US010061926B2

12 United States Patent (10) Patent No.: US 10,061,926 B2

Zheng et al. 45) Date of Patent: *Aug. 28, 2018
(54) METHOD AND SYSTEM FOR UNLOCKING (38) Field of Classification Search
AND DELETING FILE AND FOILDER CPC ... GO6F 17/30734; GO6F 21/56; GO6F 21/568
(Continued)
(71) Applicant: BELJING QIHOO TECHNOLOGY
COMPANY LIMITED, Beijing (CN) (56) References Cited
(72) Inventors: Wenbin Zheng, Beijing (CN); Yu u.5. PALENT DOCUMENIS
Wang, Beyjing (CN) 505,698 A 9/1999 Chen et al.
6,240,550 Bl 5/2001 Togawa
(73) Assignee: Beijing Qihoo Technology Company (Continued)

Limited, Beijing (CN)
FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 8§ ig gégg% 18?3882
U.S.C. 154(b) by 4 days. CN 101611412 12/2009
This patent 1s subject to a terminal dis-
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 14/828,217 Paul J. Leach; The File System of an Integrated Local Network;
ACM; Mar. 12-14, 1985; p. 309-324.*
(22) Filed: Aug. 17, 2015 (Continued)
(65) Prior Publication Data Primary Examiner — Monjour Rahim
US 2015/0356298 A1 Dec. 10. 2015 (74) Attorney, Agent, or Firm — Baker & Hostetler LLP
(37) ABSTRACT
Related U.S. Application Data A method and system for unlocking and deleting a file or a
| | o folder. The method for unlocking the file or the folder
(63) Continuation of application No. 14/128,592, filed as comprises: recerving an unlock request of a file or a folder,
application No. PCT/CN2012/077381 on Jun. 21, wherein the unlock request includes an input parameter;
2012, now Pat. No. 9,152,792. verifying whether the input parameter complies with a preset
condition; 1f the mput parameter complies with the preset
(30) Foreign Application Priority Data condition, correcting a deformed path format of the file or
the folder and/or the special file name of the file or the
.]U.Il. 27,J 2011 (CN) 2011 1 0175389 Special fo]der name Of the folder according to a preset I'ule:J
determining whether restrictive setting of the corrected file
(51) Imt. CL or folder 1s present; and 1f yes, cleaning the restrictive setting
Gool 11/00 (2006.01) of the file or the folder. The embodiments of the present
Goot 12/14 (2006.01) invention relieves layer by layer the protections arranged by
(Continued) files infected with a virus by employing a plurality of means
(52) U.S. CL such as removing the read-only lock, removing the routine
CPC GO6F 21/568 (2013.01); GO6F 17/30117 lock, adding the authority and closing the handle, thereby
(2013.01); GO6F 21/56 (2013.01) (Continued)

receive a delete request of a file or a folder, whersin the delete request includes an input parameter /

y

Verity whether the input pararmeter

T ——

_gomplies with a preset condition

~|r yes 403
if the input parameter complies with the preset condition, correct the deformed path format of the /
file or the folder and/ar the special file name or the special folder name accoeding to a preset rule
‘I' 404
establish & kernel mode structure parameter corresponding to the platform and the version of a /
operating sysem
l 403
panerate a carresponding file operation control ¢ode aceording o the kernel mode strociure /
parameter and send the file operation contro! code to a kernel mode driver of the operating system
l -~ 406
abtain the delcts request of the file or the folder by the ketnsl mosde driver of the operating system /

and re-sstablish the user mode addresa to a kerne! mode memary space

Determine whether the restrictive seiting of
the corrected file or folder s present

408
clean the restrictive sening of the file gor the folder /

.

