrative
embodiment.

DETAILED DESCRIPTION

The illustrative embodiments recognize and take into
account one or more different considerations. For example,
the illustrative embodiments recognize and take into account
that one solution for presenting an application in a web page
with a predictable experience ivolves creating a presenta-
tion using static web pages. Features in the application
selected for presentation to a client may be used by an
operator when the application 1s running on a data process-
ing system that has a desired connection to the web server
and the desired data for the demonstration 1s present on the
web server. During the process of operating the application,
static web pages may be generated and stored at different
times while the operator 1s using the application. These static
web pages show the features of the application that are to be
presented to the client. These static web pages are stored
locally in the data processing system that 1s used for the
demonstration.

Thus, the illustrative embodiments recognize and take
into account that the application may be demonstrated to a
client at a later time with user mput to the application
resulting 1n the display of the appropriate static web page.
The illustrative embodiments also recognize and take into
account, however, that storing static web pages locally may
not provide the desired level of interactivity with the appli-
cation for demonstration purposes.

Further the illustrative embodiments recognize and take
into account that this type of demonstration 1s closer to a
video or animation rather than showing the operation of the
application. As a result, a client may not obtain the desired
experience of interaction with the application. For example,
with the static web pages, the demonstration may require
following a sequence of steps 1n displaying the web pages to
show the features of the application.

Further, time and eflort also may be needed to edit the
static web pages to ensure that the static web pages are
displayed as intended. As a result, the 1llustrative embodi-
ments recognize and take into account that the use of
previously generated static web pages may allow a demon-
stration of the application without connection to a web
server. The 1llustrative embodiments recognize and take nto
account that this type of demonstration, however, may be
more limited than desired and also may take more time and
cllort than desired.

Thus, the illustrative embodiments provide a method and
apparatus for a standalone demonstration of an application.

US 10,069,901 B2

S

In a standalone demonstration, the application runs without
needing an internet or other connection to a server data
processing system to operate.

In one 1illustrative example, the process detects requests
sent from the application running on a browser to a server
data processing system. The process also detects responses
received from the server data processing system for the
requests sent from the application. The requests and
responses for the application are stored 1n a data structure.
The requests and responses enable simulating the server data
processing system to perform the standalone demonstration
of the application running on the browser on a client data
processing system using the data structure without commu-
nicating with the server data processing system.

With reference now to the figures and, 1n particular, with
reference to FIG. 1, an illustration of a block diagram of an
application environment 1s depicted 1n accordance with an
illustrative embodiment. In this illustrative example, appli-
cation environment 100 includes computer system 102 1n
which application environment 100 may operate.

Computer system 102 1s a physical hardware system that
includes one or more data processing systems. When more
than one data processing system 1s present, those data
processing systems may be in communication with each
other using a communications medium. The communica-
tions medium may be a network. The data processing
systems may be selected from at least one of a computer, a
server computer, a workstation, a tablet computer, a laptop
computer, a kiosk, a set top box, a mobile phone, or some
other suitable data processing system. In this illustrative
example, computer system 102 includes client data process-
ing system 104 and server data processing system 106.

As depicted, application 108 1s a software application.
Application 108 includes one or more programs that provide
the ability for operator 109 to perform one or more func-
tions, tasks, or activities using application 108. In this
illustrative example, application 108 is located 1n web page
110 and runs in browser 112. Application 108 may be
referred to as a web application when located 1n web page
110.

As depicted, browser 112 runs on client data processing
system 104. In this illustrative example, application 108 1n
web page 110 1 browser 112 1s displayed in graphical user
interface 114 on display system 116 for client data process-
ing system 104.

Display system 116 1s a physical hardware system that
includes one or more display devices on which graphical
user iterface 114 may be displayed. The display devices
may include at least one of a light-emitting diode display
(LED), a liguid crystal display (LCD), an organic light-
emitting diode display (OLED), or some other suitable
device on which graphical user interface 114 can be dis-
played. As depicted, operator 109 1s a person that may
interact with graphical user interface 114 through user input
120 generated by input device 122 1n client data processing
system 104. For example, operator 109 may interact with
application 108 as displayed in graphical user interface 114.
Input device 122 may be, for example, a mouse, a keyboard,
a trackball, a touchscreen, a stylus, or some other suitable
type of mput device.

As depicted, application 108 communicates with web
server 124 on server data processing system 106 during
operation of application 108. For example, application 108
sends requests 126 and receives responses 128. Web server
124 performs at least one of locating content 130 or gener-
ating content 130 in response to receiving requests 126.
Content 130 1s returned 1n responses 128.

10

15

20

25

30

35

40

45

50

55

60

65

6

As used herein, the phrase “at least one of,” when used
with a list of 1items, means diflerent combinations of one or
more of the listed items may be used and only one of each
item 1n the list may be needed. In other words, “at least one
of” means any combination of items and number of 1tems
may be used from the list, but not all of the items 1n the list
are required. The 1item may be a particular object, thing, or
a category.

For example, without limitation, “at least one of 1tem A,
item B, or item C” may include item A, 1item A and 1tem B,
or item B. This example also may include item A, item B,
and 1tem C or 1tem B and 1item C. Of course, any combina-
tions of these items may be present. In some illustrative
examples, “at least one of” may be, for example, without
limitation, two of item A; one of 1item B; and ten of item C;
four of item B and seven of item C; or other suitable
combinations.

In this illustrative example, operator 109 desires to dem-
onstrate application 108 to client 134. Client 134 may be a
current client or a potential client. Further, client 134 may be
a person or an organization.

During normal operation, application 108 sends requests
126 to web server 124 and receives responses 128 from web
server 124 through browser 112. However, when demon-
strating application 108, a communications link with web
server 124 may not always be available or have a desired
level of quality. The desired level of quality of the commu-
nications link may be, for example, a desired speed in
obtaining responses 128 from web server 124 that provides
a desired experience to client 134. For example, smooth
operation of application 108 without delays that make
application 108 appear unresponsive 1s desirable when dem-
onstrating application 108.

Also, having data 136 1n responses 128 be expected data
138 1s desirable when demonstrating application 108. For
example, 1f client 134 1s a healthcare organization, desired
data 136 may be data for the healthcare industry. If data 136
changes to data for the automobile industry, the demonstra-
tion of application 108 may not provide the experience
desired for client 134.

