12 United States Patent

Zyskowski et al.

US010067950B1

US 10,067,950 B1
Sep. 4, 2018

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR
EFFICIENTLY ORGANIZING MAP STYLING
INFORMATION

(71) Applicant: GOOGLE INC., Mountain View, CA
(US)

(72) Inventors: Jamie Zyskowski, Seattle, WA (US);
Scott Shawcroft, Mountain View, CA
(US); Sean Egan, Seattle, WA (US)

(73) Assignee: GOOGLE LLC, Mountain View, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 260 days.

(21) Appl. No.: 14/750,903

(22) Filed: Jun. 25, 2015

Related U.S. Application Data
(60) Provisional application No. 62/017,163, filed on Jun.

25, 2014.
(51) Imnt. CL
GO6T 1120 (2006.01)
GO6T 7/00 (2017.01)
(Continued)

(52) U.S. CL
CPC ... GO6F 17/30241 (2013.01); GO6T 7/0044
(2013.01); GO6T 7/0051 (2013.01); GO6T
7/2006 (2013.01); GO6T 11/203 (2013.01):
GO6T 11/206 (2013.01); GO6T 11/60
(2013.01); GO6T 17/05 (2013.01):

(Continued)

(58) Field of Classification Search
CPC GO6F 17/30241;, GO6T 7/0044; GO6T

1 E-G\ frearything

i EYPL_ LOCALTY
Y PR NRIGRORAODD)
'TYPE_SHRIODALITYY

Confi_ ok |
ooy s name: TRoediap’
A9 ZOONT [Zo0 S,
[TexiSider] Fext_nolor MoBPR2SL
by zocer [room: 14,
{Fextsyle] axt_colon DxbdaTiasy,

L
*
City 1 18

""‘.‘
. ~.
-y
i'h..“ /’
.
"'-_‘_“ .
-, E8E
™
S,
-~
L

SmahiCily Vitetiinown City

N

Capitzl

}
Confie sotf
soedfig sef namier RosdliapRatelite”
by 2o Froorn 5,
[texizbdel (ol colorn DMEdE 251
ey _Forne fronm s 5,
{Texbshde] Desl color Q4ffE

W WY RS A PR Gl RS ARRE PR YW PR T
ﬁ*rvﬁrrh-mw——rhﬁwm-rﬁrw—h-ﬁm‘rrﬁm—-ﬁﬁ“m-rﬁrrhﬁr#

7/0051; GO6T 7/2006; GO6T 11/203;
GO6T 11/206; GO6T 11/60; GO6T 17/05;
GO6T 2200/24; GO6T 22077/10004;

(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

9/2012 Cornell GO8G 1/0969
345/428

8,274,524 Bl *

OTHER PUBLICATTONS

Klostermeyer, Data Structure, 2011, URL: https://www.unf.edu/
~wkloster/3540/wiki_book.pdf, pp. 587.*

(Continued)

Primary Examiner — Mark K Zimmerman
Assistant Examiner — Phuc N Doan

(74) Attorney, Agent, or Firm — Marshall, Gerstein &
Borun LLP

(57) ABSTRACT

To organize configuration parameters for rendering map
features on digital maps, a data structure storing multiple
nodes 1s generated. Respective sets of map feature attributes
and configuration parameters are assigned to the nodes. The
configuration parameters specily visual attributes for ren-
dering map features. Indications of relationships between
the nodes are generated, where at least several of the nodes
include several child nodes. An indication of one or more
map feature attributes to which a certain map {feature
belongs 1s received, and the data structure 1s traversed
according to the indicated relationships between the nodes to
generate a set ol configuration parameters for rendering the
map feature. Traversing the data structure includes compar-
ing the indicated map feature attribute or map Ifeature
attributes to sets of map feature attributes at some of the
nodes, such that the generated set of configuration param-
eters includes configuration parameters from at least two of
the nodes.

17 Claims, 6 Drawing Sheets

'15(._"
rFeaiu."e Tyoe:]
b TYRE LOCALITY, §
b rank 0.95 !

in category
YL _LOUCALITY)

rark = 2.0

Sty

N,

Capital

a0k
WellknownCHy

IN_CATEGGRY {capita]l of ype,
"TYRE_COUNTRYY)

US 10,067,950 B1
Page 2

(51) Int. CL
GOGF 17/30
GO6T 11/60
GO6T 7/20
GO6T 17/05

(52) U.S. CL
CPC ...

(2006.01)
(2006.01)
(2017.01)
(2011.01)

......... GO6T 2200/24 (2013.01); GO6T

2207/10004 (2013.01); GO6T 2207/10028
(2013.01); GO6T 2207/20144 (2013.01); GO6T
2207/30232 (2013.01); GO6T 2207/30236

(2013.01)

(58) Field of Classification Search

CPC . GO6T

2207/10028; GO6T 2207/20144; GO6T
2207/30232; GO6T 2207/30236

See application file for complete search history.

(56)

Ol

References Cited

AER PUBLICATIONS

Valiente, Algorithms on Trees and Graphs, Springer Science &

Business Media, 2013

, total 1 page.™

Jin, Path-tree: An eflicient reachability indexing scheme for large
directed graphs, ACM Transactions on Database Systems (TODS)
TODS Homepage archive vol. 36 Issue 1, Mar. 2011, pp. 52.*

* cited by examiner

U.S. Patent Sep. 4, 2018 Sheet 1 of 6 US 10,067,950 B1

10 40 2
16 R '
Operator Workstation Map Data Server

Styie 24
Specification 20
Interface

20

Client Device

FIG. 1

100\

104 110
Memory
FProcessor(s)
120 Map Feature Geometry Geographic Application
_ Network Interface
o " Dynamic Styling 109
122 Style Table(s) Mode

User Interface

106

130
Cilient Device

FIG. 2

U.S. Patent Sep. 4, 2018 Sheet 2 of 6 US 10,067,950 B1

Everything

Waler

pat Name: “city”
f}f /' I y
,° 182 : Parent: "Everything”
”
”
e 184 | Fiiter: “irt:categmy(type, |
| YPE_LOCALITY,
f..-"' /v ‘TYPE NEIGBORHOOD,’
) 185 | TYPE_SUBLOCALITY’Y
”

config_set name: “RoadMap”
key zoonmn {zoom: 5,

[TextStyle] {text color: 0x262626}}
key_zoonm: {zoom: 14,

[TextStyle] {text _color: Oxb3a78a}l;

X ol
City ““ 188A

"h“ }
| Config_set {
| config_set name: "RoadMapSatellite”
/' key zoom: {zoom: 5,
N 188B | ITextStyle] {text_color: 0x202626}}
o | key_zoom: {zoom: 5,
“o | | TextStyle] {text _color; Oxiit}}

