United States Patent

US010062139B2

(12) (10) Patent No.: US 10,062,139 B2
Kazakov et al. 45) Date of Patent: Aug. 28, 2018
(54) VERTEX SHADERS FOR BINNING BASED 8,619,087 B2 12/2013 Duluk, Jr. et al.
GRAPHICS PROCESSING 8,810,585 B2 82014 Min et al.
9,093,006 B2 7/2015 Cornell
: : 9,384,523 B1* 7/2016 Penner GO6F 9/48
(71) Applicant: QUALCOMM Incorporated, San 2005/0030320 AL* 2/2005 Munshiccooo........ GOGT 11/40
Diego, CA (US) 345/620
2007/0091090 Al1* 4/2007 Zhang GO6T 15/80
(72) Inventors: Maxim Kazakov, San Diego, CA (US); e 345/476
Andrew Evan Gruber, Arlington, MA 2012/0223946 Al 9/2012 Nystad et al.
(US) 2012/0223947 Al1* 9/2012 Nystad GO6T 15/005
345/426
(73) Assignee: QUALCOMM Incorporated, San (Continued)
Diego, CA (US)
_ ‘ o ‘ FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 EP 2045126 A2 11/2015
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 15/218,808 OTHER PUBLICALIONS
4 Open GL ES, Common Profile Specification, version 2.0.25, Nov.
(22) Filed: Jul. 25,2016 2, 2010, The Khronos Group, 204 pp.
(65) Prior Publication Data (Continued)
US 2018/0025463 Al Jan. 25, 2018
Primary Examiner — Mark K Zimmerman
(51) ??IOt;S](;lI-/ZO (2006.01) A;:fsi;mt Examjzer — Ph;f N DO;E g St
GO6T 1/60 (2006.01) %A) ttorney, Agent, or Firm — Shumaker ieilert,
GO6T 15/80 (2011.01) o
Go6T 15/00 (2011.01)
(52) U.S. CL
CPC ..o GO06T 120 (2013.01); GO6T 1/60 (57) ABSTRACT
(2013.01); GOOT 15/005 (2013.01); GO6T This disclosure describes examples of using two vertex
_ _ _ 15/80 (2013.01) shaders each one during different graphics processing passes
(38) Field of Classification Search in a binmng architecture for graphics processing. A first
CPC ... GO61 1720; GO6T 1/60; GO6T 15/005; vertex shader processes subset of attributes of a vertex 1n a
o G061 15/30 binning pass, where the subset of attributes include those
See application file for complete search history. that contribute to visibility determination and attributes that
_ may benelit from being processed with a vertex shader that
(56) References Cited

U.S. PATENT DOCUMENTS

8,289,319 B2 10/2012 Nordlund et al.
8,294,713 B1* 10/2012 Amanieux GO6T 15/50

345/419

provides functional flexibility. A second, different vertex
shader processes another subset of attributes of the vertex 1n
the rendering pass.

24 Claims, 5 Drawing Sheets

S5YSTEWM MEMORY
10

&PU
12

BINNING
PASS
CIRCUITRY

CONTROLLER
1]

44

ol
VERTEX)
BUFFER B —a—T—a—x3

INPUT ASSEMBLER CIRCUIT
40

42 |

RENDERING
PASS

BINNING CIRCUIT
48

CIRCUITRY
54

Y

DEFPTH TEST CIRCUIT
50

STREAMOUT
BUFFER [
22 .

RENDERING PASS VERTEX
SHADER

il

FIXEL

| |

RASTERIZER CIRCUIT

BUFFER p=
Lt}

e s e el B S B BN TS E——— —

FRAME

BUFFER =
&4

US 10,062,139 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2013/0135322 Al
2014/0066178 Al*

2014/0204080 Al*
2014/0267232

2014/0267259
2014/0267319

222

2014/0267320 Al*
2015/0302545 Al*
2015/0332495 Al*

2015/0379672 Al*

5/2013
3/2014

7/2014
9/2014

9/2014
9/2014

9/2014

10/2015

11/2015

12/2015

Seetharamaiah et al.

Kelly .oooooiiiiniinn, HO4N 13/04
463/25
Goel i, G06T 1/20
345/419
[.um et al.
Frascati et al.
Hakura G06T 1/60
345/506
Hakuracc...e.0 G06T 1/20
345/506
Harris ..oooovvvvvviininnnn, G06T 1/20
345/501
1180 o, G06T 11/40
345/501
wWang ...l GO6T 15/80
345/423

2016/0005140 Al* 1/2016 Engh-Halstvedt GO6T 15/005
345/506
2016/0042560 Al* 2/2016 Changccccoevnnns, GO6T 15/80
345/426
2016/0125649 Al* 5/2016 Jeongccccvvvnn. GO06T 15/405
345/422
2016/0148337 Al* 5/2016 Isomaki GO06T 11/40
345/502
2017/0372509 Al* 12/2017 Paltashev GO06T 15/405

OTHER PUBLICATIONS

Open GL ES, version 3.2, Jun. 15, 2016, The Khronos Group, Inc.

590 pp.

Response to Written Opinion dated Aug. 8, 2017 from correspond-
ing PCT Application Serial No. PCT/US2017/035038 filed on Apr.
20, 2018 (18 pp).

International Search Report and Written Opimmion—PCT/US2017/

035038—ISA/EPO—dated Aug. 8, 2017.

* cited by examiner

U.S. Patent Aug. 28, 2018 Sheet 1 of 5 US 10,062,139 B2

COMPUTING DEVICE

MEMORY
CONTROLLER

SYSTEM
MEMORY
10

CPU

(o))

8

USER INPUT

INTERFACE

4

DISPLAY LOCAL

DISPLAY INTERFACE MEMORY

18

16 14

FIG. 1

U.S. Patent Aug. 28, 2018 Sheet 2 of 5 US 10,062,139 B2

CPU GPU
6 12

APPLICATION
21

CONTROLLER

30

SHADER CORE
32

FIXED-FUNCTION
UNITS
34

BINNING VERTEX

VERTEX SHADER

SOURCE CODE SHADER OBJECT

CODE
38

36

MEMORY
10

FIG. 2

U.S. Patent Aug. 28, 2018 Sheet 3 of 5 US 10,062,139 B2

SYSTEM MEMORY GPU
10 12
£
CIRCUITRY 30
44

_____ INPUT ASSEMBLER CIRCUIT
e I“ =
| |

~ ~BINNING PASS VERTEX !
SHADER

BUFFER

RENDERING
PASS
CIRCUITRY
54

.1

STREAMOUT
BUFFER

52

l ~ RENDERING PASS VERTEX

l SHADER

56

JEEEEE I CIEEEE SIS S NN BAMMA AERAMAG AR R Y

l PIXEL SHADER |
| 62 |
FRAME
BUFFER
64

FIG. 3

¥ Old

US 10,062,139 B2

89
LINDAID ssed Buuapuay
H3ZIH3LSV

S w—
- jewioN” |16
_4
>
Qs
=
7

m

|
«© |
\
—
) /]
s WIOU+NAIN o i -
.M“_ AN \ S ‘(K _mEhAE.moo.?i_mE‘SE
u = - Fi
«

P10090X3) Z o
S _/ 9¢

U.S. Patent

ssed buiuuig

H)urew proa

‘P100IX%3} ZooA Bulliea
‘lewaou €99 Bulluea
‘NAN £X¢jew uojun

‘dAIN $X3ew wioun

o

UIS)ZO9A = PJOOIXI)

- L E N F
- W LW S W ame——— - L ¥ L

U.S. Patent Aug. 28, 2018 Sheet 5 of 5 US 10,062,139 B2

RECEIVE FROM VERTEX BUFFER FIRST 70
SUBSET OF ATTRIBUTES OF VERTEX

PROCESS FIRST SUBSET WITH FIRST VERTEX 29
SHADER TO GENERATE FIRST SUBSET OF
PROCESSED ATTRIBUTES

RECEIVE FROM VERTEX BUFFER SECOND 74
SUBSET OF ATTRIBUTES OF SAME VERTEX

PROCESS SECOND SUBSET WITH SECOND 26
VERTEX SHADER TO GENERATE SECOND
SUBSET OF PROCESSED ATTRIBUTES

GENERATE GRAPHICS DATA FOR DISPLAY
BASED ON FIRST SUBSET OF PROCESSED
ATTRIBUTES AND SECOND SUBSET OF
PROCESSED ATTRIBUTES

78

FIG. 5

US 10,062,139 B2

1

VERTEX SHADERS FOR BINNING BASED
GRAPHICS PROCESSING

TECHNICAL FIELD

This disclosure relates to graphics processing.

BACKGROUND

Computing devices often utilize a graphics processing
unit (GPU) to accelerate the rendering of graphics data for
display. Such computing devices may include, e.g., com-
puter workstations, mobile phones such as so-called smart-
phones, embedded systems, personal computers, tablet com-
puters, and video game consoles. GPUs typically execute a
graphics processing pipeline that includes a plurality of
processing stages which operate together to execute graphics
processing commands. A host central processing unit (CPU)
may control the operation of the GPU by 1ssuing one or more
graphics processing commands to the GPU. Modern day
CPUs are typically capable of concurrently executing mul-
tiple applications, each of which may need to utilize the
GPU during execution.

SUMMARY

This disclosure 1s directed to selectively processing vertex
attributes during different graphics processing passes
through a graphics processing unit (GPU). Vertex attributes
of a vertex that need to be transformed using complicated
processing may be transformed by a first vertex shader
during a binning pass. Vertex attributes of a vertex that do
not need complicated processing may be transformed by a
second vertex shader during a rendering pass. In some
examples, the first vertex shader may be a software vertex
shader executing on a programmable hardware shader core
of the GPU, and the second vertex shader may be a fixed-
function hardware shader formed on the GPU.