In this illustrative example, application demonstration
system 140 enables demonstrating application 108 with a
predictable experience. The demonstration of application
108 does not rely on communicating with server data
processing system 106 when application 108 runs 1n browser
112 on client data processing system 104. In other words, a
network connection between client data processing system
104 and server data processing system 106 1s not necessary.
Also, changes 1n data 136 that may occur at a later time do
not atlect the demonstration of application 108.

Application demonstration system 140 may be imple-
mented 1n software, hardware, firmware or a combination
thereof. When software 1s used, the operations performed by
application demonstration system 140 may be implemented
in program code configured to run on hardware, such as a
processor unit. When firmware 1s used, the operations per-
formed by application demonstration system 140 may be
implemented in program code and data and stored in per-
sistent memory to run on a processor unit. When hardware
1s employed, the hardware may include circuits that operate
to perform the operations in application demonstration sys-
tem 140.

In the illustrative examples, the hardware may take the
form of a circuit system, an integrated circuit, an applica-
tion-specific integrated circuit (ASIC), a programmable
logic device, or some other suitable type of hardware
configured to perform a number of operations. With a

US 10,069,901 B2

7

programmable logic device, the device may be configured to
perform the number of operations. The device may be
reconfigured at a later time or may be permanently config-
ured to perform the number of operations. Programmable
logic devices include, for example, a programmable logic
array, programmable array logic, a field programmable logic
array, a field programmable gate array, and other suitable
hardware devices. Additionally, the processes may be imple-
mented 1n organic components integrated with inorganic
components and may be comprised entirely of organic
components excluding a human being. For example, the
processes may be implemented as circuits 1n organic semi-
conductors.

In the illustrative example, application demonstration
system 140 1s implemented 1n computer system 102. Appli-
cation demonstration system 140 may be located on a single
data processing system or distributed on multiple data
processing systems in computer system 102. During opera-
tion, application demonstration system 140 operates to
cnable a standalone demonstration of application 108.

As depicted, application demonstration system 140
detects requests 126 sent from application 108 running on
browser 112 to server data processing system 106. As
depicted, requests 126 are sent to web server 124 on server
data processing system 106. Application demonstration sys-
tem 140 detects responses 128 received from server data
processing system 106 1in response to requests 126 sent by
application 108. Responses 128 are from web server 124 on
server data processing system 106.

Application demonstration system 140 stores requests
126 and responses 128 for application 108 1n data structure
144. Data structure 144 may take different forms. For
example, data structure 144 may be selected from one of a
database, an array, a table, a flat file, a linked list, a map, and
some other suitable type of data structure.

In this example, requests 126 and responses 128 enable
simulating server data processing system 106 to perform a
standalone demonstration of application 108 running on
browser 112 on client data processing system 104 using data
structure 144 without communicating with server data pro-
cessing system 106. As a result, reliance on connectivity to
web server 124 on server data processing system 106 or the
presence of expected data 138 on server data processing
system 106 1s not needed to demonstrate application 108. In
this 1llustrative example, application demonstration system
140, data structure 144, and application 108 are located 1n
client data processing system 104 when a standalone dem-
onstration 1s performed for client 134.

In one illustrative example, one or more technical solu-
tions are present that overcome a technical problem with
demonstrating an application that provides a predictable
experience to the client. Application demonstration system
140 allows for expected data 138 to be displayed by appli-
cation 108 during a standalone demonstration of application
108 to client 134. Further, at least one of connectivity 1ssues
or changes 1n data 136 at web server 124 1s avoided.

One or more technical solutions 1n the list of examples
may provide a technical effect in which a standalone dem-
onstration performed using an application 1s predictable for
providing a desired experience to client. For example, what
data will be displayed by the application 1s known ahead of
time and different data or an unexpected absence of data
does not occur. Also, delays in displaying data or slow
responsiveness of the application may be reduced or
avoided.

As a result, computer system 102 operates as a special-
purpose computer system 1n which application demonstra-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion system 140 in computer system 102 enables demon-
strating application 108 running in browser 112 located on
client data processing system 104 without needing to com-
municate with web server 124 on server data processing
system 106 to operate. In particular, application demonstra-
tion system 140 transforms computer system 102 into a
special-purpose computer system as compared to currently
available general computer systems that do not have appli-
cation demonstration system 140. Current computer systems
may use static web pages that require a set sequence of steps
in the demonstration in which the static web pages are
displayed.

Current systems using static web pages also take more
time and eflort than desired to prepare. As a result, the
demonstration does not really involve the application but 1s
more like a dynamic slide presentation. In contrast, appli-
cation demonstration system 140 does not have this con-
straint 1n demonstrating application 108. Instead, with appli-
cation demonstration system 140, interaction with
application 108 occurs during the demonstration.

Turning now to FIG. 2, an illustration of a block diagram
of an application demonstration system 1s depicted 1n accor-
dance with an 1illustrative embodiment. In the illustrative
examples, the same reference numeral may be used 1n more
than one figure. This reuse of a reference numeral in
different figures represents the same element 1n the difierent
figures.

In this illustrative example, application demonstration
system 140 has a number of different components. As
depicted, application demonstration system 140 includes
recorder 200 and server emulator 202.

Recorder 200 detects requests 126 made by application
108. Recorder 200 also detects responses 128 that are
returned to application 108. In the illustrative example,
recorder 200 stores requests 126 and responses 128 1n data
structure 144.

As depicted, server emulator 202 runs when a standalone
demonstration of application 108 1s performed. Server emu-
lator 202 may be started when web page 110 with applica-
tion 108 1s loaded for performing a standalone demonstra-
tion.

During operation, server emulator 202 detects requests
126 made by application 108 during a standalone demon-
stration. In turn, server emulator 202 1dentifies an appropri-
ate response 1n responses 128 that are stored in data structure
144 to return to application 108. Server emulator 202 returns
responses 128 to application 108. In this manner, server
emulator 202 emulates operations that would be performed
by web server 124.

With reference next to FIG. 3, an illustration of a block
diagram of data flow for creating a data structure for a
standalone demonstration 1s depicted in accordance with an
illustrative embodiment. In this illustrative example, data
structure 144 1s depicted in the form of table 300.

As depicted, application 108 in web page 110 1n browser

112 sends requests 126 to web server 124 on server data
processing system 106 and receives responses 128 to
requests 126 from web server 124 on server data processing
system 106 through browser 112.
In this 1llustrative example, recorder 200 identifies
requests 126 made and responses 128 received. The 1denti-
fication may be made by listening 1n on these communica-
tions. For example, recorder 200 may listen to a port used by
browser 112 for requests 126 and responses 128. In another
illustrative example, recorder 200 may intercept requests
126 and responses 128 and relay these communications
between application 108 and web server 124.