-
l
|
|
|
l
|
|
|

Config_set { |
|
|
I
|
|
|
|
l

SmaliCity l

I

Capital

FiG. 3A

U.S. Patent Sep. 4, 2018 Sheet 3 of 6 US 10,067,950 B1

150\

Everything

Feature Type:
| rvPE LOCALITY, |

| rank 0.95 |

rank >= 0.9

WellKnownCity

IN CATEGORY (capital_of.type,
TYPE _COUNTRY")

in_category
(TYPE LOCALITY)

rank < 0.9

SmallCity
Capital

FiG. 3B

N A ;

| Feature Type:

: ype: l

=verything | TYPE_GRASSLAND,
— I

In_category in_category
(TYPE_LOCALITY) (TYPE WATER)

SmaliCity WellKnownCity

Capital

FIG. 3C

U.S. Patent Sep. 4, 2018 Sheet 4 of 6 US 10,067,950 B1

[————————=== -
| Feature Type:

|
| TYPE LOCALITY |
| rank: 0.4 |
| capital_of: {type: COUNTRY} |

Everything

SmallCity WellKnownCity

Capital

FIG. 3D

v "Old

US 10,067,950 B1

AemubliqAiewnid

N PEOYAIIOUHUDIH
peOMAIEPUODSS

Sheet 5 of 6

eusuyolepy = 7] PEOHIEWION |

LMY

[BLISUIOUIA

Sep. 4, 2018

|IBUjULLIS |

opjed { UON " - -fdmm

U.S. Patent

U.S. Patent Sep. 4, 2018 Sheet 6 of 6 US 10,067,950 B1

-

ASSIGN ONE OR MORE MAP FEATURE FILTERS TO NEW

402 NODE

404 ASSIGN STYLE PARAMETERS TO NEW NODE

406 GENERATE INDICATION(S) OF RELATIONSHIP(S) BETWEEN
NEW NODE AND NODES OF THE DATA STRUCTURE

408

YES
ANOTHER NODE? -

RECEIVE INDICATION OF FEATURE ATTRIBUTE FOR MA
410 FEATURE

412 BEGIN TRAVERSING THE DATASTRUCTURE

414

FILTER MATCH AT ONE OF CHILDREN? NO

YES

416 AUGMENT SET OF STYLE PARAMETERS WITH STYLES AT
CURRENT NODE

418 SELECT NEXT NODE

END

FIG. 5

US 10,067,950 B1

1

SYSTEMS AND METHODS FOR
EFFICIENTLY ORGANIZING MAP STYLING
INFORMATION

FIELD OF TECHNOLOGY

This disclosure relates to interactive digital maps and,
more particularly, to configure rendering behavior used to
render map features on digital maps.

BACKGROUND

The background description provided herein 1s for the
purpose of generally presenting the context of the disclo-
sure. Work of the presently named inventors, to the extent it
1s described 1n this background section, as well as aspects of
the description that may not otherwise qualily as prior art at
the time of filing, are neither expressly nor impliedly admut-
ted as prior art against the present disclosure.

Interactive digital maps, which various geographic appli-
cations display on computing devices, generally depict
numerous geographic features, such as roads, outlines of
countries and towns, bodies of water, buildings, etc. Some of
these geographic features can be depicted differently in
different contexts. For example, a road normally depicted as
a blue line can be rendered 1n red to 1llustrate heavy traflic,
or the boundary of a county can be highlighted in response
to a geographic query.

SUMMARY

Generally speaking, a system of this disclosure organizes
indications of line thickness, line color, fill color, and other
configuration parameters for rendering features on digital
maps 1nto a data structure that allows operators to describe
the features 1n terms of parent/child/sibling relations. For an
example, an operator can specily certain configuration
parameters for “roads,” indicate that “small roads” derive
configuration parameters from “roads” according to a child-
parent relationship, and specily additional configuration
parameters for “small roads.” The system also can automati-
cally generate tables of configuration parameters for map
teatures using the data structure, where a digital geographic
application operating 1 a client device uses the tables to
render map features and re-render the map Ifeatures by
“restyling” same feature geometry.

More particularly, one implementation of these tech-
niques 1s a method for organizing configuration parameters
for rendering map features on digital maps. The method,
which can be executed on one or more computing devices,
includes generating a data structure storing data for multiple
nodes, including assigning to the nodes (1) respective sets of
map feature attributes and (11) respective sets of configura-
tion parameters that specily visual attributes for rendering
map features. The method also includes generating 1ndica-
tions of relationships between the nodes, where at least
several of the nodes 1include several child nodes. Further, the
method 1ncludes receiving an indication of one or more map
teature attributes to which a certain map feature belongs and
traversing the data structure according to the indicated
relationships between the nodes to generate a set of con-
figuration parameters for rendering the certain map feature.
Traversing the data structure includes comparing the indi-
cated one or more map feature attributes of the certain map
feature to sets ol map feature attributes at some of the nodes,

10

15

20

25

30

35

40

45

50

55

60

65

2

such that the generated set of configuration parameters
includes configuration parameters from at least two of the
plurality of nodes.

Another implementation of these techniques 1s a method
for providing configuration parameters for rendering map
features on client devices, executed on one or more com-
puting devices. The method includes accessing a data struc-
ture that implements a graph having multiple nodes, where
cach node indicates (1) a respective set of map feature
attributes and (11) a respective set of configuration param-
cters that specily visual attributes for rendering map fea-
tures. The data structure indicates at least parent-child
relationships between the nodes. The method includes tra-
versing at least a portion of the data structure according to
the 1indicated relationships between the nodes to generate a
flattened representation of at least a portion of the data
structure, where the traversing includes combining configu-
ration parameters for at least two of the nodes to generate a
set of configurations of parameters. The method also
includes causing the flattened representation to be transmit-
ted to a client device via a communication network, for
applying to map features when rendering a digital map.