09
apen the file or the folder by using penetration technology and delete the file or folder; or zerc _/’Q1
clearing the reference count of the file or the folder

US 10,061,926 B2

Page 2
increasing the confrontation capacity of a security soitware 2005/0240761 Al 10/2005 Yuw
against a malignant program. 2005/0246612 Al* 11/2005 Leisccoovvvvennnn, GO6F ;};O/;é;
16 Claims, 6 Drawing Sheets 2005/0273858 Al* 12/2005 Zadok GOﬁFéégg
2006/0015747 Al 1/2006 Van de Ven
2006/0123062 Al 6/2006 Bobbitt et al.
2006/0272021 A1 11/2006 Marinescu et al.
(51) Int. CIL 2007/0180530 Al 8/2007 Verma et al.
GO6F 12/16 (2006.01) 2007/0204012 Al* 8/2007 Kruse GO6F ';1/(1)/92;(1)3
GO8B 23/00 (2006.01)
H 2007/0226320 Al* 9/2007 Hager GO6F 17/30194
GOG6F 21/56 (2013.01) e S00/710
GO6L 17/30 (2006.01) 2008/0209551 ALl* 8/2008 Treacy GO6F 21/53
(58) Field of Classification Search 726/22
USPC oo, 726/24 gggggg%iég i?~$ 13%882 %?li'et al. COGE 1730171
et : 1 e oo,
See application file for complete search history. 5000/0080485 Al 11/2000 Benneft
: 2010/0031361 Al 2/2010 Shukla
(56) References Cited 2010/0154062 Al 6/2010 Baram et al
. 2010/0262584 Al 10/2010 Turbin et al.
U.S. PALTENT DOCUMENTS 2011/0162077 Al 6/2011 Kadam
6,842,770 B1* 1/2005 Serlet GO6F 17/30067
707/E17.01 OTHER PUBLICATIONS
7,620,887 B1* 11/2009 Lubbers GO6F 11/3692
715/205 International application No. PCT/CN2012/077381: International

7,739,738 Bf 6/2010 Sobel et al. Search Report dated Sep. 27, 2012, 2 pages.

8,302,192 B'ﬁ 1072012 Cnudde et al. Swinchart et al.; “WFS: A Simple Shared File System for a
2003/0182253 Al* 9/2003 Chen GO6F 17/30067 Distributed Fnv: >, Venr: 2009: X Palo Alto R h
2004/0111302 Al* 6/2004 Falk ..ococovvvevrnnn.. G06Q 10/10 Istributed Environment™; year: ; Aerox Falo Alfo Researc

705/4 Center; 9 pages.
2005/0091658 Al* 4/2005 Kavalam GOO6F 21/31

718/104 * cited by examiner

U.S. Patent Aug. 28, 2018 Sheet 1 of 6 US 10,061,926 B2

s s bl

receive an unlock request of a file or a folder, wherein the unlock request comprises
an input parameter

e " Verify whether the input parameter - -
-~ complies with a preset condition

Ty

yes

format, and/or the special file name or folder name according to a preset rule

Y b,

Determine whether the restrictive setting of .
- the corrected file or folder is present -

i Syl

yes

ean the restrictive setting of the file or the folder

if the input parameter complies with the preset condition, correct a deformed path /

eHand

WE LLE

il

T "~ . -

WriteH

. 1 EaP T)

an

itel

S. Patent Ausg.

28. 2018 Sheet 2 of 6 S 10.061.926 B2

ONG BrrorOf: t
ProbeForRead{ EaBuffer, _
=nPacket->Ex Exdllocat hQuotaTag(NonPagedPool, ..

RticCopy | openP affer;

0 probed. .

R

TS rErteR The o

ec fervalidit nPacket->EaBuffer, .
NT SUCCESS | status }j i :
IoStatusBlock->Status = status; = .o

THFArvnes s E e e CrE R oo e

U.S. Patent Aug. 28, 2018 Sheet 3 of 6 US 10,061,926 B2

401

- receive a delete request of a file or a folder, wherein the delete request includes an input parameter |

J 402
L Verify whether the input parameter /

complies with a preset condition —

vy ~ — 403

if the input parameter complies with the preset condition, correct the deformed path format of the /
file or the folder and/or the special file name or the special folder name according to a preset rule |~

.o . 404
establish a kernel mode structure parameter corresponding to the platform and the version of a /
operating system |

R — Fl

Fa—ry

]

! — 403

senerate a corrgsponding file operation control code according to the kernel mode structure /
- parameter and send the file operation control code to a kernel mode driver of the operating system |

!