US 10,069,901 B2

9

As depicted, recorder 200 stores requests 126 and
responses 128 i1n data structure 144. Requests 126 and
responses 128 may be stored in association with each other.
For example, each response may be stored in association
with a request that resulted in the response.

As depicted, data structure 144 takes the form of table 300
with keys 302 and records 304. Keys 302 point to records
304.

In this i1llustrative example, requests 126 are used as keys
302 and responses 128 are placed into records 304. A key 1n
keys 302 1s used to i1dentily a record 1n records 304 1n table
300. A record 1s a row 1n table 300.

As depicted, requests 126 may be used in the form
identified to form keys 302 or may be processed to form
keys 302. For example, a hashing function may be used to
create hashes from requests 126 to form keys 302.

In this manner, an operator may operate application 108
to perform operations for features that may be used 1n a
standalone demonstration of application 108. In the illustra-
tive example, features are different aspects of interest in
application 108. For example, the features may be functions,
the manner in which information i1s displayed, or other
aspects of application 108.

As depicted, expected data 138 1s returned 1n responses
128, and responses 128 contaiming expected data 138 are
stored 1n records 304 1n table 300. As a result, the operations
performed using application 108 use expected data 138.

With reference to FIG. 4, an illustration of a block
diagram of data tlow for a demonstrating an application 1s
depicted 1n accordance with an illustrative embodiment. In
this example, the demonstration of application 108 in web
page 110 1 browser 112 1s performed.

As depicted, server emulator 202 intercepts requests 400
made by application 108 in web page 110 when a standalone
demonstration 1s performed using application 108. In other
words, a connection to web server 124 1s unnecessary with
server emulator 202 to demonstrate application 108.

In this illustrative example, browser 112 1n application
108 1n web page 110 may be configured to direct requests
400 made by application 108 to server emulator 202 instead
of sending requests 400 to a web server. In another example,
web page 110 1n which application 108 1s located may be
configured to direct requests 400 by application 108 to
server emulator 202.

Server emulator 202 takes requests 400 and identifies
responses 128 to return to application 108. For example,
application 108 1s run on client data processing system 104.
Request 402 in requests 400 from application 108 1is
received at server emulator 202 on client data processing,
system 104. Server emulator 202 1dentifies response 404 1n
responses 128 1n data structure 144 1n the form of table 300
stored on client data processing system 104 using request
402 as key 406 to identily response 404.

As depicted, request 402 from application 108 1s used as
key 406 to see if any matches with keys 302 are present.
Request 402 may be used directly as key 406 or may be
processed to form key 406. For example, a hash of request
402 may be performed to form key 406.

If a match 1s present, the record pointed to by the
matching key in keys 302 1s identified to be returned to
application 108. In this example, the record includes
response 404. The record could include other information
such as notes, highlighting, or other suitable information.
Server emulator 202 returns response 404 to application
108.

As depicted, application 108 operates using response 404.
For example, application 108 may display data in response

5

10

15

20

25

30

35

40

45

50

55

60

65

10

404. It the feature 1s a human resources feature, response
404 may include human resources data in response 404 that
1s displayed by application 108. In another example, appli-
cation 108 may perform a function using the data 1n response
404. For example, application 108 may perform eligibility
calculations for benefits using the data in response 404.

Turning next to FIG. 3§, an illustration of a block diagram
ol a data structure 1s depicted 1n accordance with an 1llus-
trative embodiment. In this example, an example of one
implementation of table 300 in FIG. 3 1s shown. In this
depicted example, more than one key 1n keys 302 may point
to a particular record 1n records 304.

As depicted, keys 302 are generated from umversal
resource locators 300 in requests 126. In this particular
example, keys 302 are organized as tiers of keys 502.

In the 1llustrative example, tier of keys 504 1n tiers of keys
502 1s based on universal resource locator 506 1n universal
resource locators 500. In other words, each of tiers of keys
502 1s on a universal resource locator 1n universal resource
locators 500. Each tier of keys in tiers of keys 502 is
generated from a different number of components 1n a
umversal resource locator 1n the request that causes the
server data processing system to return the response that 1s
stored 1n the data structure.

As depicted, all of keys 302 1n tier of keys 504 point to
a same response 1n responses 128. Each key 1n tier of keys
504 1s generated using a different number of components
510 from universal resource locator 506.

With reference to FIG. 6, an 1illustration of a block
diagram of data flow for generating a tier of keys from a
umversal resource locator 1s depicted in accordance with an
illustrative embodiment. In this example, the generation of
tier of keys 504 1s depicted. As depicted, components 510 in
umversal resource locator 506 for a request in requests 126
comprise path 600, parameters 602, and values 604.

In this illustrative example, path 600 includes the address
ol the website hosted by a web server and the path to the
content on the web server. Parameters 602 are used to
specily the content that i1s being requested. For example,
parameters 602 may include vanables for identifying the
content. Values 604 are the values for parameters 602.

As depicted, tier of keys 504 includes 3 keys, key 606, key
608, and key 610. Each key 1n tier of keys 504 1s on a
different tier 1n this example. Key 606 1s on first tier 612; key
608 1s on second tier 614; and key 610 1s on third tier 616.
First tier 612 1s the highest tier and the most specific tier.
Third tier 616 1s the lowest tier and the least specific tier.

In the illustrative example, key 606 on first tier 612 1s
based on path 600, parameters 602, and values 604. Key 608
on second tier 614 1s based on path 600 and parameters 602,
and key 610 on third tier 616 1s based on path 600.

Each of the keys 1n tier of keys 504 point to the same
response. As a result, 11 a umiversal resource locator 1n a
request 1s made during a demonstration that does not cor-
respond to the first tier of keys, an examination may be made
as to whether a less specific form of the universal resource
locator matches lower tiers of keys.

For example, 1f request 618 1s received containing uni-
versal resource locator 620, different portions of compo-
nents 622 in umversal resource locator 620 may be used to
determine whether a match 1s found with any of the keys 1n
tier ol keys 504. Imtially, path 624, parameters 626, and
values 628 may be used to determine whether a match 1s
present to key 606 1n first tier 612. This type of matching 1s
the most specific match ivolving all of components 622.

If a match 1s not present, then path 624 and parameters
626 may be used to determine whether a match 1s present to

US 10,069,901 B2

11

key 608 1n second tier 614. This matching 1s less specific
than using path 624, parameters 626, and values 628.