Rather than streaming out all vertex attributes needing
from a vertex buller during the binning pass, a subset of
vertex attributes (e.g., those using complicated processing)
are streamed out. Then, as part of the binning pass, the GPU
may determine that some of vertices having attributes that
were not streamed out do not need processing because those
vertices are not visible. Accordingly, during the rendering
pass, not all vertices having attributes that were not pro-
cessed during the binning pass need to be outputted. In this
way, the example techniques may reduce the amount of
graphics data that needs to be outputted, thereby promoting
memory bandwidth. Also, 1n examples where the second
vertex shader 1s a fixed-function hardware shader, hardware
acceleration may be available to process vertex attributes
that do not need complicated processing, thereby promoting,
ellicient processing.

In one example, the disclosure describes a method of
processing data, the method comprising receiving from a
vertex buller a first subset of attributes of a vertex, process-
ing the first subset of attributes of the vertex with a first
vertex shader of a graphics processing unit (GPU) to gen-
crate a {irst subset of processed attributes, receiving from the
vertex bufler a second subset of attributes of the same vertex,
processing the second subset of attributes of the same vertex
with a second, diflerent vertex shader of the GPU to generate
a second subset of processed attributes, and generating
graphics data for display based on the first subset of pro-
cessed attributes and the second subset of processed attri-
butes.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one example, the disclosure describes a device for
processing data, the device comprising a system memory
comprising a vertex buller configured to store a first subset
ol attributes of a vertex and a second subset of attributes of
the same vertex, and a graphics processing unit (GPU)
comprising binning pass circuitry and rendering pass cir-
cuitry. The binning pass circuitry 1s configured to receive the
first subset of attributes of the vertex, and process the first
subset of attributes with a first vertex shader to generate a
first subset of processed attributes. The rendering pass
circuitry 1s configured to receive the second subset of
attributes of the vertex, process the second subset of attri-
butes with a second, different vertex shader to generate a
second subset of processed attributes, and generate graphics
data for display based on the first subset of processed
attributes and the second subset of processed attributes.

In one example, the disclosure describes a computer-
readable storage medium having instructions stored thereon
that when executed cause a graphics processing unit (GPU)
to recerve from a vertex buller a first subset of attributes of
a vertex, process the first subset of attributes of the vertex
with a first vertex shader of the GPU to generate a first subset
of processed attributes, receive from the vertex bufler a
second subset of attributes of the same vertex, process the
second subset of attributes of the same vertex with a second,
different vertex shader of the GPU to generate a second
subset of processed attributes, and generate graphics data for
display based on the first subset of processed attributes and
the second subset of processed attributes.

In one example, the disclosure describes a device for
processing data, the device comprising means for receiving
from a vertex bufler a first subset of attributes of a vertex,
means for processing the first subset of attributes of the
vertex with a first vertex shader of a graphics processing unit
(GPU) to generate a first subset of processed attributes,
means for recerving from the vertex bufler a second subset
of attributes of the same vertex, means for processing the
second subset of attributes of the same vertex with a second,
different vertex shader of the GPU to generate a second
subset of processed attributes, and means for generating
graphics data for display based on the first subset of pro-
cessed attributes and the second subset of processed attri-
butes.

The details of one or more examples of the disclosure are
set forth 1in the accompanying drawings and the description
below. Other features, objects, and advantages of the dis-

closure will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram 1illustrating an example com-
puting device that may be used to implement the techniques
of this disclosure.

FIG. 2 1s a block diagram 1llustrating a CPU, a GPU and
a memory of the computing device of FIG. 1 1n further
detail.

FIG. 3 1s a block diagram illustrating an example of a
graphics processing unit (GPU) that may implement an
example of a graphics processing pipeline in accordance
with one or more example techniques described in this
disclosure.

FIG. 4 1s a conceptual diagram 1llustrating an example
process flow 1n accordance with one or more example
techniques described 1n this disclosure.

US 10,062,139 B2

3

FIG. 5 1s a flowchart illustrating an example method of
processing data.

DETAILED DESCRIPTION

Various graphics processing techniques perform graphics
processing in two passes. A first pass 1s referred to as a
binning pass, 1 which a graphics processing unit (GPU)
determines which primitives belong to which bin (also
called a tile) and which primitives are visible. In a second
pass, referred to as a rendering pass, the GPU renders each
bin sequentially based on the determination of which primi-
tives belong to which bin and the visibility of the primitives.

Such dual pass graphics processing architectures (some-
times referred to as streamout-based binning architectures)
may be useful for various reasons. As one example, addi-
tional processing stages such as domain shaders, tessella-
tion, geometry shaders can be added, and there 1s eflicient
overlap of binning and rendering due to time-separated
geometry and rasterization processing.

The binming architecture may require multiple access to
memory to stream out vertex data to memory and stream in
vertex data from memory between binning and rendering.
For example, fully transformed vertices are streamed out
during binning. The transformed vertices are mputs for
rendering, and therefore are streamed in during per-bin
rendering. This disclosure describes example techniques to
potentially reduce such memory traflic and associated power
consumption.

During a binming pass, a vertex shader typically executes
to process all attributes of a vertex and stores the resulting
processed attribute values 1n a streamout bufler. However,
having a vertex shader process all attributes of a vertex may
not be memory bandwidth-eflicient and processing-eflicient.
For example, a vertex shader may read all attribute values
from a vertex buller and store all resulting processed attri-
bute values into the streamout bufler. Such retrieving and
storing of attribute values may require multiple calls to
memory. Also, some of the processes that are performed on
the attributes during the binning pass may be “trivial” and
can easily be performed during the rendering pass. One
example of trivial processing 1s matrix multiplication with a
static matrix.

This disclosure describes example techniques in which a
binning pass vertex shader 1s configured to process those
attributes that contribute to a visibility determination of the
vertex and any attributes that require non-trivial processing,
during a binming pass, and not process any of the attributes
that do not contribute to a visibility determination or do not
require non-trivial processing. Then, during the rendering
pass, the rendering vertex shader may retrieve the non-
processed attributes for the vertices and perform vertex
shading operations. In some examples, the binning vertex
shader 1s a software vertex shader executing on program-
mable circuitry, and the rendering vertex shader 1s a hard-
ware vertex shader formed from fixed-function circuitry.

In this way, the binning vertex shader may retrieve a
subset of all of the attnbutes of a vertex (e.g., may only
retrieve attributes that contribute to visibility determination
or that require non-trivial processing). This results 1 less
processing that needs to be performed by the binning vertex
shader, which may also result 1n less attribute data that the
binning vertex shader needs to store in the streamout builer.
Then, during the rendering pass, the rendering vertex shader
may only retrieve unprocessed attributes for vertices that
were determined to contribute to the visible primitives. This
results 1n avoiding the processing during a binming pass of

10

15

20

25

30

35

40

45

50

55

60

65

4

certain attributes (e.g. attributes that do not contribute to
visibility determination and that do not require non-trivial
processing, 1.€., require more than non-trivial processing) for
vertices that do not contribute to the visible primitives.
Accordingly, this disclosure describes a hybrid vertex
shader process where rather than using one vertex shader,
there may be two vertex shaders, with each vertex shader
configured to process a subset of attributes. For instance, a
compiler executing on a processor that 1s compiling the

source code for the binning vertex shader may determine
which attributes of vertices stored 1n the vertex attributes
contribute to visibility determination and which attributes
need non-trivial processing. The compiler may compile the
binning vertex shader source code such that these attributes
are processed by the binming vertex shader and the others
(not contributing to visibility determination or need more
than non-trivial processing) are not. A shader core of the
GPU may execute the binning vertex shader during the
binning pass, and then during rendering, the rendering
vertex shader processes those attributes that were not pro-
cessed during the binning pass of vertices that were deter-
mined to be visible during the binning pass.

FIG. 1 1s a block diagram illustrating an example com-
puting device 2 that may be used to implement techniques of
this disclosure. Computing device 2 may comprise a per-
sonal computer, a desktop computer, a laptop computer, a
computer workstation, a video game platform or console, a
wireless communication device (such as, e.g., a mobile
telephone, a cellular telephone, a satellite telephone, and/or
a mobile telephone handset), a landline telephone, an Inter-
net telephone, a handheld device such as a portable video
game device or a personal digital assistant (PDA), a personal
music player, a video player, a display device, a television,
a television set-top box, a server, an itermediate network
device, a mainframe computer or any other type of device
that processes and/or displays graphical data.

As 1llustrated 1n the example of FIG. 1, computing device

2 1ncludes a user input interface 4, a CPU 6, a memory
controller 8, a system memory 10, a graphics processing unit
(GPU) 12, a local memory 14 of GPU 12, a display interface
16, a display 18 and bus 20. User input interface 4, CPU 6,
memory controller 8, GPU 12 and display interface 16 may
communicate with each other using bus 20. Bus 20 may be
any ol a variety of bus structures, such as a third generation
bus (e.g., a HyperTransport bus or an InfiniBand bus), a
second generation bus (e.g., an Advanced Graphics Port bus,
a Peripheral Component Interconnect (PCI) Express bus, or
an Advanced eXentisible Interface (AXI) bus) or another
type of bus or device interconnect. It should be noted that the
specific configuration of buses and communication inter-
faces between the different components shown 1n FIG. 1 1s
merely exemplary, and other configurations of computing
devices and/or other graphics processing systems with the
same or different components may be used to implement the
techniques of this disclosure.