Yet another implementation 1s a system including a non-
transitory computer-readable memory and processing hard-
ware coupled to the computer-readable memory. The pro-
cessing hardware configured to generate data structure
storing data for multiple nodes, including assigning to the
nodes (1) respective sets of map feature attributes and (11)
respective sets of configuration parameters that specily
visual attributes for rendering map features. The processing,
hardware 1s further configured to generate indications of
relationships between the nodes, where at least several of the
nodes include several child nodes, receive an indication of
one or more map feature attributes of a certain map feature,
and traverse the data structure according to the indicated
relationships between the nodes to generate a set of con-
figuration parameters for rendering the certain map feature.
To traverse the data structure, the processing hardware 1s
configured to compare the indicated one or more map
feature attributes of the certain map feature to sets of map
feature attributes at some of the nodes, so that the generated
set of configuration parameters 1includes configuration
parameters from at least two of the nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example computing
system 1n which configuration parameters can be organized
according to the techniques of this disclosure;

FIG. 2 15 a block diagram of an example client device that
can operate in the system of FIG. 1;

FIG. 3A 1s a diagram of a portion of an example data
structure that stores configuration parameters according to
the techniques of this disclosure;

FIG. 3B schematically illustrates traversal of the data
structure of FIG. 3A to determine configuration parameters
for a certain feature, where applicable configuration param-
cters are 1dentified at two levels of the hierarchy;

FIG. 3C schematically illustrates traversal of the data
structure of FIG. 3A to determine configuration parameters
for another feature, where applicable configuration param-
cters are 1dentified only at a root node;

FIG. 3D schematically illustrates traversal of the data
structure of FIG. 3A to determine configuration parameters
for yet another feature, where applicable configuration
parameters are 1dentified at four levels of the hierarchy;

US 10,067,950 B1

3

FIG. 4 1s an example visualization of a data structure that
stores configuration parameters for various types of road

map features, which the workstation of FIG. 1 can display to
an operator;

FIG. § 1s a flow diagram of an example method for
organizing configuration parameters into a data structure of
this disclosure, which can be implemented in the system of

FIG. 1.

DETAILED DESCRIPTION OF THE DRAWINGS

General Overview

A system efliciently organizes sets of visual attributes (or
“configuration parameters”) for rendering map features or
ranking labels, or components of a digital map, on client
devices. A set of configuration parameters for a certain
configurations can include, for example, a particular line
thickness, a particular fill color, and a particular outline
color. Map features can be, for example, two- and three-
dimensional shapes representing roads, building footprints,
bodies of water, boundaries of cities, and other geographic
entities.

In an example scenario, a user operating a client device
requests a digital map of a certain geographic area via a
geographic application. The digital map imncludes the depic-
tion of a road as a blue polyline three pixels wide, among
other map features. The user then operates a user interface
control to activate the display of current traflic conditions on
the digital map. In response, the geographic application
applies new configuration parameters to the same road
centerline, which defines the geometry of this map feature,
to depict the road a red polyline five pixels wide. In other
words, the geographic application can reconfigure one or
several map features on a digital map by using new visual
attributes with “old” map feature geometry. This approach
allows geographic applications to change visual attributes of
map features quickly and efliciently (e.g., when restyling to
turn on trathic, bicycle paths, night mode and other time-oi-
day display, or activate a hybrid display of map data and
satellite 1magery), easily cache configuration parameters to
support map functionality in the offline mode, and operate
consistently on different hardware platforms, for example.

To organize configuration parameters, the system of this
disclosure constructs a data structure that represents a graph
with named nodes, such as “water,” “city,” and “country.”
Each node can include configuration parameters for render-
ing map lfeatures at one or several zoom levels (or more
broadly, scales) and, in some cases, for interpolating con-
figuration parameters between zoom levels. Each node also
can include indications of one or several types of features to
which the configuration parameters can apply. In some
cases, the filter defines the category. An example filter 1n a
node “city” lists types “locality,” “neighborhood,” and *“sub-
locality.” Further, the nodes are interconnected so as to
define hierarchical relationships between sets of configura-
tion parameters and, in some implementations, “older/
younger’ sibling relationships between child nodes of a
common parent node. Thus, for example, the node named
“city” can have child nodes named “small city” and “well-
known city,” respectively. In at least some example 1mple-
mentations, the data structure implements a Directed Acy-
clic Graph (DAG), which can be represented by a text
protocol bufler {ile.

To generate a complete set of configuration parameters for
a feature of a certain specified type, the system traverses the
data structure according to certain principles (e.g., starting at
the root, selecting an older sibling prior to a younger sibling,

5

10

15

20

25

30

35

40

45

50

55

60

65

4

stopping the traversal when the node has no child nodes) and
compares the map feature attributes, such as the type, to the
filter of the node being visited. When the map feature
attributes matches the filter, the system applies the styling
parameters to the feature, and traversal continues to the next
level of hierarchy when the node has child nodes. In this
manner, a set of configuration parameters can be constructed
from data associated with multiple nodes. For example, a
feature can acquire configuration parameters S, from a
parent node and configuration parameters S, from a child
node. When configuration parameters at different levels of
hierarchy refer to the same visual attribute, the configuration
parameters of the child node override the configuration
parameters ol the parent node, according to some 1mple-
mentations.

To traverse the data structure more ethiciently, the system
can implement a rule according to which at most one sibling
can be matched to a feature, and the test against a set of
siblings stops upon finding the first match.

In one example implementation, one or more network
servers generate, update, and otherwise maintain the data
structure 1n order to efliciently generate style tables for use
on client devices. As a more specific example, the one or
more network servers can traverse the graph, or a relevant
portion of the graph, in a depth-first manner to generate path
identifiers and a flattened style table, where each path
identifier corresponds to an index into the flattened style
table. Client devices can use the style tables to re-style map
features by applying new visual attributes without re-re-
questing feature geometry, interpolate visual attributes
between zoom levels, and otherwise render features 1n line
with a principle of separating feature geometry from feature
styling.

According to other network topologies, however, one or
more network servers generate style tables for use by other
network servers. In one such topology, back-end servers
generate style tables and provide the style tables to front-end
servers. The front-end servers then use the style tables to
generate rasterized (bitmap) map 1images for presentation at
client devices.

Further, a user interface can be implemented for user
experience (UX) engineers and/or other operators to con-
struct the graph and assign configuration parameters to
various nodes. The system can enforce certain rules, such as
requiring that a node declare 1ts nearest older sibling, to help
operators avoid ambiguous or erroneous combinations of
configuration parameters. The rule can operate in conjunc-
tion with the principle that, for a given set of sibling nodes,
the nodes are tested oldest-to-youngest, with the first match
with the filter ending the test. In an example scenario, an
operator may decide between defining a node “local road” as
a child of “road” (1n which case “local road” will inherit the
configuration parameters of “road”) or as a sibling of “road”
(1n which case “local road” can have configuration param-
eters independent of the configuration parameters of “road,”
except for those both “local road” and “road” may inherit
from a common parent). When the operator declares the
nearest older sibling for a node, he or she 1s more likely to
notice overlaps 1n {ilters and/or other erroneous definitions,
if the rule outline above 1s enforced.

Overview ol an Example System and Client Device

FIG. 1 1illustrates an example system 10 1 which a map
data server 12 organizes configuration parameters for ren-
dering map features into a style graph 14, stored as a data
structure on a computer-readable memory 1n a map database

US 10,067,950 B1

S

16. The map data server 12 also generates style tables, such
as one or several style table(s) 18, for use at a client devices
20 and other devices.