Finally, path 624 may be used to determine whether a
match 1s present to key 610 1n third tier 616 1t a match 1s not
present with the other keys 1n the other tiers. This type of 5
matching 1s the least specific type of matching in this
particular example.

The illustration of application environment 100 and the
different components in this environment 1n FIGS. 1-6 1s not
meant to 1imply physical or architectural limitations to the 10
manner 1n which an illustrative embodiment may be 1mple-
mented. Other components 1n addition to or 1n place of the
ones 1illustrated may be used. Some components may be
unnecessary. Also, the blocks are presented to illustrate
some functional components. One or more of these blocks 15
may be combined, divided, or combined and divided into
different blocks when mmplemented 1n an illustrative
embodiment.

For example, operator 109 1s described as preparing the
demonstration of application 108 and giving the demonstra- 20
tion to client 134. In another illustrative example, operator
109 generates data structure 144 and another person dem-
onstrates application 108 to client 134.

Further, in the 1llustrative example, a standalone demon-
stration 1s created and presented on client data processing 25
system 104. In another illustrative example, recorder 200
creates data structure 144 on client data processing system
104. Data structure 144, web page 110 with application 108,
and server emulator 202 may be placed on a different client
data processing system for performing a standalone demon- 30
stration to client 134.

As another example, although three tiers of keys are
shown 1n FIG. 6, other numbers of tiers may be used. For
example, another tier may be used by dividing the path into
the internet protocol address and a port number, and the file 35
path to the content. The internet protocol address and a port
number may be one tier and the file path may be a second
tier. In still other examples, only two tiers may be used
depending on the particular implementation.

As another example, records 304 in FIG. 3 may include 40
other information 1n addition to requests 126 and responses
128. For example, operator 109 may highlight portions of
application 108 that have requests 126 and responses 128. In
the 1llustrative example, not all of the features 1n application
108 may be included in requests 126 and responses 128. As 45
a result, highlighting may indicate to someone demonstrat-
ing application 108 which features should be shown or used.
The highlighting may indicate which features may be dem-
onstrated but not necessary in the order in which features
should be demonstrated. 50

In still another example, one or more tables 1n addition to
table 300 may be generated for application 108. A table may
be generated for a feature or multiple features for application
108. For example, an application may include features such
as time and attendance, benefits, time ofl, payroll, and other 55
suitable features. A table may be created for each of these
features rather than having only table 300.

In yet another illustrative example, browser 112 may part
of a mobile application. The mobile application may be a
thin wrapper around browser 112. 60

Using multiple tables may reduce the use of resources
such as memory. Additionally, generating table 300 for all
features for application 108 may be infeasible. Creating
tables for diflerent features may provide for more tlexibility
in production and storage space. 65

Turning next to FIGS. 7-10, 1llustrations of an application
in a web page 1 a browser are depicted 1n accordance with

12

an 1llustrative embodiment. These figures 1llustrate steps that
occur 1n creating a standalone demonstration of the appli-
cation.

Turning first to FIG. 7, an 1llustration of an application 1n
a web page 1 a browser 1s depicted 1n accordance with an
illustrative embodiment. As depicted, FIG. 7 depicts an
initial view of application 700 in web page 702 when {irst
loaded 1n browser 704. Application 700 in web page 702 1n
browser 704 1s an example of a display of application 108
and web page 110 1n browser 112 shown in block form 1n
FIG. 1.

A recorder, such as recorder 200 1n application demon-
stration system 140 shown in block form 1n FIG. 2, runs as
an operator and interacts with application 700 displayed 1n
browser 704. The selection of different features 1n applica-
tion 700 results 1n requests being made and responses being
returned.

In this i1llustrative example, a feature 1n application 700 1s
a portion of application 700 that may be selected 1n a manner
that generates a request. The portion may be text, a box, a
control, or some other graphical element.

In this illustrative example, the recorder records the
requests and responses made by application 700 to form a
data structure, such as data structure 144 1n FIG. 1 and table
300 1n FIGS. 3-5. This data structure 1s used to emulate the
web server when application 700 1s demonstrated at a later
time.

With reference next to FIG. 8, another illustration of an
application 1n a web page 1 a browser 1s depicted 1n
accordance with an illustrative embodiment. In this view, the
operator has selected a feature, setup 800 1n application 700.
Selection of setup 800 results in menu 802 being displayed.
As depicted, the recorder may detect the request generated
from the selection of setup 800 and the response returned
containing content used to display menu 802.

Further, the selection of benefits 804 results in features
806 being displayed 1n section 808 of menu 802. Features
806 are specific to benefits 804. The selection of benefits 804
results 1 a request being sent by application 700 and a
response being received containing content. As depicted, the
content 1s displayed 1n the form of features 806 1n section
808. The recorder also 1dentifies and stores this request and
response.

In this i1llustrative example, plan setup 810 in features 806
1s shown as being highlighted for selection. The selection of
plan setup 810 results 1n a request being sent and a response
being returned for this feature.

In FIG. 9, an 1llustration of an application 1n a web page
in a browser 1s depicted 1n accordance with an illustrative
embodiment. In this figure, window 900 1s displayed using
content received 1n a response to the request sent from a
selection of plan setup 810 1n FIG. 8. The recorder 1dentifies
and saves the response used to display window 900.

As depicted 1n this example, window 900 displays fea-
tures 902 that may be selected to show additional features
that may be demonstrated. In this example, the selection of
Healthcare FSA 904 results 1n a request being sent for
information about a particular type of healthcare plan. The
recorder 1dentifies and stores the request for the healthcare
plan information as well as the response returned.

Additionally, the operator also may select to highlight
Healthcare FSA 904. This highlighting of Healthcare FSA
904 also may be detected and stored by the recorder. The
highlighting may later be displayed during the demonstra-
tion as an indicator to select Healthcare FSA 904.

The highlighting 1s made for purposes of providing hints
to an operator during a standalone demonstration that occurs

US 10,069,901 B2

13

at a later time. The highlighting 1s an indicator that indicates
a request and response 1s present 1n the data structure for the
feature, plan setup 810, when application 700 1s demon-
strated at a later time using the data structure.

With reference now to FIG. 10, an 1illustration of an
application mm a web page 1n a browser 1s depicted 1n
accordance with an illustrative embodiment. As depicted,
window 1000 illustrates the content 1n a healthcare plan
displayed in response to the selection of Healthcare FSA 904
in FIG. 9. The content 1n window 1000 i1s received 1n a
response to the request generated from selecting Healthcare
FSA 904 in FIG. 9.