CPU 6 may comprise a general-purpose or a special-
purpose processor that controls operation of computing
device 2. A user may provide input to computing device 2 to
cause CPU 6 to execute one or more software applications.
The software applications that execute on CPU 6 may
include, for example, an operating system, a word processor
application, an email application, a spread sheet application,
a media player application, a video game application, a
graphical user interface application or another program. The
user may provide input to computing device 2 via one or
more mput devices (not shown) such as a keyboard, a

US 10,062,139 B2

S

mouse, a microphone, a touch pad or another iput device
that 1s coupled to computing device 2 via user input intertace
4.

The software applications that execute on CPU 6 may
include one or more graphics rendering instructions that
istruct CPU 6 to cause the rendering of graphics data to
display 18. In some examples, the software instructions may
conform to a graphics application programming interface
(API), such as, e.g., an Open Graphics Library (OpenGL®)
API, an Open Graphics Library Embedded Systems
(OpenGL ES) API, a Direct3D API, an X3D API, a Ren-
derMan API, a WebGL API, or any other public or propri-
ctary standard graphics API. In order to process the graphics
rendering instructions, CPU 6 may issue one or more
graphics rendering commands to GPU 12 to cause GPU 12
to perform some or all of the rendering of the graphics data.
In some examples, the graphics data to be rendered may
include a list of graphics primitives, e.g., points, lines,
triangles, quadrilaterals, triangle strips, etc.

Memory controller 8 facilitates the transier of data going
into and out of system memory 10. For example, memory
controller 8 may receive memory read and write commands,
and service such commands with respect to memory 10 1n
order to provide memory services for the components 1n
computing device 2. Memory controller 8 1s communica-
tively coupled to system memory 10. Although memory
controller 8 1s 1llustrated 1n the example computing device 2
of FIG. 1 as being a processing module that 1s separate from
both CPU 6 and system memory 10, in other examples, some
or all of the functionality of memory controller 8 may be
implemented on one or both of CPU 6 and system memory
10.

System memory 10 may store program modules and/or
instructions that are accessible for execution by CPU 6
and/or data for use by the programs executing on CPU 6. For
example, system memory 10 may store user applications and
graphics data associated with the applications. System
memory 10 may additionally store imnformation for use by
and/or generated by other components of computing device
2. For example, system memory 10 may act as a device
memory for GPU 12 and may store data to be operated on
by GPU 12 as well as data resulting from operations
performed by GPU 12. For example, system memory 10
may store any combination of texture buflers, depth buflers,
stencil buflers, vertex bufters, frame buflers, or the like. In
addition, system memory 10 may store command streams
for processing by GPU 12. System memory 10 may include
one or more volatile or non-volatile memories or storage
devices, such as, for example, random access memory
(RAM), static RAM (SRAM), dynamic RAM (DRAM),
read-only memory (ROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash memory, a magnetic data media or an optical
storage media.

GPU 12 may be configured to perform graphics opera-
tions to render one or more graphics primitives to display 18.
Thus, when one of the software applications executing on
CPU 6 requires graphics processing, CPU 6 may provide
graphics commands and graphics data to GPU 12 for ren-
dering to display 18. The graphics commands may include,
¢.g., drawing commands such as a draw call, GPU state
programming commands, memory transfer commands, gen-
eral-purpose computing commands, kernel execution com-
mands, etc. In some examples, CPU 6 may provide the
commands and graphics data to GPU 12 by writing the
commands and graphics data to memory 10, which may be
accessed by GPU 12. In some examples, GPU 12 may be

10

15

20

25

30

35

40

45

50

55

60

65

6

further configured to perform general-purpose computing
for applications executing on CPU 6.

GPU 12 may, in some 1nstances, be built with a highly-
parallel structure that provides more etlicient processing of
vector operations than CPU 6. For example, GPU 12 may
include a plurality of processing elements that are config-
ured to operate on multiple vertices or pixels in a parallel
manner. The highly parallel nature of GPU 12 may, in some
instances, allow GPU 12 to draw graphics images (e.g.,
GUIs and two-dimensional (2D) and/or three-dimensional
(3D) graphics scenes) onto display 18 more quickly than
drawing the scenes directly to display 18 using CPU 6. In
addition, the highly parallel nature of GPU 12 may allow
GPU 12 to process certain types ol vector and matrix

operations for general-purpose computing applications more
quickly than CPU 6.

GPU 12 may, 1n some 1instances, be integrated into a
motherboard of computing device 2. In other instances, GPU
12 may be present on a graphics card that 1s installed 1n a
port in the motherboard of computing device 2 or may be
otherwise 1ncorporated within a peripheral device config-
ured to interoperate with computing device 2. In further
instances, GPU 12 may be located on the same microchip as
CPU 6 forming a system on a chip (SoC). GPU 12 may
include one or more processors, such as one or more
microprocessors, application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), digital
signal processors (DSPs), or other equivalent integrated or
discrete logic circuitry.

GPU 12 may be directly coupled to GPU local memory
14. Thus, GPU 12 may read data from and write data to GPU
local memory 14 without necessarily using bus 20. In other
words, GPU 12 may process data locally using a local
storage, instead of ofl-chip memory. This allows GPU 12 to
operate 1n a more eflicient manner by eliminating the need
of GPU 12 to read and write data via bus 20, which may
experience heavy bus traflic. In some instances, however,
GPU 12 may not include a separate cache, but instead utilize
system memory 10 via bus 20. GPU local memory 14 may
include one or more volatile or non-volatile memories or
storage devices, such as, e.g., random access memory
(RAM), static RAM (SRAM), dynamic RAM (DRAM),
crasable programmable ROM (EPROM), electrically eras-
able programmable ROM (EEPROM), flash memory, a
magnetic data media or an optical storage media.

CPU 6 and/or GPU 12 may store rendered image data in
a frame buller that 1s allocated within system memory 10.
Display interface 16 may retrieve the data from the frame
bufler and configure display 18 to display the image repre-
sented by the rendered image data. In some examples,
display interface 16 may include a digital-to-analog con-
verter (DAC) that 1s configured to convert the digital values
retrieved from the frame bufler into an analog signal con-
sumable by display 18. In other examples, display interface
16 may pass the digital values directly to display 18 for
processing. Display 18 may include a monitor, a television,
a projection device, a liquid crystal display (LCD), a plasma
display panel, a light emitting diode (LED) array, a cathode
ray tube (CRT) display, electronic paper, a surface-conduc-
tion electron-emitted display (SED), a laser television dis-
play, a nanocrystal display or another type of display unait.
Display 18 may be integrated within computing device 2.
For instance, display 18 may be a screen of a mobile
telephone handset or a tablet computer. Alternatively, dis-
play 18 may be a stand-alone device coupled to computing
device 2 via a wired or wireless communications link. For

US 10,062,139 B2

7

instance, display 18 may be a computer monitor or flat panel
display connected to a personal computer via a cable or
wireless link.

The techmiques described in this disclosure relate to
graphics processing in a binning architecture. In a binning
architecture, GPU 12 generates graphics data for display 1n
two passes: binning pass and rendering pass. In the binming,
pass, GPU 12 determines whether vertices of primitives
belong to a bin (also referred to as a tile). Each tile includes
NxM number of pixels, and generally conforms to a size that
allows the pixel values to be stored in local memory 14. In
addition, during the binning pass, GPU 12 may perform a
depth test to determine whether any vertex 1s occluded by
any other vertex so that the occluded vertex can be removed
from further processing. At the conclusion of the binning
pass, GPU 12 may have generated vertex data for a plurality
of visible vertices along with information i1dentifying to
which tile (1.e., bin) the visible vertices belong.

Next, in the rendering pass, GPU 12 may render pixels
based on the vertex data for the plurality of vertices. For
example, GPU 12 may rasterize the vertices of the primi-
tives, and generate pixel values for the pixels within the
primitives. GPU 12 may output the pixel values to system
memory 10 (e.g., a frame bufler 1n system memory 10).
Display interface 16 may retrieve these pixel values from
system memory 10, perform further processing, and output
information based on the resulting pixel values to display 18.

As part of the binning pass, a vertex shader of GPU 12
retrieves vertex information for vertices from a vertex bufler
and processes the vertex information to generate the vertex
data. The vertex shader 1s 1n many cases a software vertex
shader executing on a shader core of GPU 12.

The vertex mformation stored i the vertex builer 1s
generated by an application executing on CPU 6, but may be
generated by other ways as well. The vertex information
generally refers to a plurality of vertex attributes such as
coordinate information, opacity, and the like for each vertex
(e.g., each vertex 1s associated with a plurality of vertex
attributes). Part of the functionality of the vertex shader may
be to transform the 3D coordinate of each vertex into a 2D
coordinate which will define the 2D coordinate on display
18. The output of vertex shader 1s also a depth value for the
vertex. There may be other functions that the vertex shader
performs such as lighting and shading.

In some techniques, unlike those of this disclosure, for a
vertex, the vertex shader retrieves all of the vertex attributes
of a vertex for processing as part of the binning pass.
However, processing all vertex attributes for each vertex
may not be processing or memory bandwidth eflicient.

For example, subsequent to the processing ol a vertex,
GPU 12 may determine whether that vertex 1s visible or not
visible, and 1t not visible, GPU 12 discards that vertex from
turther processing (e.g., its processed attributes are not
stored). However, although the result may be that GPU 12
discarded a vertex from further processing as part of the
binning pass, GPU 12 still processed attributes of vertices
that did not contribute to the final rendered 1mage. Accord-
ingly, GPU 12 retrieved attributes of a vertex from system
memory 10 and processed these attributes of a vertex that 1s
subsequently discarded, which results 1n unnecessary
memory bandwidth usage and inethicient processing.