More particularly, the map data server 12 can include
processing hardware such as one or more processor(s) 22
coupled to a memory 24. A set of mstructions stored in the
memory 22 can implement a style graph/table generator 26.
When executed on the one or more processor(s) 20, the
instructions operate to support such example functions as
initial creation of the style graph 14, addition or deletion of
new nodes of the style graph 14, and generation of the style
table(s) 18 or similar tables. More generally, the style
graph/table generator 26 can support any number of func-
tions related to management of data structure(s) storing
configuration parameters and using the data structure(s) to
provide appropriate configuration parameters to client
devices.

In addition to the style graph 14, the map database 16
stores map feature geometry 30. For example, the map
feature geometry 30 can include a description of road
geometry as a polyline made up of a sequence of vertices,
and a description of a building footprint as a polygon. The
map data server 12 can provide relevant portions of the map
teature geometry 30 along with styling parameters derived
from the style graph 14 to the client device 20 for rendering
digital maps. Thus, the map data server 12 provides map
data to the clhient device 20 according to the principle of
separating feature geometry from map feature styling. This
principle 1s discussed in more detail below.

With continued reference to FIG. 1, an operator such as a
UX engineer can use a workstation 40 to specily configu-
ration parameters for managing the style graph 14. The
workstation can include one or more processor(s) 42
coupled to a memory 44. A set of mstructions stored 1n the
memory 44 implement a style specification interface 50. In
operation, the style specification interface 50 can provide to
an operator a text-based and/or graphical representation of
the current version of the style graph 14, controls for adding,
nodes of the style graph 14, controls for specitying configu-
ration parameters for various nodes, controls for verifying
compliance with rules according to which the style graph 14
1s constructed, etc. Example functionality of the style speci-
fication interface 350 1s discussed below 1n more detail.

The operator workstation 40, the map data server 12, and
the map database 16 1n general can be interconnected 1n any
suitable manner, such as via a local area network or a wide
area network. In the example implementation 1llustrated 1n
FIG. 1, the components 12, 16, and 40 operate in a same
local network. The client device 20 accesses the map data
server 12 via a wide area communication network 60, which
can be the Internet, for example. In general, however, these
devices can operate according to any suitable network
topology. For example, the operator workstation 40 and the
map data server 12 in one implementation can be commu-
nicatively coupled via the network 60.

For simplicity, FIG. 1 illustrates only one instance of a
map data server 12. However, the map data server 12 in
other implementations can include multiple devices capable
of communicating with each other, arranged according to
any suitable scheme.

FIG. 2 1s a block diagram of an example computing
device 100, which can operate in the system 10 as the client
device 20, for example. However, the client device 20 1n
general can be implemented 1n any suitable manner. The
client device 100 can be, for example, a laptop computer, a
smart phone, or a tablet computer. The client device 100
includes one or more processor(s) 102, a computer-readable

10

15

20

25

30

35

40

45

50

55

60

65

6

memory 104, a network mterface 105, and a user interface
106. In some implementations, the one or more processor(s)
102 include a central processing unit (CPU) as well as a
graphics processing umt (GPU) for efliciently rendering
graphics content. The user interface 106 can include such
components as, for example, a screen, a touchscreen, a
keyboard, a microphone, one or more speakers, etc. The
memory 104 can be a non-transitory memory including
persistent (e.g., flash drive) and/or non-persistent (e.g.,
RAM) components.

The memory module 104 stores instructions that imple-
ment a geographic application 110, which can be a special-
purpose mapping application or a general-purpose applica-
tion such as a web browser that includes a mapping
application programming interface (API), for example. The
geographic application 110 can generate interactive digital
maps ol geographic areas, provide navigation instructions,
facilitate execution of geospatial queries, and perform other
geographic functions.

The memory module 104 also stores map feature geom-
etry 120, which the geographic application 110 can receive
from a network server such as the map data server 12 of FIG.
1. The geographic application 110 also can receive one or
several table(s) 112 from the network server. As discussed 1n
more detail below, the style graph/table generator 26 or a
similar component can generate the one or several table(s)
112 by traversing the stvle graph 14 partially or in 1its
entirety. A dynamic styling module 130 can look up and
apply configuration parameters 1n the style table(s) 112 to
the map feature geometry 120 to generate a digital map.
Separating Map Feature Geometry from Map Feature Styl-
ng,

Referring to both FIGS. 1 and 2, the user of the client
device 20 can submit a request for a “base” map of the
borough of Manhattan at zoom level 7Z,=14, and the map
data server 12 in response can provide appropriate map
feature geometry along with configuration parameters for
those map features that are included in the map feature
geometry. In some implementations, the map data server 12
provides configuration parameters that specily how map
teatures should be rendered at zoom level Z,=14 as well as
at Z,=15, so that the client device 20 can interpolate style
data and render map features at intermediate zoom levels
such as 7,=14.5 or well as at 7,=14.9, for example. Further,
when the user wishes to view the same map of Manhattan
with current traflic information, the map data server 12 can
simply provide additional style definitions to the client
device 20 without providing the same road geometry again,
and the client device 20 can re-render some of the roads to
indicate, for example, congested areas using thicker red
strokes. Still further, when the client device 20 operates
offline or has a slow network connection, the client device
20 1n many cases can properly re-style a digital map by
applying configuration parameters stored 1n local memory to
the map features currently being displayed.

The map feature geometry 30 can describe geometries of
various map features in a vector graphic format, or another
suitable format for specitying geometric shapes using math-
ematical descriptions of points and paths connecting the
points. For convenience, data conforming to any one of such
formats 1s referred to as “vector data.” Vector data generally
allows client devices to scale, rotate, and otherwise operate
on shapes without distortion. For example, rather than
specilying each pixel that makes up a raster image of a line
segment, vector data may specily the coordinates of two
endpoints of the line segment and indicate that the two
endpoints are connected by a straight line.

US 10,067,950 B1

7

The map feature geometry 30 can define the outlines of
various natural geographic features, such as rivers, moun-
tains, and forests, as well as various artificial geographic
features, such as roads, buildings, and parks. Moreover, the
map feature geometry 30 1n some cases can include outlines
of political, administrative, and other divisions, such as
states, counties, townships, efc.