The 1llustration of application 700 and the diflerent steps
performed to generate a data structure for a standalone
demonstration i FIGS. 7-10 1s shown for purposes of
illustrating an example of one manner in which a standalone
demonstration may be created. These figures are not meant
to limat the display of applications and interactions to the one
shown 1n these figures.

For example, other types of features may be used in
addition to or 1n place of the one shown 1n this particular
example. Also, 1n some illustrative examples, features may
not be highlighted as guidance of available features for
demonstration.

Turning next to FIG. 11, an illustration of a flowchart of
a process for a standalone demonstration of an application 1s
depicted 1n accordance with an illustrative embodiment. The
process 1llustrated in FIG. 11 may be implemented in
application environment 100 in FIG. 1. For example, the
steps 1llustrated 1n this flowchart may be implemented 1n
application demonstration system 140 1n FIG. 1.

The steps 1n this flowchart enable a standalone demon-
stration to be made using an application. The steps 1n this
flowchart may be implemented 1n recorder 200 1n applica-
tion demonstration system 140 in FIG. 2.

The process begins by detecting requests sent from an
application running on a browser to a server data processing
system (step 1100). The process detects responses received
from the server data processing system for the requests sent
from the application (step 1102).

The requests and responses for the application are stored
in a data structure (step 1104) with the process terminating
thereafter. In step 1104, the responses are associated with the
requests that resulted 1n the responses being returned when
stored 1n the data structure. The requests and responses
cnable simulating the server data processing system to
perform the standalone demonstration of the application
running on the browser on a client data processing system
using the data structure without communicating with the
server data processing system.

With reference to FIG. 12, an 1llustration of a flowchart of
a process for generating a data structure 1s depicted 1n
accordance with an illustrative embodiment. The process 1n
this flowchart may be used to create data structure 144 in
FIG. 1. In this example, the data structure may be table 300
in FIGS. 3-5. The process 1n this flowchart 1s an example of
an implementation of step 1104 1n FIG. 11.

The process begins by 1dentifying groupings ol a request
and a response (step 1200). In this example, each request has
a single response. As depicted, a grouping 1s a request and
the response returned for the request.

The process selects an unprocessed grouping in the group-
ings (step 1202). The process generates a tier of keys from
the request 1n the selected grouping (step 1204). The keys in
the tier of keys may be generate 1n a number of diflerent
ways and may be performed using currently available key
generation techniques used for tables and for databases. For

10

15

20

25

30

35

40

45

50

55

60

65

14

example, the request may be used to generate a hash to form
a key or may use the request directly.

The process stores the tier of keys and the response 1n a
record 1n the table (step 1206). A determination 1s made as
to whether another unprocessed grouping i1s present. IT
another grouping is present, the process returns to step 1202.
Otherwise, the process terminates.

With reference now to FIG. 13, an 1illustration of a
flowchart of a process for generating a tier of keys 1is
depicted 1 accordance with an illustrative example. The
process 1llustrated 1n FIG. 13 1s an example of an imple-
mentation for step 1204 in FIG. 12.

The process begins by 1dentifying components in a uni-
versal resource locator 1n a request (step 1300). The process
generates a first key using a path, parameters, and values 1n
the universal resource locator (step 1302). In the 1llustrative
example, the parameter and values may also be obtained
from POSTT data 1n addition to the universal resource locator.
The process then generates a second key using the path and
the parameters 1 the universal resource locator (step 1304).
The process generates a third key using the path in the
umversal resource locator (step 1306) with the process
terminating thereafter.

This process generates keys that all point to the same
response. This process may be repeated for each response
and request 1dentified for the application.

Turning next to FIG. 14, an 1llustration of a tlowchart of
a process for creating indicators for features in an applica-
tion 1s depicted 1n accordance with an 1llustrative embodi-
ment. The process illustrated 1 FIG. 14 may be imple-
mented in recorder 200 1n application demonstration system
140 1n FIGS. 1-2. The process may be used to generate an
indicator that i1s displayed graphically 1n association with a
feature for which attention 1s desired during a standalone
demonstration of the application.

The process begins by detecting a command to generate
indicators (step 1400). The process detects a user mput
selecting a feature 1n the application for emphasis (step
1402).

The process stores an indicator for the feature 1n a data
structure (step 1404) with the process terminating thereafter.
The mdicator 1s displayed 1n association with a display of the
feature when the standalone demonstration of the applica-
tion 1s displayed. This display 1s a graphical one that draws
attention to the feature. The indicator may be selected from
at least one of highlighting, a font, bolding, 1talics, under-
lining, animation, a border, a graphic, or some other type of
indicator that draws the attention of the viewer to the feature.

Turning next to FIG. 15, an 1llustration of a flowchart of
a process for demonstrating an application 1s depicted 1n
accordance with an illustrative embodiment. The process 1n
this flowchart uses the data structure of requests and
responses generated 1mn FIG. 1 to demonstrate the applica-
tion. This process may be implemented in server emulator
202 1n application demonstration system 140 in FIGS. 1-2.

The process begins by running an application on a client
data processing system (step 1500). The process receives a
request from the client data processing system at a server
emulator (step 1502).

The process 1dentifies a response 1n a data structure stored
on the client data processing system using the request as a
key to identify the response (step 1504). The process returns
the response to the application (step 1506) with the process
terminating thereafter.

With reference now to FIG. 16, an illustration of a
flowchart of a process for identifying a response 1n a data

US 10,069,901 B2

15

structure during a standalone demonstration of an applica-
tion 1s depicted 1n accordance with an illustrative embodi-
ment.

The process begins by identifying a universal resource
locator 1n a request generated by an application during a
standalone demonstration (step 1600). The process gener-
ates a comparison key using a path, parameters, and values
in the universal resource locator (step 1602). The compari-
son key 1s compared to the keys 1n the table (step 1604).

A determination i1s made as to whether the comparison
key generated from the umversal resource locator in the
request matches a key in a table of keys and records
containing responses (step 1606). If a match 1s present, the
process 1dentifies the response in the record with the key that
matches the comparison key (step 1608) with the process
terminating thereatter.

With reference again to step 1606, 1f a match 1s not
present, the process generates a comparison key using the
path and the parameters in the universal resource locator
(step 1610). This comparison key 1s less specific than the key
generated 1n step 1602. For example, the request may select
information in a response that 1s not an exact match to the
information in the responses but considered close enough to
be used for demonstration purposes.

The comparison key 1s compared to the keys 1n the table
(step 1612). A determination 1s made as to whether the
comparison key matches a key 1n a table of keys and records
containing responses (step 1614). If a match 1s present, the
process 1dentifies the response in the record with the key that
matches the comparison key (step 1616) with the process
terminating thereafter.