This disclosure describes using two diflerent vertex shad-
ers to perform graphics processing. The first vertex shader
may be configured to retrieve attribute data for attributes of
a vertex that contribute to the visibility determination of that
vertex (and for reasons below, attributes that may be visible
or not visible but need non-trivial transformation). Because

e

10

15

20

25

30

35

40

45

50

55

60

65

8

the first vertex shader is retrieving a subset of attribute data,
there may be a reduction 1n the amount of data the GPU 12
needs to retrieve from system memory 10 as compared to
when all attribute data 1s retrieved. The first vertex shader
may perform its operations during the binning pass. As part
of the binning pass, GPU 12 may output the processed
attribute data for vertices that passed the depth test (e.g., that
are visible).

The second vertex shader 1s configured to retrieve unpro-
cessed attributes of only those vertices that were not dis-
carded. The second vertex shader may perform its operations
during the rendering pass.

Accordingly, this disclosure describes processing a first
subset of attributes of a vertex with a first vertex shader to
generate a first subset of processed attributes and processing
a second subset of attributes of the same vertex with a
second vertex shader to generate a second subset of pro-
cessed attributes. GPU 12 may generate graphics data used
for display based on the first subset of processed attributes
and the second subset of processed attributes.

In this way, there are some attributes of vertices that are
eventually discarded for not being visible that are never read
from memory by a vertex shader. For instance, 1n some of
the other techniques, all attributes for all vertices are read
and potentially processed, and then, some of the vertices are
discarded. Here, attributes of a vertex that contribute to the
visibility determination are read (and possibly those ben-
efiting from programmable vertex shading), and other are
not. If this vertex 1s eventually discarded, the remaining
unread attributes do not need to be accessed and processed,
saving memory bandwidth and computational cycles.

As descried above, some vertex shaders may be software
executing on a programmable shader core of GPU 12.
Because the shader core of GPU 12 1s programmable, a
soltware-based vertex shader may provide functional tlex-
ibility and allow for complex processing tasks. For instance,
the shader core of GPU 12 may be configured 1n most any
conceivable way to perform the functions of the vertex
shader.

However, not all attribute processing needs the functional
flexibility that a software-based vertex shader provides.
Many types of attribute processing require very limited
types ol processing. For some attributes of a vertex, pro-
cessing such attributes via a hardware fixed-function circuit
(e.g., non-programmable) may result in faster processing
and require less computational power as compared to pro-
cessing such attributes with software-based vertex shader.

In some examples, the first vertex shader that performs its
operations during the binning pass may be a software-based
vertex shader. During the binning pass, in addition to
processing attributes that contribute to visibility determina-
tion, the first vertex shader may process attributes that
benelfit from functional flexibility available on a program-
mable shader core. The second vertex shader that performs
its operations during the rendering pass may be a fixed-
function hardware vertex shader. The fixed-function vertex
shader provides limited functional flexibility and may be
hardwired to perform limited operations. Although the sec-
ond vertex shader 1s a hardwired vertex shader circuit
configured to perform fixed-functions, the second vertex
shader may perform 1ts operations faster and by consuming
less power than 1f a software-based vertex shader 1s used.

In this disclosure, the first vertex shader 1s described as
performing operations on attributes that contribute to vis-
ibility information or determination and attributes that ben-
efit from software-based vertex shading (sometimes referred
to as non-trivially transtformed attributes), and the second

US 10,062,139 B2

9

vertex shader 1s described as performing operations on
attributes that do not benefit from a software-based vertex
shader (sometimes referred to as trivially transformed attri-
butes). However, the techniques described 1n this disclosure
are not so limited. In general, the first vertex shader may be
configured to process a first subset of attributes of a vertex
and the second vertex shader may be configured to process
a second subset of attributes. In some, although not neces-
sary all, the second subset of attributes may be those for
which fixed-function circuitry 1s suilicient for processing,
and the first subset of attributes may be those that provide
visibility information and those for which fixed-function
circuitry 1s not suflicient for processing.

In the example techniques, the first vertex shader may be
configured to retrieve and process a subset of attributes of a
vertex. However, which subset of attributes the first vertex
shader 1s to retrieve and process may not be known by the
developer who developed the source code for the first vertex
shader. In some example techniques, a compiler executing
on CPU 6 may compile the source code of the first vertex
shader during runtime. As part of the complication, the
compiler may 1nclude instructions instructing which subset
of attributes the first vertex shader 1s to retrieve and process
or remove structions that would cause the first vertex
shader to retrieve and process attributes that the first vertex
shader 1s not to retrieve and process.

FIG. 2 1s a block diagram 1illustrating CPU 6, GPU 12 and
memory 10 of computing device 2 of FIG. 1 1n turther detail.
As shown 1n FIG. 2, CPU 6 1s communicatively coupled to
GPU 12 and memory 10, and GPU 12 1s communicatively
coupled to CPU 6 and memory 10. GPU 12 may, in some
examples, be integrated onto a motherboard with CPU 6. In
additional examples, GPU 12 may be implemented on a
graphics card that 1s installed in a port of a motherboard that
includes CPU 6. In further examples, GPU 12 may be
incorporated within a peripheral device that 1s configured to
interoperate with CPU 6. In additional examples, GPU 12
may be located on the same microchip as CPU 6 forming a
system on a chip (SoC). CPU 6 1s configured to execute
application 21, compiler 22, a graphics API 24, a GPU dniver
26, and an operating system 28. GPU 12 includes a con-
troller 30, shader core 32, and one or more fixed-function
units 34.

Software application 21 may 1nclude at least one of one or
more istructions that cause graphic content to be displayed
or one or more instructions that cause a non-graphics task
(e.g., a general-purpose computing task) to be performed on
GPU 12. Software application 21 may 1ssue instructions to
graphics API 24. Graphics API 24 may be a runtime service
that translates the instructions received from solftware appli-
cation 21 into a format that 1s consumable by GPU driver 26.
In some examples, graphics API 24 and GPU driver 26 may
be part of the same soitware service.

GPU driver 26 receives the instructions from software
application 21, via graphics API 24, and controls the opera-
tion of GPU 12 to service the instructions. For example,
GPU dnver 26 may formulate one or more command
streams, place the command streams 1into memory 10, and
instruct GPU 12 to execute command streams. GPU driver
26 may place the command streams into memory 10 and
communicate with GPU 12 via operating system 28, e.g., via
one or more system calls.

Controller 30 1s configured to retrieve the commands
stored 1n the command streams, and dispatch the commands
for execution on shader core 32 and one or more fixed-
function units 34. Controller 30 may dispatch commands
from a command stream for execution on all or a subset of

10

15

20

25

30

35

40

45

50

55

60

65

10

shader core 32 and one or more fixed-function units 34.
Controller 30 may be hardware of GPU 12, may be software
or firmware executing on GPU 12, or a combination of both.

Shader core 32 includes programmable circuitry (e.g.,
processing cores on which software executes). One or more
fixed-function units 34 1include fixed function circuitry con-
figured to perform limited operations with minimal func-
tional flexibility. Shader core 32 and one or more fixed-
function umts 34 together form a graphics pipeline
configured to perform graphics processing.

Shader core 32 may be configured to execute one or more
shader programs that are downloaded onto GPU 12 from
CPU 6. A shader program, 1in some examples, may be a
compiled version of a program written 1 a high-level
shading language, such as, e.g., an OpenGL Shading Lan-
guage (GLSL), a High Level Shading Language (HLSL), a
C for Graphics (Cg) shading language, etc. In some
examples, shader core 32 may include a plurality of pro-
cessing units that are configured to operate 1n parallel, e.g.,
an SIMD pipeline. Shader core 32 may have a program
memory that stores shader program instructions and an
execution state register, €.g., a program counter register that
indicates the current instruction in the program memory
being executed or the next instruction to be {fetched.
Examples of shader programs that execute on shader core 32
include, for example, vertex shaders, pixel shaders (also
referred to as fragment shaders), geometry shaders, hull
shaders, domain shaders, compute shaders, and/or unified
shaders.

Fixed-function units 34 may include hardware that 1s
hard-wired to perform certain functions. Although the fixed
function hardware may be configurable, via one or more
control signals, for example, to perform different functions,
the fixed function hardware typically does not include a
program memory that 1s capable of receiving user-compiled
programs. In some examples, one or more fixed-function
units 34 may include, for example, processing units that
perform raster operations, such as, e.g., depth testing, scis-
sors testing, alpha blending, etc.

GPU driver 26 of CPU 6 may be configured to write the
command streams to memory 10, and controller 30 of GPU
12 may be configured to read the one or more commands of
command streams from memory 10. In some examples, one
or both of command streams may be stored as a ring bufler
in memory 10. A ring builer may be a bufler with a circular
addressing scheme where CPU 6 and GPU 12 maintain
synchronized state variables associated with the writing of
data to and reading of data from the ring builer.

For example, 11 the first command stream 1s a ring bufler,
cach of CPU 6 and GPU 12 may store a write pointer
indicating the next address to be written to 1n the ring bufler,
and a read pointer indicating the next address to be read from
in the ring butler. When CPU 6 writes a new command to the
ring builer, CPU 6 may update the write pointer in CPU 6
and 1nstruct GPU 12 to update the write pointer in GPU 12.
Similarly, when GPU 12 reads a new command from the
ring buller, GPU 12 may update the read pointer in GPU 12
and istruct CPU 6 to update the read pointer in CPU 6.
Other synchronization mechanisms are possible. When the
read and/or write pointers reach a highest address in the
range ol addresses allocated for the ring bufler, the read
and/or write pointers may wrap around to the lowest address
to implement a circular addressing scheme.