-~ 406
obtain the delete request of the file or the folder by the kernel mode driver of the operating system /
and re-establish the user mode address to a kernel mode memory space "

v — 407

‘Determine whether the restrictive setting of | /
the corrected file or folder 1s present -

e

el

[e

clean the restrictive setting of the file or the folder

'

' 409
open the file or the folder by using penetration technology and delete the file or folder; or zero 1/
clearing the reference count of the file or the folder

FIG. 4

[y

U.S. Patent Aug. 28, 2018 Sheet 4 of 6 US 10,061,926 B2

Caller

L no

—= Verify whether the input parameter is correct >

i yes

Process the deformed path format and the special file name

l no

— Read-only lock =~

i'
i yes

Remove read-only lock

"

- LockFile routine lock ——

es
v 7

Call the driver to remove the lock

b no

et Authority lock ——

i yes

add the authority

b

— Occupation of a handle -

T yes

Call the driver to remove the occupation

¥

S

FIG. 5

Nno

U.S. Patent

user mode of the
operating system

Aug. 28, 2018 Sheet 5 of 6

US 10,061,926 B2

Calier

:

Process the deformed path and call the driver

kernel mode of the
operating system

h 4

Skt

LY

Read-only lock, etc

l yes

Penetration uniock

¥

Ves

Success of penetration removal

lm

status of a return value such as STATUS DELETE PENDING

v

ottt T —

Sy T T

yes

Global handle enumeration and close

—id Ty

Pyl

IHD

zero clear the reference count of the file

v

ST

FIG. 6

U.S. Patent Aug. 28, 2018 Sheet 6 of 6 US 10,061,926 B2

unlock request receiving / 701

module

/ 702

verifying module

yes

A4

703
correcting module /

704

tle restriction
determining module

yES

cleaning module

F1G7

delete request receiving /N 301
module |

verifying module

yes

4

correcting module

Y

cleaning module

deleting module

805

e
e
s
=

F1G.8

US 10,061,926 B2

1

METHOD AND SYSTEM FOR UNLOCKING
AND DELETING FILE AND FOLDER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of application Ser. No.
14/128,592, filed on Dec. 20, 2013, which claims the benefit

of National Stage of International Application No. PCT/
CN2012/077381, filed Jun. 21, 2012, which claims the

benelit of Chinese Patent Application No. 2011101735389 X,

filed Jun. 277, 2011, the disclosures of which are incorporated
herein by reference in their entireties.

TECHNICAL FIELD

The embodiments of the present invention relates to a
security software field, and 1n particular, to a method and a
system for unlocking and deleting a file and a folder.

BACKGROUND OF THE INVENTION

A computer virus refers to a set of computer instructions
or program codes which are inserted into computer pro-
grams by a programmer to destroy computer functions or
data, and can influence the use of a computer and be able to
self-duplicate. Once a computer 1s infected with a virus, the
files 1 the computer usually exhibit addition, deletion,
modification of a name or an attribute and movement to
other catalogue. The operations of the virus on the computer
files may lead to a series of problems, such as an normal
program being not able to be run, collapse of a computer
operating system, the computer being controlled remotely
and unauthorized use of user information.