With reference again to step 1614, 1if a match 1s not
present, the process generates a comparison key using the
path 1 the umversal resource locator (step 1618). This
comparison key 1s less specific than the key generated in step
1602 and step 1610.

The comparison key 1s compared to the keys 1n the table
(step 1620). A determination 1s made as to whether the
comparison key matches a key 1n a table of keys and records
containing responses (step 1622). If a match 1s present, the
process 1dentifies the response in the record with the key that
matches the comparison key (step 1624) with the process
terminating thereatter.

With reference again to step 1622, if a match 1s not
present, the process terminates. In this case, a response 1s not
identified for the request.

This process may be repeated any number of times during
the demonstration of the application. In this manner, the
request 1s compared to keys 1n tiers of keys that are based on
the umiversal resource locators from requests made when
creating the data structure. Thus, the process may 1dentily a
best match between the request and the keys 1n the tiers of
keys.

Thus, a particular feature selected may not have a
response in the data structure. However, another request
with a response may be close enough to return for use 1n the
demonstration even though an exact match may not be
present.

For example, the parameters may be for health benefits for
a particular plan. The values may be for a particular person
or age group. The selection of the feature may have the same
parameters for the health benefits for the plan but not the
same person or age group. For demonstration purposes,
displaying the response 1s suflicient for demonstrating the
feature and no reliance on the mmformation 1s made.

In this manner, the application may be demonstrated
without needing access to a server data processing system.

10

15

20

25

30

35

40

45

50

55

60

65

16

In other words, the application may be demonstrated to a
client without an 1nternet or network connection. With the
requests and responses stored locally, the application may
operate with the selection of components for functions,
tasks, or activities 1n any order. As a result, the demonstra-
tion may be more interactive because a scripted set of steps
does not have to be followed for the application to operate
when communication with a server data processing system
that 1s normally used 1s absent.

The flowcharts and block diagrams in the different
depicted embodiments 1llustrate the architecture, function-
ality, and operation of some possible implementations of
apparatuses and methods 1n an 1illustrative embodiment. In
this regard, each block in the flowcharts or block diagrams
may represent at least one of a module, a segment, a
function, or a portion of an operation or step. For example,
one or more of the blocks may be implemented as program
code, 1n hardware, or a combination of the program code and
hardware. When implemented in hardware, the hardware
may, for example, take the form of integrated circuits that
are manufactured or configured to perform one or more
operations 1n the flowcharts or block diagrams. When imple-
mented as a combination of program code and hardware, the
implementation may take the form of firmware.

In some alternative implementations of an 1illustrative
embodiment, the function or functions noted in the blocks
may occur out of the order noted 1n the figures. For example,
in some cases, two blocks shown in succession may be
performed substantially concurrently, or the blocks may
sometimes be performed in the reverse order, depending
upon the functionality imnvolved. Also, other blocks may be
added 1n addition to the illustrated blocks 1n a flowchart or
block diagram.

For example, in FIG. 16, if indicators are stored separately
from the response, the process may also identily an indicator
for the response 1n addition to 1dentitying the response. The
tier of keys may also point to the indicator that 1s stored in
the data structure. As another illustrative example, the
response may include a pointer to the indicator.

Turning now to FIG. 17, an 1llustration of a block diagram
ol a data processing system 1s depicted 1n accordance with
an 1illustrative embodiment. Data processing system 1700
may be used to implement computer system 102 1n FIG. 1.
For example, data processing system 1700 may be used to
implement client data processing system 104 and server data
processing system 106 1n FIG. 1. In this illustrative example,
data processing system 1700 includes communications
framework 1702, which provides communications between
processor umt 1704, memory 1706, persistent storage 1708,
communications unit 1710, input/output (I/0O) unit 1712, and
display 1714. In this example, communications framework
1702 may take the form of a bus system.

Processor unit 1704 serves to execute instructions for
soltware that may be loaded into memory 1706. Processor
unit 1704 may be a number of processors, a multi-processor
core, or some other type of processor, depending on the
particular implementation.

Memory 1706 and persistent storage 1708 are examples
of storage devices 1716. A storage device i1s any piece of
hardware that 1s capable of storing information, such as, for
example, without limitation, at least one of data, program
code 1n functional form, or other suitable information either
on a temporary basis, a permanent basis, or both on a
temporary basis and a permanent basis. Storage devices
1716 may also be referred to as computer readable storage
devices 1n these illustrative examples. Memory 1706, 1n
these examples, may be, for example, a random access

e

US 10,069,901 B2

17

memory or any other suitable volatile or non-volatile storage
device. Persistent storage 1708 may take various forms,
depending on the particular implementation.

For example, persistent storage 1708 may contain one or
more components or devices. For example, persistent stor-
age 1708 may be a hard drive, a tlash memory, a rewritable
optical disk, a rewritable magnetic tape, or some combina-
tion of the above. The media used by persistent storage 1708
also may be removable. For example, a removable hard
drive may be used for persistent storage 1708.

Communications unit 1710, 1n these 1llustrative examples,
provides for communications with other data processing
systems or devices. In these illustrative examples, commu-
nications unit 1710 1s a network interface card.

Input/output unit 1712 allows for mput and output of data
with other devices that may be connected to data processing
system 1700. For example, input/output unit 1712 may
provide a connection for user mput through at least one of
a keyboard, a mouse, or some other suitable mput device.
Further, input/output unit 1712 may send output to a printer.
Display 1714 provides a mechamsm to display information
to a user.

Instructions for at least one of the operating system,
applications, or programs may be located 1n storage devices
1716, which are 1n commumnication with processor unit 1704
through communications framework 1702. The processes of
the different embodiments may be performed by processor
unit 1704 using computer-implemented instructions, which
may be located 1n a memory, such as memory 1706.

These mstructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and executed by a processor 1n
processor unit 1704. The program code in the different
embodiments may be embodied on different physical or
computer readable storage media, such as memory 1706 or
persistent storage 1708.

Program code 1718 1s located 1n a functional form on
computer readable media 1720 that 1s selectively removable
and may be loaded onto or transierred to data processing
system 1700 for execution by processor unit 1704. Program
code 1718 and computer readable media 1720 form com-
puter program product 1722 1n these illustrative examples.
In one example, computer readable media 1720 may be
computer readable storage media 1724 or computer readable
signal media 1726.