Example operation of an example GPU driver 26 and an
example GPU controller 30 designed 1n accordance with this
disclosure will now be described with respect to FIG. 2.
GPU driver 26 receives one or more instructions from

US 10,062,139 B2

11

software application 21 that specily graphics operations
and/or general-purpose computing operations to be per-
formed by GPU 12. GPU dnver 26 places the output
command stream 1nto memory 10, which 1s accessible by
GPU controller 30. GPU driver 26 notifies GPU controller
30 that the command stream corresponding to solftware
application 21 1s available for processing. For example,
GPU driver 26 may write to a GPU register (e.g., a GPU
hardware register polled by GPU 12 and/or a GPU memory-
mapped register polled by GPU 12) one or more values
indicating that the command stream 1s ready for execution.

Upon notification that the command stream 1s ready for
execution, controller 30 of GPU 12 may determine 1f
resources are currently available on GPU 12 to begin
executing the command stream. If resources are available,
controller 30 begins to dispatch the commands 1n the com-
mand stream.

As part of graphics processing, CPU 6 may oflload certain
graphics processing tasks to GPU 12. For instance, appli-
cation 21 may generate attribute data for attributes of a
plurality of vertices of primitives that interconnect to form
a graphical object. Application 21 may store the attribute
data 1n a vertex bufler in memory 10. Graphics driver 26
may struct controller 30 to retrieve the attribute data for
the attributes of the vertices for processing to generate
graphics data for display.

In the example techniques described 1n this disclosure,
graphics driver 26 and/or controller 30 may be configured to
cause GPU 12 to generate graphics data in two passes:
binning pass and rendering pass. In the binning pass, graph-
ics driver 26 and/or controller 30 may define a size of a bin
(also referred to as a tile) (e.g., number of NxM pixels).
Controller 30 may then cause shader core 32 and one or
more {ixed-function units 34 to perform respective opera-
tions to determine which primitives belong 1n which tile and
which vertices are visible. In the rendering pass, controller
30 may cause shader core 32 and one or more fixed-function
unit 34 to perform respective operations on a per-bin basis
to render the graphics data on a bin-by-bin basis. GPU 12
stores the resulting graphics data in memory 10 for retrieval
and display.

Part of the graphics processing includes vertex processing,
that 1s generally performed by GPU 12 executing a vertex
shader on shader core 32. For instance, the vertex shader
may perform coordinate conversion, lighting, shading, and
other such processes on the attribute data of the attributes of
cach vertex. Application 21 may be bound with a vertex
shader, and application 21 may issue the command wvia
graphics driver 26 that instructs controller 30 to retrieve
object code for a vertex shader for execution on shader core
32.

In some techniques, the vertex shader retrieves all of the
attribute data for the attributes of a vertex and performs
vertex processing operations. However, not all vertices are
visible, and therefore the vertex shader unnecessarily per-
formed operations as well as unnecessarily consumed
memory bandwidth retrieving the attribute data. Moreover,
a software-based vertex shader may provide functional
flexibility, but there may be many processes that do not
require functional flexibility and may be performed by
fixed-function circuitry instead.

In the example techniques described in this disclosure,
controller 30 may cause GPU 12 to perform vertex shadmg
using two different vertex shaders. In some examples, con-
troller 30 may cause shader core 32 to execute a first vertex
shader during the binning pass and cause a second vertex
shader to perform 1ts operation during the rendering pass.

10

15

20

25

30

35

40

45

50

55

60

65

12

The first vertex shader may be referred to as a binning pass
vertex shader, and the second vertex shader may be referred
to as a rendering pass vertex shader. As described 1n more
detail, the binning pass vertex shader may be a software-
based vertex shader and, although not required, the render-
ing pass vertex shader may be hardware fixed-function
based vertex shader.

During the binning pass, controller 30 may retrieve bin-
ning vertex shader object code 38, which 1s the object code
of the binming pass vertex shader, and execute binning vertex
shader object code 38 on shader core 32 to perform certain
vertex shading operations. In general, the execution of
binning vertex shader object code 38 may cause shader core
32 to process a subset of attributes (1.e., process attribute
data for a subset of attributes) of a vertex rather than process
all of the attributes of the vertex. For instance, binning
vertex shader object code 38 may be configured such that the
binning pass vertex shader only processes attributes that
confribute to the determination of whether the vertex 1is
visible and processes attributes that cannot be processed by
the rendering pass vertex shader or are better processed with
the binning pass vertex shader. As described above, 1n some
examples, the rendering pass vertex shader may be fixed
function vertex shader (e.g., non-programmable), and there-
fore, attributes that benefit from dynamic calculations may
be better suited to be performed by the binning pass vertex
shader than the rendering pass vertex shader.

Examples of attributes that contribute to the wvisibility
determination include coordinates and opacity values.
Examples of attributes that may be better suited for binning
pass vertex shader (e.g., attributes that may benefit from
functional flexibility of a software vertex shader) include
dynamic matrix calculations/skinming, non-linear vertex
transformations, multi-attribute combinations, and the like.

In the example techniques described in this disclosure,
compiler 22 may be configured to generate binning vertex
shader object code 38. As 1llustrated, memory 10 may store
vertex shader source code 36. At runtime (e.g., while appli-
cation 21 1s executing), operating system 28 may retrieve
vertex shader source code 36 from memory 10 and provide
vertex shader source code 36 to compiler 22 for compiling.

During development of vertex shader source code 36 by
a developer, the developer may not be aware of which
attributes will need processing that benefits from a software-
based vertex shader and which attributes can be processed
with a fixed-function vertex shader during execution of
application 21. Accordingly, vertex shader source code 36
may include mstructions to perform operations on all of the
attributes of a vertex.

However, based on the actual instructions issued by
application 21, compiler 22 may determine whether particu-
lar instructions within vertex shader source code 36 should
be compiled and included 1in binning vertex shader object
code 38. Operating system 28 may provide the instructions
issued by application 21 to compiler 22 for compiler 22 to
determine whether particular instructions within vertex
shader source code 36 should be compiled and included 1n
binning vertex shader object code 38.

As an example, application 21 may 1ssue an instruction
indicating that certain attributes (e.g., attribute data of cer-
tain attributes) are to be multiplied by a dynamic matrix
(e.g., a matrix having values unknown until later in the
execution). In this case, compiler 22 may determine that this
instruction 1s better to be executed by the binming pass vertex
shader than by the rendering pass vertex shader because the
matrix values will not be known until later. Accordingly,
compiler 22 may compile instructions in vertex shader

US 10,062,139 B2

13

source code 36 for performing this matrix multiplication and
include these instructions in binning vertex shader object
code 38.

As another example, application 21 may 1ssue an 1nstruc-
tion indicating that certain attributes (e.g., attribute data of
certain attributes) are to be transformed using a non-linear
set of operations. In this case, compiler 22 may be config-
ured to compile all instructions 1n vertex shader source code
36 that include non-linear transformations and include such
instructions 1n binning vertex shader object code 38.

As another example, application 21 may 1ssue an instruc-
tion indicating that certain attributes (e.g., attribute data of
certain attributes) are to be multiplied by a static matrix. In
this case, compiler 22 may not compile instructions in vertex
shader source code 36 to perform this multiplication and
such instructions would not be included in binning vertex
shader object code 38. In this example, when shader core 32
executes binning vertex shader object code 38 of the binning
pass vertex shader, shader core 32 may not perform the
matrix multiplication. Rather, the matrix multiplication waill
occur as part of the rendering pass.

In the above examples, compiler 22 1s described as
avoiding the compilation of certain instructions; however,
the example techniques are not so lmmited. In some
examples, compiler 22 may be configured to include mstruc-
tions that are to be compiled and separate out instructions
that are be performed by the rendering pass vertex shader.

Furthermore, part of the binning pass includes a depth test
for visibility determination. Accordingly, compiler 22 may
be configured to maintain all mstructions in vertex shader
source code 36 that include processing coordinates and
opacity values, even 1f such instructions do not require
programmable flexibility, so that coordinate and opacity
values are available i1n the binning pass for determining
whether a vertex 1s visible or occluded.

The binning pass vertex shader, having the binming vertex
shader object code 38 performs operations on a subset of the
attributes of a vertex rather than all of the attributes. Because
the binning pass vertex shader performs operations on a
subset of attributes, the amount of attribute data that con-
troller 30 retrieves as part of the execution of binning vertex
shader code 38 on shader core 32 may be reduced as
compared to a vertex shader that retrieves all of the attribute
data. In some cases, attributes that utilize operations such as
dynamic matrix calculations/skinming, non-linear vertex
transformations, multi-attribute combinations, etc., are rela-
tively rare. Therefore, there may be a reduction 1n memory
bandwidth and increase in processing efliciency as shader
core 32 performs operations on fewer attributes.

The result of execution of the binning pass vertex shader
1s processed vertex attributes. For example, controller 30
may retrieve from a vertex bufler in memory 10 a subset of
attributes that are processed by the binning pass vertex
shader which executes on shader core 32. The execution of
the binning pass vertex shader may cause shader core 32 to
generate processed vertex attributes, where the processed
vertex attributes are a subset of all processed vertex attribute
that are to be generated.

As part of the binning pass, GPU 12 (e.g., via one of one
or more fixed-function units 34) may determine a vertex 1s
visible. GPU 12 may store in memory 10 processed vertex
attributes if the vertex 1s visible and discard processed vertex
attributes 11 the vertex 1s not visible. Because GPU 12 stores
processed vertex attributes for visible vertices and not for
occluded vertices, and the processed vertex attributes are a
subset of all the vertex attributes, there may be further
reduction 1n the amount of data that needs to stored.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

The attributes that were not processed remain stored 1n the
vertex bufler. Also, compiler 22 may leave mstructions of
vertex shader source code 36 that were not compiled 1n a
local memory of CPU 6 or possible in memory 10. In the
example techniques described in this disclosure, GPU driver
26 may output the instructions that were not compiled to
controller 30 for execution and the attributes that were not
processed to controller 30 for processing as part of the
rendering pass.