To ensure a safe operation of the computer, it 1s necessary
to search and kill viruses that may infect the files in the
system thereby preventing and eliminating the destruction of
the viruses. In the security software field, “deleting” and
“anti-deleting” the computer files infected with a virus 1s one
of eternity subjects of a confrontation between a security
software and a malignant program (computer virus). Usu-
ally, a virus in the prior art may apply a encryption lock to
a file mfected with a virus by means of occupying a file
handle, setting a {file attribute to be read-only and keeping
the file 1n a deleted status and so on. The encryption lock
cannot be cracked (that i1s the file infected with the virus
cannot be deleted) by conventional means. These means can
prevent an antivirus software from cleaming the file infected
with the virus. The procedure of killing the virus by the
security software may be regarded as unlocking and crush-
ing a virus file. A current security soltware having simple
means for unlocking and crushing the virus file cannot
relieve the obstructions set by the virus file and have a weak
conifrontation capability.

SUMMARY OF THE INVENTION

The embodiments of the invention provide a method and
a system for unlocking and deleting a file and a folder, which
can completely delete files infected with a virus.

In order to address the above problems, the embodiment
of the invention discloses a method of unlocking a file or a
folder, comprising the following steps:
receiving an unlock request of a {file or a folder, wherein the
unlock request comprises an mput parameter;

verilying whether the input parameter complies with a
preset condition;

10

15

20

25

30

35

40

45

50

55

60

65

2

if the 1input parameter complies with the preset condition,
correcting a deformed path format of the file or the folder
and/or a special file name of the file or a special folder name
of the folder according to a preset rule;

determining whether the corrected file or folder has a
restrictive setting; and
if yes, cleaning the restrictive setting of the {file or the folder.

Preferably, the restrictive setting of the file comprises any
one or more combinations of a read-only lock, a routine
lock, a limit of an authority, or an occupation of a handle,
and the restrictive setting of the folder comprises any one or
more combinations of the read-only lock, the limit of the
authority, or the occupation of the handle; and

the step of cleaning the restrictive setting of the file or the
folder comprises:

removing the read-only lock if the read-only lock 1s

present;

removing the routine lock if the routine lock 1s present;

adding a corresponding authority 1f the limit of the

authority 1s present; and

closing the handle i1 the handle 1s occupied.

Preferably, the unlock request further comprises a user
mode address, and after the step of receiving an unlock
request of the file or the folder, the method further comprises
the following steps:

establishing a kernel mode structure parameter corre-
sponding to a platform and a version of an operating system:;

generating a corresponding file operation control code
according to the kernel mode structure parameter and send-
ing the file operation control code to a kernel mode driver of
the operating system; and

obtaining the unlock request of the file or the folder and
re-establishing the user mode address to a kernel mode
memory space by the kernel mode driver of the operating
system.

Preferably, the input parameter comprises a numeric input
parameter, an address mput parameter and the user mode
address/structure, and the step of veritying whether the mnput
parameter complies with the preset condition comprises the
following steps:

determiming whether the numeric input parameter 1s
within a preset range;

determiming whether a contlict of the mput parameter
exi1sts;

determining whether the address input parameter has a
corresponding authority; and

determining whether a same address/structure 1n a kernel
1s re-established for the user mode address/structure required
to be repeatedly accessed and read.

Preferably, the method further comprises:

closing unlocking of the file or the folder 1f the input
parameter does not comply with the preset condition.

Preferably, the step of removing the routine lock com-
prises: completing removal of the routine lock by calling a
driver switch process environment.

Preferably, the method further comprises:

setting an error code corresponding to error information
formed during the unlocking of the file or the folder; and

calling a GetLastError routine to obtain detailed error
information formed during the unlocking of the file or the
folder according to the error code.

The embodiment of the invention discloses a method for
deleting a file or a folder, comprising:

recerving a delete request of a file or a folder, wherein the
delete request comprises an mput parameter:;

veritying whether the mput parameter complies with a
preset condition;

US 10,061,926 B2

3

if the input parameter complies with the preset condition,
correcting a deformed path format of the file or the folder
and/or a special file name of the file or a special folder name
of the folder according to a preset rule;

cleaning a restrictive setting of the file or the folder; and

opening the file or the folder by using penetration tech-
nology and deleting the file or the folder.