In these illustrative examples, computer readable storage
media 1724 1s a physical or tangible storage device used to
store program code 1718 rather than a medium that propa-
gates or transmits program code 1718. Alternatively, pro-
gram code 1718 may be transiferred to data processing
system 1700 using computer readable signal media 1726.
Computer readable signal media 1726 may be, for example,
a propagated data signal containing program code 1718. For
example, computer readable signal media 1726 may be at
least one of an electromagnetic signal, an optical signal, or
any other suitable type of signal. These signals may be
transmitted over at least one of communications links, such
as wireless communications links, optical fiber cable,
coaxial cable, a wire, or any other suitable type of commu-
nications link.

The different components illustrated for data processing
system 1700 are not meant to provide architectural limita-
tions to the manner 1n which different embodiments may be
implemented. The different 1llustrative embodiments may be
implemented 1n a data processing system including compo-
nents 1n addition to or 1n place of those 1llustrated for data
processing system 1700. Other components shown 1n FIG.

10

15

20

25

30

35

40

45

50

55

60

65

18

17 can be varied from the illustrative examples shown. The
different embodiments may be implemented using any hard-
ware device or system capable of running program code
1718.

Thus, one or more technical solutions are present that
overcome a technical problem with demonstrating an appli-
cation that provides a predictable experience to the client.
Application demonstration system 140 1n FIGS. 1-2 ensures
that the data displayed by an application during a demon-
stration 1s what 1s expected. In this manner, the demonstra-
tion of the application to the client may occur using data that
the client 1s able to relate to during the demonstration.

Also, a lack of an internet connection or a poor internet
connection does not hamper or make performing the dem-
onstration impossible. In this manner, one or more technical
solutions may provide a technical effect in which a stand-
alone demonstration occurs that 1s predictable for providing
a desired experience to the client. Also, delays 1n displaying
data or slow responsiveness ol the application may be
reduced or avoided.

The description of the different illustrative embodiments
has been presented for purposes of illustration and descrip-
tion and 1s not mtended to be exhaustive or limited to the
embodiments in the form disclosed. The different illustrative
examples describe components that perform actions or
operations. In an illustrative embodiment, a component may
be configured to perform the action or operation described.
For example, the component may have a configuration or
design for a structure that provides the component an ability
to perform the action or operation that 1s described in the
illustrative examples as being performed by the component.

Many modifications and varnations will be apparent to
those of ordinary skill in the art. Further, different 1llustrative

embodiments may provide different features as compared to
other desirable embodiments. The embodiment or embodi-
ments selected are chosen and described in order to best
explain the principles of the embodiments, the practical
application, and to enable others of ordinary skill 1n the art
to understand the disclosure for various embodiments with
vartous modifications as are suited to the particular use
contemplated.

What 1s claimed 1s:
1. A method for a standalone demonstration of an appli-
cation, the method comprising:

detecting, by a computer system, requests sent from the
application running on a browser to a server data
processing system;

detecting, by the computer system, responses received
from the server data processing system for the requests
sent from the application;

generating tiers of keys from universal resource locators
in the requests, wherein keys are used to 1dentify the
response 1n a data structure, wherein a tier of keys in the
tiers of keys 1s based off of a umiversal resource locator
in the universal resource locators 1n which all of the
keys 1n the tier of keys point to a same response 1n the
responses, and wherein each key 1n the tier of keys 1s
generated using a different number of components from
the universal resource locator; and

storing, by the computer system, the requests, the tiers of
keys, and the responses for the application in the data
structure so that all of the keys in the tier of keys point
to a same response 1 the responses, wherein the
requests and the responses simulate the server data
processing system to perform the standalone demon-
stration of the application running on the browser on a

US 10,069,901 B2

19

client data processing system using the data structure
without communicating with the server data processing,
system.

2. The method of claim 1, wherein the data structure 1s a
table with the requests used as keys to the responses 1n the
table.

3. The method of claim 1, wherein components i1n the
universal resource locator comprise a path, parameters, and
values.

4. The method of claim 1 further comprising;:

running the application on the client data processing

system:

receiving, by a server emulator, a request from the appli-

cation at the server emulator on the client data process-
Ing system;
identifying, by the server emulator, a response 1n the data
structure stored on the client data processing system
using the request as a key to 1dentity the response; and
returning, by the server emulator, the response to the
application.

5. The method of claim 1, wherein the application 1s
located 1n a web page.

6. The method of claim 1 further comprising:

detecting a user mput selecting a function 1n the applica-

tion for emphasis; and

storing an indicator in the data structure, wherein the

indicator 1s displayed in association with a display of
the function when the standalone demonstration of the
application 1s performed.

7. A method for a standalone demonstration of an appli-
cation, the method comprising:

running the application on a browser on a client data

processing system;

receiving, by a server emulator, a request from the client

data processing system at the server emulator in which
the request 1s directed to a server data processing
system:
identifying, by the server emulator, a response in a data
structure stored on the client data processing system
using the request as a key to identily the response,
wherein the data structure stores requests previously
sent to the server data processing system, tiers of keys
generated from universal resource locators 1n the
requests, and responses for the application receirved
from the server data processing system, wherein a tier
of keys 1n the tiers of keys 1s based off of a universal
resource locator 1n the universal resource locators in
which all of the keys 1n the tier of keys point to a same
response 1n the responses, and wherein each key 1n the
tier of keys 1s generated using a different number of
components from the universal resource locator; and

returning, by the server emulator, the response to the
application, wherein the requests and the responses
stored 1n the data structure simulate the server data
processing system to perform the standalone demon-
stration of the application running on the browser on
the client data processing system using the data struc-
ture without communicating with the server data pro-
cessing system.

8. The method of claim 7, wherein the identifying step
COmMprises:

comparing the request to keys 1n tiers of keys that are

based on universal resource locators from the requests
made when creating the data structure to 1dentify a best
match between the request and the keys 1n the tiers of
keys.

10

15

20

25

30

35

40

45

50

55

60

65

20

9. A computer system comprising:

a client data processing system:;

an application running on a browser on the client data

processing system; and

a recorder that detects responses received from a server

data processing system for requests sent from the
application generates tiers of keys from universal
resource locators 1 the requests, and stores the
requests, the tiers of keys, and responses for the appli-
cation 1 a data structure, wherein the requests and
responses simulate the server data processing system to
perform a standalone demonstration of the application
running on the browser on the client data processing
system using the data structure without communicating,
with the server data processing system, wherein a tier
of keys 1n the tiers of keys 1s based ofl of a universal
resource locator 1n the universal resource locators in
which all of the keys 1n the tier of keys point to a same
response 1n the responses, and wherein each key 1n the
tier of keys 1s generated using a different number of
components from the universal resource locator.