In some 1implementations, the client device 20 implements
a graphics pipeline that includes vertex shaders and frag-
ment shaders to render vector data. For example, the graph-
ics pipeline can be implemented 1n a graphics processing
unit (GPU) and conform to the OpenGL ES standard.
Generally speaking, vertex shaders and fragment shaders
define two pipeline shading stages: vertex shaders that
operate on vertices visible 1n a frame and fragment shaders
that operate on “fragments,” or sets of pixels that make up
a frame. For example, the central processing unit (CPU) on
client device 20 can create a collection of triangles (made up
of points defined 1n two or three dimensions) and pass the
collection of triangles to the GPU. For each triangle Tin the
collection, the GPU then can run a vertex shader on each
vertex of triangle T, and a fragment shader on each pixel
enclosed by triangle T.

The map data server 12 can organize feature geometry 30
into map tiles, which generally correspond to a two-dimen-
sional organization of geospatial data into a quadtree, or data
structure 1n which each non-leal node has four children, or
other trees with only two or more children, or more gener-
ally, any other suitable data structure. Each map tile 1n this
case corresponds to a square geographic region, where the
s1ze ol the square can depend on the zoom level. Thus, each
map tile at a given zoom level 1s divided 1nto four tiles at the
next level, up to the highest zoom level. In operation, the
map data server 12 can provide a set of map tiles T,,
T,,...T, tothe client device 20 for rendering a digital map.

The map data server 12 also can provide configuration
parameters that are generally independent of the map tiles
and, more generally, of descriptions of map feature geom-
etries. In particular, certain styles can apply to numerous
map tiles, and the map data server 12 can provide the
corresponding the configuration parameters once for use
with multiple map tiles. The map data server 12 thus can
climinate duplication of configuration parameter data across
map tiles, thereby decreasing the amount of data that needs
to be transmitted to the client device 20 for generating a
digital map. As indicated above, the client device 20 also can
interpolate configuration parameters to determine how map
features can be scaled 1n a seamless, non-disruptive manner.

Example server-side organization and maintenance of
configuration parameters and generation of style tables for
use on client devices 1s discussed next.

Organizing Configuration Parameters Using a Graph and
Generating Style Tables

Configuration parameters for map features can be orga-
nized 1n a data structure similar to a data structure 150 made
up of multiple mterconnected named nodes, which 1s 1llus-
trated 1n FIG. 3A. Referring back to FIG. 1, the style/graph
table generator 26 or a similar module can generate the data
structure 150, store the data structure as the style graph 14,
and modily the data structure 150 1n accordance with
operator commands received via the operator workstation
40. The style/graph table generator 26 also can traverse the
data structure 150 to generate sets of configuration param-
cters for various feature classifications. Examples of travers-
ing the data structure 150 to derive configuration parameters
for several map feature types are discussed below with

reterence to FIGS. 3B-D.

10

15

20

25

30

35

40

45

50

55

60

65

8

Referring now to FIG. 3A, the nodes of the data structure
150 can be named for operator convenience in accordance
with the level, type(s) of map features, or geographic
schemes for which the node stores configuration parameters.
The nodes can be interconnected using parent/child/sibling
relationship indicators stored as part of node-specific data,
for example, or in any other suitable manner. FIG. 3A
schematically illustrates relationships using arrows. It 1s
noted that the nodes can include additional relationship
indicators such as nearest-older-sibling or nearest-younger-
sibling 1ndicators, for example.

In this example, the data structure includes a root node
named “Everything” with two child nodes, “Water” and
“City.” In one implementation, nodes “Water” and “City”
inherit their style properties from the node “Everything.” In
other words, each of nodes “Water” and “City” can include
the configuration parameters of node “Everything” as well
as additional configuration parameters. Node “City” 1n this
example has child nodes “SmallCity” and “WellKnown-
City.” Another node, “Captial,” 1s a child of node “Small-

City” as well as node “WellKnownCity.” Further, node
“City” 1s an older sibling of node “Water,” and node
“SmallCity” 1s an older sibling of node “WellKnownCity.”
The relative “age” of siblings in the data structure 150 can
determine the order 1n which a feature type 1s compared to
node-specific filters: for example, when traversing, but not
attaching, the data structure 150, the style/graph table gen-
erator 26 (see FIG. 1) can first test the map feature against
the oldest sibling, then the next-oldest sibling, and proceed
in this manner until the youngest sibling 1s reached.

In some implementations, the relationships between the
nodes of the data structure 150 define a directed acyclic
graph (DAG), with nodes corresponding to graph vertices
and the relationships, illustrated as arrows 1 FIG. 3A,
corresponding to edges. As a DAG, the data structure
includes no cycles, so that no traversal of any portion of the
data structure starting at a certain node N leads back to the
same node N.

Hach of the nodes of the data structure 150 can store, or
be associated with, node-specific data. For example, node
“City” stores data 180 including such data components as (1)
a name ndicator 182 (*City”), (1) a parent indicator 184
(1dentifying node “Everything” as the only parent), (111) a
filter 186 1dentilying map feature attributes to which the
configuration parameters of node “City” apply, and (1v)
configuration sets 188A and 188B including configuration
parameters, which can be scale-level-specific. The data 180
1s provided only as an example. In general, nodes of the data
structure 150 can include additional data components and/or
omit some of the data components (1)-(1v) listed above.

The filter 186 1n this example indicates that map features
that have map feature attributes of type “locality,” “neigh-
borhood,” and “sub-locality” match node “City.” The filter
186 can list any number of map feature attributes. Moreover,
the filter 186 in some cases can include a string that
conforms to the Structured Query Language (SQL) format.
In general, the filter 186 can have any desired level of
complexity. The respective filters of the nodes 1n FIG. 3A
can be selected as to define a single path of traversal for a
map leature. In other words, the data structure 150 can
conform to the principle that filters of siblings do not define
overlapping ranges. However, in some implementations
where other rules are implemented, such as the “one-sibling
matching rule” discussed below, the data structure 150 may
not confirm to this principle, and some filters of siblings can
define overlapping ranges

US 10,067,950 B1

9

More particularly, the style/graph table generator 26 and/
or the style specification interface 50 of FIG. 1 can enforce
what can be referred to as the “one-sibling matching” rule,
according to which a map feature can match the filter(s) of
at most one sibling, so that a test against a set of siblings can
end with the first match, and a map feature already matched
to a sibling 1s not tested against the other siblings. Moreover,
the siblings can be orgamized, or ranked, by *“age” as
discussed above to define a direction 1n which a test against
a set of siblings can proceed. The siblings 1n general can be
ranked 1n any suitable manner.

The configuration sets 188A and 188B describe style
properties 1n a structured format. In particular, the configu-
ration set 188A includes a set of configuration parameters
that pertain to a road map. In other words, the map feature
matching the filter 184 1s styled according to the configu-
ration set 188A when rendered as part of a digital map of
type “road map.” The configuration set 188B includes a set
of configuration parameters that pertain to a satellite view of
a road map. Each of the nodes 1n FIG. 5 can include any
desired number of configuration sets for various types of
maps 1n addition to road maps and satellite views of road
maps, such as navigation maps or terrain maps, for example.