In the rendering pass, controller 30 may provide the
instructions and the attributes to the rendering pass vertex
shader, which may be a fixed-function unit of one or more
fixed-function units 34. The rendering pass vertex shader
may be configured to perform limited functions such as 3x3
or 4x4 matrix vector multiplication with static matrices,
vector normalization (Vec3), and scaling. In the techniques
described 1n this disclosure, rendering pass vertex shader
may be performing operations on subset of attributes of
vertices that were determined to be visible. The binning pass
vertex shader may have already performed operations on a
subset of attributes of all vertices, and the rendering pass
vertex shader may perform operations on the remaining
subset of attributes, but only for vertices determined to be
visible.

In this way, processing efliciency gains may be realized in
two ways. For a particular vertex, only a subset of attributes
may be processed by the binning pass vertex shader, and 1
that vertex 1s determined to not be visible, no computational
resources are wasted 1n processing the remaining attributes
of the vertex. Additionally, using a fixed-function rendering
pass vertex shader may be computationally more eflicient
than a software-based binning pass vertex shader because
computational resources associated with overhead in soft-
ware processing (e.g., function calling, loop management,
etc.) may be avoided.

Although the above example describes rendering pass
vertex shader as being a fixed-function vertex shader, the
example techmiques are not so limited. In some examples,
rendering pass vertex shader may be a software-based vertex
shader. Even 1n such examples, there may be memory
bandwidth gains because rendering pass vertex shader may
not execute instructions to process attributes that were
determined to not be visible. For ease of description, this
disclosure describes the rendering pass vertex shader as
being a fixed-function vertex shader.

FIG. 3 1s a block diagram illustrating an example of a
graphics processing unit (GPU) that may implement an
example of a graphics processing pipeline in accordance
with one or more examples described 1n this disclosure. To
perform graphics operations, GPU 12 may implement a
graphics processing pipeline. The graphics processing pipe-
line 1includes performing functions as defined by software or
firmware executing on GPU 12 and performing functions by
fixed-function units that are hardwired to perform very
specific functions. The software or firmware executing on
the GPU 12 may be referred to as shaders, and the shaders
may execute on one or more shader cores of GPU 12.
Shaders provide users with functional flexibility because a
user can design the shaders to perform desired tasks 1 any
concelvable manner. The fixed-function units, however, are
hardwired for the manner 1n which the fixed-function units
perform tasks. Accordingly, the fixed-function units may not
provide much functional flexibility.

In this example, GPU 12 may include one or more of
controller 30, mnput assembler circuit 40, binning pass cir-
cuitry 44, and rendering pass circuitry 54. Binning pass
circuitry 44 includes binning pass vertex shader 46, which 1s

US 10,062,139 B2

15

1llustrated 1n dashed lines to indicate that binning pass vertex
shader 46 executes on shader core 32 of GPU 12. For
example, binning pass circuitry 44 includes shader core 32
on which binning pass vertex shader 46 executes. Binning
pass circuitry 44 also includes binning circuit 48 and depth
test circuit 50. Rendering pass circuitry 54 includes render-
ing pass vertex shader 56, rasterizer circuit 58, and pixel
shader 62, which 1s 1llustrated 1n dashed lines to indicate that
pixel shader 62 executes on shader core 32.

Shader core 32 may execute other types of shaders as well
such as a hull shader and domain shader that follow the
vertex shader stage in that order, and are used for tessella-
tion. Tessellation circuitry may also be included 1in one or
more fixed-function units 34 for performing the tessellation.
Shader core 32 may also execute a geometry shader that
receives the output of the domain shader, 1t shader core 32
executes the domain shader, or the output of a vertex shader,
i no domain shader 1s executed. Rasterizer circuit 38 may
receive graphics data generated by binning pass vertex
shader 46 and rendering pass vertex shader 56, as illustrated,
or Irom the geometry shader (when available) or domain
shader (when available).

Other configurations of the graphics pipeline are possible,
and the techniques descried 1n this disclosure should not be
considered limited to the specific example illustrated 1n FIG.
3. For example, GPU 12 may include more stages than those
illustrated, and 1n some examples, GPU 12 may not neces-
sarily include all of the illustrated stages. Also, the specific
ordering of the stages 1s provided for purposes of illustration
and should not be considered limiting.

FIG. 3 also illustrates the various buflers 1n memory 10
used to store intermediate graphics data as the graphics data
1s being generated through the graphics pipeline of GPU 12.
As 1llustrated, memory 10 includes vertex buller 42,
streamout builer 52, pixel buller 60, and frame bufler 64.
These buflers may be part of the same larger bufler or may
be separate bullers.

Application 21 may cause CPU 6 to output vertex data
(e.g., attribute data) of vertices to vertex bufler 42. Input
assembler circuit 40 may read vertex points of vertices from
system memory 10 as defined by CPU 6, and assemble the
control points to form the vertices. For instance, input
assembler circuit 40 may read the coordinates, color values,
and other such information. The coordinates, color values,
and other such information may be commonly referred to as
attributes of the vertices. Based on the attributes of the
vertices, mput assembler circuit 40 may determine the
general layout of the primitives. Input assembler circuit 40
may be a fixed-function unit.

Binning pass vertex shader 46 may receive the attribute
data for the attributes of vertices. However, as described in
this disclosure, binning pass vertex shader 46 may retrieve
a subset of the attributes such as those that contribute to
visibility determination and that benefit from functional
flexibility provided by a software-based vertex shader. Bin-
ning pass vertex shader 46 may perform per-vertex opera-
tions such as transformations, skinning, morphing, and
per-vertex lighting. Compiler 22 may have determined
which instructions binning pass vertex shader 46 1s to
execute based on the mnstructions generated by application
21. Accordingly, binning pass vertex shader 46 may receive
from vertex buller 42 a first subset of attributes of a vertex,
and may process the {irst subset of attributes to generate a
first subset of processed attributes.

Binning circuit 48 receives the output from binning pass
vertex shader 46 and determines to which tile (e.g., bin) a
vertex belongs. For instance, the output of binning pass

10

15

20

25

30

35

40

45

50

55

60

65

16

vertex shader 46 may be an x and y coordinate pair in viewer
perspective, and a depth value. Binming circuit 48 may
utilize the x and y coordinates to determine to which tile that
vertex belongs, as well as generate any additional graphics
data needed for rendering by rendering pass circuitry 54.
Binning circuit 48 may be a fixed function unit of one or
more fixed-function units 34.

Depth test circuit 50 may compare the z-coordinates of
vertices processed by binning pass vertex shader 46 to
determine whether a vertex 1s visible or not visible. Depth
test circuit 50 may output the processed attributes of the
vertices that are visible to streamout buller 52. Again, not all
attributes of the vertex may have been processed. There may
be some attributes, such as those that do not need the
functional flexibility provided by binning pass vertex shader
46, that have not yet been processed.

Rendering pass vertex shader 56 receives the attributes
from vertex buller 42 that were not processed by binning
pass vertex shader 46. However, rendering pass vertex
shader 56 may process attributes of only vertices that were
determined to be visible. Accordingly, rendering pass vertex
shader 56 may receive from vertex builer 42 a second subset
of attributes of the same vertex as binning pass vertex shader
46, and may process the second subset of attributes of the
same vertex to generate a second subset of processed
attributes. As described 1in more detail, the remaining stages
in the graphic pipeline of GPU 12 may generate graphics
data used for display based on the first subset of processed
attributes (e.g., at least those for vertices determined to be
visible) and the second subset of processed attributes.

For example, graphics driver 26 may track for which
vertices processed attributes are stored during the binming
pass. Graphics driver 26 may then cause rendering pass
vertex shader 56, via controller 30, to retrieve the attributes
for only those vertices that were determined to be visible.
Graphics driver 26 may also output those instructions that
were not part of binning pass vertex shader 46 for rendering
pass vertex shader 56 to perform. Rendering pass vertex
shader 36 may be a fixed-function unit of one or more
fixed-function units 34 and may output the processed attri-
butes to a local memory of GPU 12 (e.g., cache)

Rasterizer circuit 58 receives the attribute data for vertices
of primitives from both streamout bufler 52 and the local
memory of GPU 12 that stores the output from rendering
pass vertex shader 56 and converts the primitives into pixels
for the display. For example, the primitives may be defined
as vectors that indicate the interconnection of the primitives,
and may be defined in a coordinate space that 1s independent
of the display on which the image 1s to be displayed.
Rasterizer circuit 58 converts these vectors into the display
coordinates, and performs any additional functions such as
removing points within primitives that are occluded. Ras-
terizer circuit 38 may be a fixed-function unit of one or more
fixed-function units 34 and outputs values to pixel buller 60.

Rasterizer circuit 58 may be configured to generate graph-
ics data used for display based on attribute from both
streamout bufler 52 and the local memory of GPU 12. The
output of rasterizer circuit 58 1s graphics data that 1s used for
display. For instance, additional components of GPU 12
receive the graphics data generated by rasterizer circuit 38
for further processing and generating graphics data for
display.

Pixel shader 62 receives the pixels from pixel buller 60 as
outputted by rasterizer circuit 58 and performs post process-
ing to assign color values to each of the pixels that are to be
displayed. For example, pixel shader 62 may receive con-
stant values stored 1n system memory 10, texture data stored

US 10,062,139 B2

17

in system memory 10, and any other data to generate
per-pixel outputs such as color values. Pixel shader 62 may
also output opacity values that indicate the opaqueness of
the pixels. Pixel shader 62 may output the resulting pixel
values to frame buller 64.

Although not illustrated, in some examples, pixel shader
62 may output to an output merge circuit for any final pixel
processing. For example, the output merge circuit may
utilize depth information to further determine whether any
of the pixels should be removed from being displayed. The
output merge circuit may also perform blending operations
to generate final pixel values. In such examples, the output
merge circuit may output the final pixel values to frame
butler 64.