10. The computer system of claim 9, wherein the data
structure 1s a table with the requests used as keys to the
responses in the table.

11. The computer system of claim 9, wherein the recorder
generates keys from the requests, and wherein the keys are
used to i1dentify the responses in the data structure.

12. The computer system of claim 11, wherein compo-
nents in the universal resource locator comprise a path,
parameters, and values.

13. The computer system of claim 9 further comprising;:

a server emulator that the client data processing system on

which the application runs for the standalone demon-
stration; receives a request from the application at the
server emulator on the client data processing system:;
identifies a response 1n the data structure stored on the
client data processing system using the request as a key
to 1dentify the response; and returns the response to the
application.

14. The computer system of claim 9, wherein the appli-
cation 1s located 1n a web page.

15. The computer system of claim 9, wherein the recorder
detects a user input selecting a function in the application for
emphasis and stores an indicator in the data structure,
wherein the indicator 1s displayed in association with a
display of the function when the standalone demonstration
of the application 1s performed.

16. The computer system of claim 9, wherein the client
data processing system 1s selected from one of a tablet
computer, a mobile phone, a laptop computer, a desktop
computer and a work station.

17. A computer system comprising:

a client data processing system:;

an application running on a browser on the client data

processing system; and

a server emulator that receives a request from the client

data processing system at the server emulator 1n which
the request 1s directed to a server data processing
system; 1dentifies a response 1n a data structure stored
on the client data processing using the request as a key
to 1dentily the response, wherein the data structure
stores requests previously sent to the server data pro-
cessing system, tiers ol keys generated from universal
resource locators in the requests, and responses for the
application received from the server data processing
system; and returns the response to the application,
wherein a tier of keys in the tiers of keys 1s based ofl

US 10,069,901 B2

21

ol a universal resource locator 1n the universal resource
locators 1n which all of the keys in the tier of keys point
to a same response 1n the responses, and wherein each
key 1n the tier of keys 1s generated using a different
number of components from the universal resource
locator, wherein the requests and the responses stored
in the data structure simulate the server data processing
system when performing a standalone demonstration of
the application running on a browser on the client data
processing system using the data structure without
communicating with the server data processing system
to obtain the responses.

18. A computer program product for a standalone dem-
onstration of an application, the computer program product
comprising:

a non-transitory computer readable storage media;

first program code, stored on the non-transitory computer

readable storage media, for detecting requests sent
from an application running on a browser to a server
data processing system;

second program code, stored on the non-transitory com-

puter readable storage media, for detecting responses
received from the server data processing system for the
requests sent from the application; and

third program code, stored on the non-transitory computer

readable storage media, for storing the requests, tiers of
keys generated from universal resource locators 1n the
requests, and the responses for the application 1n a data
structure, wherein a tier of keys in the tiers of keys 1s
based ofl of a universal resource locator 1n the universal
resource locators 1 which all of the keys in the tier of
keys point to a same response 1n the responses, and
wherein each key 1n the tier of keys 1s generated using
a different number of components from the universal
resource locator, wherein the requests and the
responses simulate the server data processing system to
perform the standalone demonstration of the applica-
tion running on the browser on a client data processing
system using the data structure without communicating,
with the server data processing system.

19. The computer program product of claim 18 further
comprising;

fourth program code, stored on the non-transitory com-

puter readable storage media, for generating keys from
the requests, wherein the keys are used to 1dentify the
responses in the data structure.

20. The computer program product of claim 19, wherein
components in the universal resource locator comprise a
path, parameters, and values.

21. The computer program product of claim 18 further
comprising;

fourth program code, stored on the non-transitory com-

puter readable storage media, for receiving, by a server
emulator, a request from the application at the server
emulator, wherein the application and the server emu-
lator run on the client data processing system;

fifth program code, stored on the non-transitory computer

readable storage media, for identifying, by the server
emulator, a response 1n the data structure stored on the
client data processing system using the request as a key
to 1dentily the response; and

sixth program code, stored on the non-transitory computer

readable storage media, for returning, by the server
emulator, the response to the application.

10

15

20

25

30

35

40

45

50

55

60

22

22. The method of claim 1, wherein the request 1s a first
request having a first universal resource locator, the method
further comprising:

sending, by the computer system, a second request to a

server emulator;

matching, by the server emulator, a second umversal

resource locator 1n the second request to at least one of
a first key, a second key, and a third key 1n the tier of
keys, wherein the first key was generated using each of
the path, parameters, and values of the umversal
resource locator of the first request, wherein the second
key was generated using two of the path, parameters,
and values of the umiversal resource locator of the first
request, and wherein the third key was generated using
one of the path, parameters, and values of the universal
resource locator of the first request; and

responsive to the server emulator matching the second

universal resource locator to at least one of the first key,
the second key, and the third key, receiving, by the
computer system, a response from the server emulator
that includes the requested content.

23. The computer system of claim 20, wherein the request
1s a first request having a first universal resource locator,
wherein the server emulator further:

recerves a second request from the application;

matches a second universal resource locator in the second

request to at least one of a first key, a second key, and
a third key 1n the tier of keys, wherein the first key was
generated using each of the path, parameters, and
values of the umiversal resource locator of the first
request, wherein the second key was generated using
two of the path, parameters, and values of the umiversal
resource locator of the first request, and wherein the
third key was generated using one of the path, param-
eters, and values of the universal resource locator of the
first request; and

responsive to the server emulator matching the second

universal resource locator to at least one of the first key,
the second key, and the third key, sends a response to
the application that includes the requested content.

24. The computer program product of claim 18, wherein
the request 1s a first request having a first universal resource
locator, further comprising:

program code, stored on the non-transitory computer

readable storage media, for sending a second request to
a server emulator;
program code, stored on the non-transitory computer
readable storage media, for matching a second univer-
sal resource locator 1n the second request to at least one
of a first key, a second key, and a third key in the tier
of keys, wherein the first key was generated using each
of the path, parameters, and values of the universal
resource locator of the first request, wherein the second
key was generated using two of the path, parameters,
and values of the umiversal resource locator of the first
request, and wherein the third key was generated using
one of the path, parameters, and values of the universal
resource locator of the first request; and
program code, stored on the non-transitory computer
readable storage media, for receiving a response from
the server emulator that includes the requested content
in response to the server emulator matching the second
universal resource locator to at least one of the first key,
the second key, and the third key.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