In this example, the configuration sets 188A and 188B
specily respective text color attributes for styling text labels.
As 1illustrated 1n FIG. 3A, each of the configuration sets
188A and 188B includes a configuration parameter type
identifier “TextStyle” and, as part of text style description,
specifles a respective color (e.g., text_color: Oxb3a78a) for
operator convenience, for example. Text color attribute 1s
“nested” 1n a definition of a text style because a description
of a text style also can specily a certain font, for example.
In general, a configuration set specilies one or several
configuration parameters of any suitable type, such as line
color, line thickness, fill color, etc.

Further, the configuration sets 188A and 188B list con-
figuration parameters for specific zoom levels. The configu-
ration set 188 A specifies a certain text color for zoom level
5 and a different color for zoom level 14. Referring back to
FIG. 1, the client device 20 can use these definitions to
interpolate text color for the matching map features at zoom
levels between 5 and 14. Again, configuration sets similar to
the sets 188 A and 188B 1n various scenarios can specily any
visual attribute at one or multiple zoom levels, at least some
of which can be interpolated: line thickness, line color, fill
color, etc.

Now referring to FIG. 3B, the style graph 26 or another
suitable component can traverse the data structure 150 to
identily configuration parameters that apply to map feature
200. As schematically 1llustrated 1n FIG. 3B, the map feature
200 15 of type “locality” having a rank of 0.95. The map
feature can be a label. The rank of the map feature 200 can
be any numeric value that can be compared to numeric
values of the same type defined as parts of node filters. It 1s
noted, however, that the numeric rank 1s merely an example
of a value associated with a map feature using which the
map feature can be tested against some of the nodes of the
data structure 150. In contrast to the rank of the map feature
200, the indicator TYPE_LOCALITY corresponds to a
value 1n an enumerated type.

The style graph/table generator 26 begins traversing the
data structure 150 at root node “Everything.” The style
graph/table generator 26 begins to construct a set of con-
figuration parameters for the map feature 200 by applying
the configuration parameters at node “Everything.” How-
ever, as indicated above, the graph/table generator 26 can
override some of these parameters 1f a descendant node 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

10

found to match the map feature 200 and defines difierent
parameters for the same visual attribute (e.g., text color).

The style graph/table generator 26 compares the enumer-
ated value TYPE_LOCALITY to values of the same type
included 1n the filter of node “City.” Because the filter of
node “City” indicates that TYPE_LOCALITY applies to the
node, the style graph/table generator 26 expands (or partially
overrides) the set of configuration parameters for the map
teature 200 with the configuration parameters at node
“City.” In line with the “one-sibling” rule, the style graph/
table generator 26 1n this example does not process node
“Water” at all. It 1s also noted that node “City” may not
indicate any rank values, and the rank of 0.95 of the map
feature 200 may not be a factor in selecting the “Every-
thing”—“City” part of the path.

Next, the style graph/table generator 26 determines which
of the child nodes of node “City,” 1f any, further applies to
the map feature 200. Node “SmallCity” 1n this example
configuration 1s an older sibling of node “WellKnownCity,”
and so the style graph/table generator 26 first compares the
filter of node “SmallCity” to the properties of the map
teature 200. Because the filter of node “SmallCity” indicates
the rank of 0.9 and below, the style graph/table generator 26
proceeds to node “WellKnownCity,” whose rank of 0.9 and
above matches the rank of 0.95. The style graph/table
generator 26 accordingly applies the configuration param-
cters of node “WellKnownCity” to the set of configuration
parameters ol the map feature 200.

The style graph/table generator 26 next proceeds to the
only child of node “WellKnownCity,” “Capital.” The style
graph/table generator 26 determines there 1s no match
between the filter at node “Capital” and the properties of the
map feature 200, and ends the traversal of the data structure
150. The resulting path of the map feature 200 through the
data structure 1s schematically illustrated 1n FIG. 3A using
thicker lines.

FIG. 3C illustrates another example traversal, where a
map feature 250 1s of type “grassland,” and has no other
properties that can be compared to the node filters of the data
structure 150. The style graph/table generator 26 first com-
pares the type “grassland” to the type “locality” filter of the
oldest sibling, node *“City,” and then compares the type
“orassland” to the type “water” filter of the younger sibling,
node “Water.” Because there 1s no match, and because node
“BEverything” has no other children, the style graph/table
generator 26 stops the traversal. As a result, the map feature
250 acquires only the configuration parameters available at
root node “Everything.”

Another example traversal 1s discussed next with refer-
ence to FIG. 3D. A map feature 300 1s of type “locality,” has
a rank of 0.4, and has the property (or attribute) “capital of
country.” The property “capital of country” 1s structured as
a “capital of” indicator for a subtype “country.” The style
graph/table generator 26 in this case finds matches, and
accordingly selects respective configuration parameters
from, nodes “Everything,” “City,” “SmallCity,” and “Capi-
tal.”

Referring generally to FIGS. 3A-D, a path which a map
teature follows through the data structure 150 can define a
style 1identifier for the resulting set of configuration param-
cters. For example, the path of the map feature 200 is
“BEverything”—*“City”—=“WellKnownCity,” the path of the
map feature 250 1s simply “Everything,” and the path of the
map feature 300 1s ““Everything”—"City*“—=*“SmallCity-
”—“Capital.” These paths can be converted to numeric
values using any suitable technique, such as by masking in
values at different levels of Thierarchy (e.g.,

US 10,067,950 B1

11

“Everything”=0xF0000000, “City”’=0x01000000). Each set
of configuration parameters generated as a result of travers-
ing the data structure 150 for a certain map feature can be
structured as an entry in a table, with the style i1dentifier
serving as an index.

Thus, the style graph/table generator 26 can traverse
certain portions or the entirety of the data structure 150 to
flatten the graph and generate one or several tables for use
by client devices and/or network servers that rasterize map
data. The style graph/table generator 26 then can provide the
flattened graph or portion of the graph to the client device 20
as a static resource.

It 1s noted that the approach illustrated in this disclosure
allows the system 10 to limit the number of styles generated
based on a graph to only those styles that are likely to be
used with certain map tiles. Further, implementing the data
structure 150 as a graph allows configuration parameters to
be defined independently, allowing nodes to be shared. In the
example configuration of FIGS. 3A-D, text size can be a
function of rank, but icon selection depends on whether the
city 1s a capital. By allowing operators to define multiple
parent nodes, the system 10 reduces the overall number of
nodes that need to be maintained. More particularly, rather
than including nodes “SmallCapitalCity” and “WellKnown-
CapitalCity,” the data structure 150 includes a single node
“captial,” and the style graph/table generator 26 when
needed can generate sub-paths “SmallCity”—*Capital” and
“WellKnownCity”—*“Capital.”