The above example described the case where a vertex 1s
visible. However, for a second vertex that 1s not visible, the
process may be different. For example, binning pass vertex
shader 46 may process a {irst subset of attributes of a vertex,
and depth test circuit 50 may determine that the vertex 1s not
visible. In this case, rendering pass circuitry 54 may avoid
the processing of a second subset of attributes (e.g., remain-
ing attributes) of the vertex in response to determination that
the vertex 1s not visible.

FIG. 4 1s a conceptual diagram 1llustrating an example
process flow 1n accordance with one or more example
techniques described 1n this disclosure. FIG. 4 illustrates one
example of vertex shader source code 36 that includes
instructions: gl Position=MVP*gl_Vertex, where MVP 1s a
static matrix and normal=normalize(MVN¥*gl_Normal),
where MVN 15 a static matrix, and the normalize function 1s
a Tunction scaling a vector with a reciprocal of its norm.
Vertex shader source code 36 also includes the instruction
texcoord=vec2(sin(normal.x), cos(normal.y).

In this example, compiler 22 may determine that because
normal=normalize(MVN*gl_Normal) includes only static
matrix multiplication and scaling operations, these nstruc-
tions do not need to be compiled and included 1n binming
vertex shader object code 38, execution of which 1s the same
as binning pass vertex shader 46 executing on shader core
32. However, compiler 22 may determine that the sine and
cosine operations in the vec2(sin(normal.x), cos(normal.y))
instruction should be performed by binning pass vertex
shader 46. Accordingly, as illustrated after the binning pass,
streamout builer 52 may store the value of texcoord because
that instruction was executed by binning pass vertex shader
46.

Graphics driver 26 may output the MVP and MVN
matrices to controller 30 so that controller 30 can cause
rendering pass vertex shader 56 to perform the operations
defined in the 1mstructions. Rendering pass vertex shader 56
may receive, via controller 30, the gl_Vertex and gl Normal
values from vertex bufler 42. Then, during the rendering
pass, rendering pass vertex shader 56 may perform the
matrix multiplication to generate the gl_Position and normal
values and store the values 1 a local memory of GPU 12.

Rasterizer circuit 58 receives the texcoord value from
streamout bufler 52 and the result of rendering pass vertex
shader 56 from the local memory of GPU 12. Rasterizer
circuit 58 performs its operations on the processed attributes
and the remaining stages of GPU 12 further process the data
to generate graphics data for display. For example, rasterizer
circuit 58 generates graphic data used for display, and the
remaining states of GPU 12 further process the data gener-
ated by rasterizer circuit 58 to generate graphics data for
display.

In the illustrated example, during binning pass, only
attributes that are processed by binning pass vertex shader

10

15

20

25

30

35

40

45

50

55

60

65

18

46 are outputted from vertex bufler 42, and binning pass
vertex shader 46 1s a programmable vertex shader. All other
attributes for the vertex may remain in vertex builer 42. For
these attributes, graphics driver 26 outputs the per-batch
transformation matrices and normalization enabled flag
(e.g., MVP and MVN matrices plus normalization enabled
flag for normal attribute). During bin rendering, transforma-
tion 1s performed by rendering pass vertex shader 56, which
may be a fixed-function hardware vertex shader. There may
be no programmable vertex processing during rendering.
The attributes processed by binning pass vertex shader 46
are directly read from streamout buller 52. Rasterizer circuit
58 receives the whole set of vertex attributes (e.g., those
processed by binning pass vertex shader 46 and those
processed by rendering pass vertex shader 56) for rasteriza-
ton and further processing.

FIG. 5 1s a flowchart illustrating an example method of
processing data. For example, FIG. 5 illustrates example
techniques of utilizing two different vertex shaders, each
operating 1n different graphics processing passes.

A first vertex shader of GPU 12 may receive from vertex
bufler 42 a first subset of attributes of a vertex (70). For
example, binning pass vertex shader 46 may receive attri-
butes that compiler 22 determined should be processed by
binning pass vertex shader 46 including determination of
vertex visibility.

The first vertex shader (e.g., binning pass vertex shader
46) may process the first subset of attributes of the vertex to
generate a first subset of processed attributes (72). This
processing of the first subset of attributes may occur during
a binning pass, where the binning pass includes determining
which vertices belong to which tile (e.g., via binning circuit
48). The first subset of attributes include attributes used for
determining visibility of the vertex. Also, processing the first
subset of attributes may include executing the first vertex
shader on shader core 32, and processing the first subset of
attributes based on the execution of the first vertex shader.

A second vertex shader of GPU 12 may receive from
vertex bufler 42 a second subset of attributes of the same
vertex (74). For example, rendering pass vertex shader 56
may receive attributes that compiler 22 determined were not
to be processed by binning pass vertex shader 46.

The second vertex shader (e.g., rendering pass vertex
shader 56) may process the second subset of attributes of the
vertex to generate a second subset of processed attributes
(76). This processing of the second subset of attributes may
occur during a rendering pass, where the rendering pass
includes generating the graphics data for display (e.g., via
pixel shader 62 or subsequent output merge circuit). The
second vertex shader includes a fixed-function hardware
vertex shader. In some examples, processing the second
subset of attributes may include executing the second vertex
shader on shader core 32, and processing the second subset
ol attributes based on the execution of the second vertex
shader.

GPU 12 may generate graphics data for display based on
the first subset of processed attributes and the second subset
of processed attributes (78). For instance, rasterizer circuit
58 may generate graphics data used for display based on
processed attributes of the first subset of processed attributes
for vertices determined to be visible and the second subset
of processed attributes. Rasterizer circuit 58 generates
graphics data used for display (e.g., the graphics data that
rasterizer circuit 58 outputs 1s used by additional compo-
nents to generate graphics data for display). For instance,
pixel shader 62 may receive the graphics data generated by
rasterizer circuit 58, and further process the data to generate

US 10,062,139 B2

19

graphics data that 1s used for display. For vertices deter-
mined not to be visible, GPU 12 may avoid the processing
ol the second subset of attributes based on the determination
that a vertex 1s not visible, and may instead discard the
values.

Accordingly, binning pass circuitry 44 1s configured to
receive the first subset of attributes of the vertex and process
the first subset of attribute with a first vertex shader (e.g.,
binning pass vertex shader 46) to generate a first subset of
processed attributes. Rendering pass circuitry 34 1s config-
ured to receive the second subset of attributes of the vertex,
and process the second subset of attributes with a second,
different vertex shader (e.g., rendering pass vertex shader
56) to generate a second subset ol processed attributes.
Rendering pass circuitry 54 1s configured to generate graph-
ics data for display based on the first subset of processed
attributes and the second subset of processed attributes.

Binning pass circuitry 44 may be considered as including
shader core 32 because binning pass vertex shader 46
executes on shader core 32. As described above, shader core
32 may be configured to execute the first vertex shader (e.g.,
binning pass vertex shader 46), and process the first subset
of attributes based on the execution of the first vertex shader.
Rendering pass vertex shader 56 i1s an example of the
second, different vertex shader such as where the second
vertex shader 1s a fixed-function hardware vertex shader.

However, 1n some examples, rendering pass vertex shader
56 may be software based. For such examples, rendering
pass circuitry 54 may also include shader core 32. For
instance, shader core 32 may be shared by both binning pass
circuitry 44 and rendering pass circuitry 54. Binning pass
circuitry 44 includes shader core 32 for executing binning
pass vertex shader 46, and rendering pass circuitry 34
includes shader core 32, generally, for executing pixel
shader 62, but also for executing rendering pass vertex
shader 56 1n examples where rendering pass vertex shader
56 1s not a fixed-function hardware vertex shader. In such
examples, rendering pass circuitry 54 includes shader core
32, and to process the second subset of attributes, shader
core 32 1s configured to execute the second vertex shader
(c.g., rendering pass vertex shader 56), and process the
second subset of attributes based on the execution of the
second vertex shader.

In some examples, as part of generating the graphics data,
the first vertex shader may output the first subset of pro-
cessed attributes to streamout bufler 52 external to GPU 12
(e.g., binning pass circuitry 44 outputs the first subset of
processed attributes to streamout builer 52), and rasterizer
circuit 58 of rendering pass circuitry 34 may receive the first
subset of processed attributes from streamout builer 32. The
second vertex shader may output the second subset of
processed attributes to a local memory of GPU 12 (e.g.,
cache of GPU 12) (e.g., rendering pass circuitry 54 outputs
the second subset of processed attributes to the local
memory), and rasterizer circuit 38 of rendering pass circuitry
54 may receive the second subset of processed attributes
from the local memory. Rasterizer circuit 58 may then
process the all of the attributes (e.g., both the first and second
subsets) of the vertex and provide the resulting data to pixel
shader 62 for generating the graphics data for display.