Operator Interface

The style graph/table generator 26 can represent the data
structure 150 as a human-readable text file. In this manner,
the user can easily view the relationships between nodes,
edit the defined relationships, etc. Moreover, the system 10
can present a visualization of the data structure 150 via the
style specification interface 50 (see FIG. 1), for example.
The visualization 350 can be similar to a visualization 350
illustrated i FIG. 4. The visualization 350 illustrates to an
operator how visual styles are generated for roads of various
types. In addition to 1llustrating relationships between nodes,
the visualization 350 depicts example road segments ren-
dered according to the corresponding styles.

In various implementations, the style specification inter-
face 50 can provide various controls for editing nodes,
deleting nodes, viewing inheritance, testing relationships,
ctc. Further, the style specification interface 50 1n some
implementations can require that the operator declare the
nearest oldest sibling for each node, so that the operator can
verily whether he or she mmadvertently defined overlapping
filters for the siblings, for example.

Example Method for Organizing Configuration Parameters

FIG. § illustrates a flow diagram 400 of an example
method for organizing configuration parameters mto a data
structure similar to the data structure 150 discussed above.
In some implementations, the method 400 1s at least partially
implemented 1n the style graph/table generator 26 and/or the
style specification interface 50, as one or more sets of
instructions stored on a non-transitory computer-readable
medium and executable on one or more computing devices.

At blocks 402-408, a data structure storing configuration
parameters 1s constructed. In particular, at block 402, one or
more filters or map feature attributes are assigned to a new
node for use 1n filtering. For example, an operator using the
workstation 40 can generate a new node and assign types
“neighborhood” and “locality” to the node. Next, at block
404, configuration parameters are recerved and assigned to
the node. As discussed above with reference to node data
180, any number of configuration parameters of various

10

15

20

25

30

35

40

45

50

55

60

65

12

types can be assigned to a node. Further, at block 406, an
indication of a relationship between the new node and one
or more pre-existing nodes of the data structure can be
received. For example, the user can indicate that the new
node 1s a child of a certain pre-existing node, a younger
sibling of another pre-existing node, etc. In some 1mple-
mentations, additional data can be received to configure a
new node or, conversely, some of the data discussed with
reference to block 402-406 1s not received. If the operator
wishes to configure another node (block 408), the flow
returns to block 402. Otherwise, the flow proceeds to block
410.

At blocks 410-418, configuration parameters are gener-
ated for a map feature using the data structure. In one
implementation, the blocks 410-418 are implemented 1n the
style graph/table generator 26. At block 410, an indication of
at least one feature property or attribute 1s received. For
example, property “locality” and rank of *“0.8” can be
received for a certain map feature, which can be an inter-
active 1con representing a selectable point of interest on a
map. As discussed with reference to FIGS. 3A-D above, any
number of properties can be specified for a map feature for
comparison to filters at various nodes of a data structure.

At block 412, the software component that implements
the method 400 begins to traverse the data structure. In
particular, the one or more properties received at block 410
are compared to filters at one or more nodes of the root data
structure, starting with the root node. Next, it 1s determined
at block 414 whether the properties of the map feature match
any of the filters of the children nodes, where 1t 1s possible
that zero or only one child may match. In one implementa-
tion, the children are *“visited” in the *“oldest-to-youngest™
order, with the first match ending the analysis of the siblings.
IT there 1s a match, the set of style properties for the map
feature 1s augmented with the configuration parameters
associated with the node (block 416), and the flow proceeds
to block 418. Otherwise, the method 400 ends. At block 418,
the next node 1s selected, provided the node matched at
block 414 has children.

More generally, this and other techniques discussed above
can apply to other mapping systems, such as systems that
print map 1mages on paper. Further, at least some of the
techniques for organmizing configuration parameters dis-
cussed above can be used with other types of data, such as
gaming data (e.g., organizing virtual characters), for
example.

Additional Considerations

The {following additional considerations apply to the
foregoing discussion. Throughout this specification, plural
instances may implement components, operations, or struc-
tures described as a single instance. Although individual
operations of one or more methods are illustrated and
described as separate operations, one or more of the 1ndi-
vidual operations may be performed concurrently, and noth-
ing requires that the operations be performed 1n the order
illustrated. Structures and functionality presented as separate
components 1n example configurations may be implemented
as a combined structure or component. Similarly, structures
and functionality presented as a single component may be
implemented as separate components. These and other
variations, modifications, additions, and improvements fall
within the scope of the subject matter herein.

Certain implementations are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) or hardware modules. A hardware module 1s

US 10,067,950 B1

13

tangible umt capable of performing certain operations and
may be configured or arranged in a certain manner. In
example 1mplementations, one or more computer systems
(e.g., a standalone, client or server computer system) or one
or more hardware modules of a computer system (e.g., a
processor or a group of processors) may be configured by
soltware (e.g., an application or application portion) as a
hardware module that operates to perform certain operations
as described herein.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a
computer) that manipulates or transtorms data represented
as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or a combination thereof), registers, or
other machine components that receive, store, transmit, or
display information.

As used herein any reference to “one implementation” or
“an 1mplementation” means that a particular element, fea-
ture, structure, or characteristic described in connection with
the implementation 1s included 1n at least one implementa-
tion. The appearances of the phrase “in one implementation”™
in various places in the specification are not necessarily all
referring to the same implementation.

Some 1mplementations may be described using the
expression “‘coupled” and “connected” along with their
derivatives. For example, some implementations may be
described using the term “coupled” to indicate that two or
more elements are i direct physical or electrical contact.
The term “coupled,” however, may also mean that two or
more elements are not 1n direct contact with each other, but
yet still co-operate or interact with each other. The imple-
mentations are not limited 1n this context.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements 1s not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appa-
ratus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B 1s satisfied by any one of the
following: A 1s true (or present) and B 1s false (or not
present), A 1s false (or not present) and B 1s true (or present),
and both A and B are true (or present).

In addition, use of the “a” or “an” are employed to
describe elements and components of the implementations
herein. This 1s done merely for convenience and to give a
general sense of various implementations. This description
should be read to include one or at least one and the singular
also includes the plural unless 1t 1s obvious that 1t 1s meant
otherwise.