The techniques described 1n this disclosure may be imple-
mented, at least 1n part, 1n hardware, software, firmware or
any combination thereol. For example, various aspects of
the described techniques may be implemented within one or
more processors, including one or more microprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays

10

15

20

25

30

35

40

45

50

55

60

65

20

(FPGASs), or any other equivalent integrated or discrete logic
circuitry, as well as any combinations of such components.
The term “processor” or “processing circuitry” may gener-
ally refer to any of the foregoing logic circuitry, alone or 1n
combination with other logic circuitry, or any other equiva-
lent circuitry such as discrete hardware that performs pro-
cessing.
Such hardware, software, and firmware may be imple-
mented within the same device or within separate devices to
support the various operations and functions described 1n
this disclosure. In addition, any of the described umnits,
modules or components may be implemented together or
separately as discrete but interoperable logic devices. Depic-
tion of different features as modules or units 1s intended to
highlight different functional aspects and does not necessar-
i1ly imply that such modules or units must be realized by
separate hardware or software components. Rather, func-
tionality associated with one or more modules or units may
be performed by separate hardware, firmware, and/or soft-
ware components, or integrated within common or separate
hardware or software components.
The techniques described 1n this disclosure may also be
stored, embodied or encoded 1m a computer-readable
medium, such as a computer-readable storage medium that
stores instructions. Instructions embedded or encoded 1n a
computer-readable medium may cause one or more proces-
sors to perform the techniques described herein, e.g., when
the 1nstructions are executed by the one or more processors.
Computer readable storage media may include random
access memory (RAM), read only memory (ROM), pro-
grammable read only memory (PROM), erasable program-
mable read only memory (EPROM), electronmically erasable
programmable read only memory (EEPROM), f{flash
memory, a hard disk, a CD-ROM, a tloppy disk, a cassette,
magnetic media, optical media, or other computer readable
storage media that 1s tangible.
Various aspects and examples have been described. How-
ever, modifications can be made to the structure or tech-
niques of this disclosure without departing from the scope of
the following claims.
What 1s claimed 1s:
1. A method of processing data, the method comprising;:
receiving from a vertex bufler a first subset of attributes
ol a vertex;

processing the first subset of attributes of the vertex with
a first vertex shader of a graphics processing unit
(GPU) to generate a first subset of processed attributes,
wherein the first vertex shader comprises a solftware-
based vertex shader;

recerving from the vertex bufler a second subset of

attributes of the same vertex:

processing the second subset of attributes of the same

vertex with a second, different vertex shader of the
GPU to generate a second subset of processed attri-
butes, wherein the second vertex shader comprises a
hardware vertex shader, and wherein one or more
attributes of the first subset of attributes are different
than one or more attributes of the second subset of
attributes; and

generating graphics data for display based on the first

subset of processed attributes and the second subset of
processed attributes.

2. The method of claim 1, wherein processing the first
subset of attributes comprises processing the first subset of
attributes during a binning pass, the binning pass comprising
determining which vertices belong to which tile, and
wherein processing the second subset of attributes comprises

US 10,062,139 B2

21

processing the second subset of attributes during a rendering,
pass, the rendering pass comprising generating the graphics
data for display.

3. The method of claim 1, wherein processing the first
subset of attributes comprises:

executing the first vertex shader on a shader core; and

processing the first subset of attributes based on the

execution of the first vertex shader.

4. The method of claim 1, wherein the vertex comprises
a first vertex, the method further comprising:

processing a first subset of attributes of a second vertex

with the first vertex shader;

determining that the second vertex 1s not visible; and

avoiding the processing of a second subset of attributes of

the second vertex in response to the determination that
the second vertex 1s not visible.

5. The method of claim 1, further comprising;:

outputting the first subset of processed attributes to a

streamout bufler external to the GPU:;

receiving with a rasterizer circuit the first subset of

processed attributes from the streamout bufler;

outputting the second subset of processed attributes to a

local memory internal to the GPU; and

receiving with the rasterizer circuit the second subset of

processed attributes from the local memory.

6. The method of claim 1, wherein generating graphics
data for display based on the first subset of processed
attributes and the second subset of processed attributes
comprises generating graphics data for display based on
processed attributes of the first subset of processed attributes
for vertices determined to be visible and the second subset
of processed attributes.

7. The method of claim 1, wherein the first subset of
attributes comprises attributes used for determining visibil-
ity.

8. The method of claim 1, turther comprising;:

determining that the second subset of attributes comprises

only attributes that are to be multiplied by a static
matrix,

wherein processing the second subset of attributes com-

prises processing only the attributes that are to be
multiplied by the static matrix with the second vertex
shader.

9. A device for processing data, the device comprising;:

a memory comprising a vertex builer configured to store

a first subset of attributes of a vertex and a second
subset of attributes of the same vertex;

a graphics processing unit (GPU) comprising binning pass

circuitry and rendering pass circuitry,

wherein the binning pass circuitry 1s configured to:

recerve the first subset of attributes of the vertex; and

process the first subset of attributes with a first vertex
shader to generate a first subset of processed attri-
butes, wherein the first vertex shader comprises a
software-based vertex shader, and

wherein the rendering pass circuitry i1s configured to:

recerve the second subset of attributes of the vertex;

process the second subset of attributes with a second,
different vertex shader to generate a second subset of
processed attributes, wherein the second vertex
shader comprises a hardware vertex shader, and
wherein one or more attributes of the first subset of
attributes are diflerent than one or more attributes of
the second subset of attributes; and

generate graphics data for display based on the first
subset of processed attributes and the second subset
of processed attributes.

10

15

20

25

30

35

40

45

50

55

60

65

22

10. The device of claim 9, wherein the binning pass
circuitry comprises a shader core, and wherein to process the
first subset of attributes, the shader core 1s configured to:

execute the first vertex shader; and

process the first subset of attributes based on the execu-

tion of the first vertex shader.
11. The device of claim 9, wherein the vertex comprises
a lirst vertex, wherein the binning pass circuitry 1s config-
ured to process a first subset of attributes of a second vertex
with the first vertex shader, and determine that the second
vertex 1s not visible, and wherein the rendering pass circuitry
1s configured to avoid the processing of a second subset of
attributes of the second vertex in response to the determi-
nation that the second vertex i1s not visible.
12. The device of claim 9, wherein the binning pass
circuitry 1s configured to output the first subset of processed
attributes to a streamout builer, wherein the rendering pass
circuitry 1s configured to output the second subset of pro-
cessed attributes to a local memory, wherein the rendering
pass circuitry comprises a rasterizer circuit configured to
receive the first subset of processed attributes from the
streamout buller and receive the second subset of processed
attributes from the local memory.
13. The device of claim 9, wherein the rendering pass
circuitry 1s configured to generate graphics data for display
based on processed attributes of the first subset of processed
attributes for vertices determined to be visible and the
second subset of processed attributes.
14. The device of claim 9, wherein the first subset of
attributes comprises attributes used for determining visibil-
ity.
15. The device of claim 9, wherein the GPU is configured
to recerve mformation that the second subset of attributes
comprises only attributes that are to be multiplied by a static
matrix, and wherein the rendering pass circuitry 1s config-
ured to process only the attributes that are to be multiplied
by the static matrix with the second vertex shader.
16. The device of claim 9, wherein the device comprises
one of a personal computer, a desktop computer, a laptop
computer, a computer workstation, a video game platform or
console, a wireless communication device, a display device,
a television, or a television set-top box.
17. A non-transitory computer-readable storage medium
having instructions stored thereon that when executed cause
a graphics processing unit (GPU) to:
receive from a vertex buller a first subset of attributes of
a vertex,

process the first subset of attributes of the vertex with a
first vertex shader of the GPU to generate a first subset
of processed attributes, wherein the first vertex shader
comprises a solftware-based vertex shader;

recerve from the vertex buller a second subset of attributes

of the same vertex;
process the second subset of attributes of the same vertex
with a second, different vertex shader of the GPU to
generate a second subset of processed attributes,
wherein the second vertex shader comprises a hardware
vertex shader, and wherein one or more attributes of the
first subset of attributes are different than one or more
attributes of the second subset of attributes; and

generate graphics data for display based on the first subset
of processed attributes and the second subset of pro-
cessed attributes.

18. The non-transitory computer-readable storage
medium of claim 17, wherein the vertex comprises a first
vertex, the instructions further comprising instructions that

cause GPU to:

US 10,062,139 B2

23

process a lirst subset of attributes of a second vertex with

the first vertex shader;

determine that the second vertex is not visible; and

avoid the processing of a second subset of attributes of the

second vertex 1n response to the determination that the
second vertex 1s not visible.

19. The non-transitory computer-readable storage
medium of claim 17, wherein the first subset of attributes
comprises attributes used for determining visibility.

20. The non-transitory computer-readable storage
medium of claim 17, further comprising instructions that
cause the GPU to:

receive information that the second subset of attributes

comprises only attributes that are to be multiplied by a
static matrix,

wherein the instructions that cause the GPU to process the

second subset of attributes comprise structions that
cause the GPU to process only the attributes that are to
be multiplied by the static matrix with the second
vertex shader.

21. A device for processing data, the device comprising:

means for recerving from a vertex buller a first subset of

attributes of a vertex;

means for processing the first subset of attributes of the

vertex with a first vertex shader of a graphics process-
ing unit (GPU) to generate a first subset of processed
attributes, wherein the first vertex shader comprises a
software-based vertex shader;
means for receiving from the vertex bu
of attributes of the same vertex;
means for processing the second subset of attributes of the
same vertex with a second, different vertex shader of

"y

‘er a second subset

10

15

20

25

30

24

the GPU to generate a second subset of processed
attributes, wherein the second vertex shader comprises
a hardware vertex shader, and wherein one or more
attributes of the first subset of attributes are different
than one or more attributes of the second subset of
attributes; and

means for generating graphics data for display based on
the first subset of processed attributes and the second
subset of processed attributes.

22. The device of claim 21, wherein the vertex comprises

a first vertex, the device further comprising:

means for processing a first subset of attributes of a
second vertex with the first vertex shader;

means for determining that the second vertex 1s not
visible; and

means for avoiding the processing of a second subset of
attributes of the second vertex in response to the
determination that the second vertex 1s not visible.

23. The device of claim 21, wherein the first subset of

attributes comprises attributes used for determining visibil-
ity.

24. The device of claim 21, further comprising;:

means for receiving information that the second subset of
attributes comprises only attributes that are to be mul-
tiplied by a static matrix,

wherein the means for processing the second subset of
attributes comprises means for processing only the
attributes that are to be multiplied by the static matrix
with the second vertex shader.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