Upon reading this disclosure, those of ordinary skill in the
art will appreciate still additional alternative structural and
functional designs for dynamically styling offline map data
through the disclosed principles herein. Thus, while particu-

lar implementations and applications have been 1illustrated
and described, 1t 1s to be understood that the disclosed

implementations are not limited to the precise construction
and components disclosed herein. Various modifications,
changes and variations, which will be apparent to those
skilled 1n the art, may be made 1n the arrangement, operation

bl B Y 4

b B 4 4

10

15

20

25

30

35

40

45

50

55

60

65

14

and details of the method and apparatus disclosed herein
without departing from the spirit and scope defined in the
appended claims.

What 1s claimed 1s:

1. A method for rendering map features on digital maps,
the method comprising:

generating, by one or more computing devices, a data

structure storing data for a plurality of nodes, wherein

the generating includes:

assigning, to the plurality of nodes by the one or more
computing devices, (1) respective sets of map feature
attributes and (11) respective sets of configuration
parameters that specily styling visual attributes for
rendering map features, and

generating, by the one or more computing devices,
indications of relationships between the plurality of
nodes, wherein at least several of the plurality of
nodes 1nclude several child nodes;

recerving, by the one or more computing devices, an

indication of one or more map Ileature attributes to
which a certain map feature belongs;

traversing, by the one or more computing devices, the

data structure according to the indicated relationships
between the plurality of nodes to generate a set of
configuration parameters for rendering the certain map
feature, including comparing the indicated one or more
map feature attributes of the certain map feature to sets
of map feature attributes at some of the plurality of
nodes, wherein the generated set of configuration
parameters mcludes configuration parameters from at
least two of the plurality of nodes; and

causing a digital map to be rendered by applying, for each

map feature included in the digital map, the styling
visual attributes specified by the corresponding gener-
ated set of configuration parameters when rendering the
map leature.

2. The method of claim 1, further comprising:

traversing, by the one or more computing devices, the

data structure a plurality of times for a multiplicity of
map features to flatten at least a portion of the data
structure so as to generate a style table for the multi-
plicity of map features; and

causing, by the one or more computing devices, the style

table for the multiplicity of map features to be trans-
mitted to a client device via a communication network.

3. The method of claim 2, further comprising generating,
indices into the style table based on paths formed by the
traversing of the data structure according to the indicated
relationships between the plurality of nodes.

4. The method of claim 2, generating the data structure
includes implementing, by the one or computing devices, a
directed acyclic graph.

5. The method of claim 4, wherein traversing the data
structure includes ftraversing the directed acyclic graph
depth-first.

6. The method of claim 1, wherein assigning the sets of
configuration parameters includes assigning indications of
one or more of:

(1) line thickness,

(1) line color,

(111) fill color, and

(1v) text color.

7. The method of claim 6, wherein assigning the sets of
configuration parameters further includes assigning indica-
tions of one or more scales or zoom levels to which the
configuration parameters apply.

US 10,067,950 B1

15 16
8. A method for providing configuration parameters for specily styling visual attributes for rendering map
rendering map features on client devices, the method com- features, and generate indications of relationships
prising;: between the plurality of nodes, wherein at least
accessing, by one or more computing devices, a data several of the plurality of nodes include several child
structure that implements a graph having a plurality of 5 nodes.
nodes, wherein each node indicates (1) a respective set receive an indication of one or more map feature

of map feature attributes and (11) a respective set of
configuration parameters that specily styling visual
attributes for rendering map features, and wherein the
data structure indicates at least parent-chuld relation- 10
ships between the plurality of nodes;

traversing, by the one or more computing devices, at least

a portion of the data structure according to the indicated
relationships between the plurality of nodes to generate
a flattened representation of the at least a portion of the 15
data structure, wherein the traversing includes combin-
ing, by the one or more computing devices, configu-
ration parameters for at least two of the plurality of
nodes to generate a set of configuration of parameters;
and 20
causing, by the one or more computing devices, the
flattened representation to be transmitted to a client
device via a communication network, for applying to
map lfeatures when rendering a digital map.

9. The method of claim 8, wherein generating the flattened 25
representation of the at least a portion of the data structure
includes:

generating, by the one or more computing devices, a style

table for a plurality of map features, including travers-
ing the data structure a plurality of times along to 30
respective paths to generate, 1n each instance, a table
entry for a respective one of the plurality of map
features, wherein the table entry includes configuration
parameters from several nodes on the corresponding
path. 35

10. The method of claim 8, wherein the data structure
turther 1indicates, for at least one of the plurality of nodes, a
nearest older sibling node selected from among the plurality
of nodes, wherein traversing the data structure includes
visiting the nearest older sibling node prior to determining 40
whether the selected one of the plurality of nodes should be
visited.

11. The method of claam 10, including receiving an
indication of the nearest older sibling node from an operator
via a user interface. 45

12. A system comprising:

a non-transitory computer-readable memory;

processing hardware coupled to the computer-readable

memory, the processing hardware configured to:

generate data structure storing data for a plurality of 50
nodes, including assign, to the plurality of nodes (1)
respective sets of map feature attributes and (11)
respective sets of configuration parameters that I I

attributes to which a certain map feature belongs,

traverse the data structure according to the indicated
relationships between the plurality of nodes to gen-
crate a set of configuration parameters for rendering
the certain map feature, including compare the 1ndi-
cated one or more map Ieature attributes of the
certain map feature to sets of map feature attributes
at some of the plurality of nodes, wherein the gen-
erated set of configuration parameters includes con-
figuration parameters from at least two of the plu-
rality of nodes, and

cause a digital map to be rendered by applying, for each
map feature included 1n the digital map, the styling
visual attributes specified by the corresponding gen-
erated set of configuration parameters when render-
ing the map feature.

13. The system of claim 12, wherein the processing
hardware 1s further configured to:

traverse the data structure a plurality of times for a

multiplicity of map features to flatten at least a portion
of the data structure so as to generate a style table for
the multiplicity of map features; and

cause the style table for the multiplicity of map features

to be transmitted to a client device via a communication
network.

14. The system of claim 13, wherein the processing
hardware 1s further configured to generate indices into the
style table based on paths formed by the traversing of the
data structure according to the indicated relationships
between the plurality of nodes.

15. The system of claim 13, wherein to generate the data
structure, the processing hardware 1s further configured to
implement a directed acyclic graph.

16. The system of claim 15, wherein the processing
hardware 1s further configured to traverse the directed acy-
clic graph depth-first.

17. The system of claim 12, wherein to generate the data
structure, the processing hardware 1s further configured to:

for a selected one of the plurality of nodes, receive a

selection a nearest older sibling node selected from
among the plurality of nodes, wherein to traverse the
data structure, the processing hardware 1s configured to
visit the nearest older sibling node prior to determinming
whether the selected one of the plurality of nodes
should be visited.

	Front Page
	Drawings
	Specification
	Claims