Preferably, the delete request further comprises a user
mode address, and after the step of correcting the deformed
path format of the file or the folder and/or the special file
name of the file or the special folder name of the folder
according to the preset rule, the method further comprises:

establishing a kernel mode structure parameter corre-
sponding to a platform and a version of an operating system:;

generating a corresponding file operation control code
according to a kernel mode structure parameter and sending
the file operation control code to a kernel mode driver of the
operating system; and

obtaining the delete request of the file or the folder and
re-estabishing the user mode address to a kernel mode
memory space by the kernel mode driver of the operating
system.

Preferably, the step of cleaning the restrictive setting of
the file or folder comprises:

removing the read-only lock 1if the read-only lock 1s
present;

removing the routine lock 1f the routine lock 1s present;

adding a corresponding authority 1f the limit of the
authority 1s present; and

closing the handle 11 the handle 1s occupied.

Preferably, the step of opening the file or the folder by
using the penetration technology and deleting the file or the
folder comprises:

searching a corresponding file or folder object parse
routine 1n an object manager according to a path of the file
or the folder;

if the corresponding file or folder object parse routine 1s
found, generating an I/O request package according to the
file or folder object parse routine and sending it to a preset
original address of a under layer device of a file or folder

system, wherein the I/O request package comprises a file
removal information extracted from the delete request; and

deleting the corresponding file or folder according to the
file removal information by the under layer device of the file
or folder system.

Preferably, the method further comprises: switching the
process close operation when the file or folder cannot be
opened by using the penetration technology.

Preferably, the method further comprises the following
steps:

setting an error code corresponding to error information
formed during unlocking of the file or the folder; and

calling a GetLastError routine to obtain detailed error
information formed during the unlocking of the file or the
folder according to the error code.

Preferably, the input parameter comprises a numeric input
parameter, an address input parameter and a user mode
address/structure, and the step of veritying whether the input
parameter complies with the preset condition comprises:
determining whether the numeric input parameter 1s
within a preset range;
determining whether a contlict of the mput parameter
exi1sts;

determining whether the address mput parameter has a
corresponding authority; and

5

10

15

20

25

30

35

40

45

50

55

60

65

4

determiming whether a same address/structure 1n a kernel
1s re-established for the user mode address/structure required
to be repeatedly accessed and read.

Preferably, the method of deleting further comprises:

zero clearing a reference count of the file or the folder.

The embodiment of the invention also discloses a system
for unlocking a file or a folder, comprising:

an unlock request receiving module, configured to receive
an unlock request of a file or a folder, wherein the unlock
request comprises an input parameter;

a verilying module, configured to verily whether the input
parameter complies with a preset condition;

a correcting module, configured to, 1f the input parameter
complies with the preset condition, correct a deformed path
format of the file or the folder and/or a special file name of
the file or a special folder name of the folder according to a
preset rule;

a file restriction determining module, configured to deter-
mine whether a restrictive setting of the corrected file or
folder 1s present and, 1f yes, call a cleaning module; and

a cleaning module, configured to clean the restrictive
setting of the file or folder.

The embodiment of the invention also discloses a system
for deleting a file or a folder, comprising:

a delete request recerving module, configured to receive a
delete request of a file or a folder, wherein the delete request
comprises an input parameter:;

a veritying module, configured to verity whether the input
parameter complies with a preset condition;

a correcting module, configured to correct a deformed
path format of the file or the folder and/or a special file name
of the file or a special folder name of the folder according to
a preset rule if the mput parameter complies with the preset
condition;

a cleaning module, configured to clean the restrictive
setting of the file or the folder; and

a deleting module, configured to open the file or the folder
by using penetration technology and delete the file or the
folder.

The embodiment of the mvention also discloses a com-
puter-readable recording medium on which a program con-
figured to execute the method according to claim 1 1is
recorded.

The embodiment of the mvention also discloses a com-
puter-readable recording medium on which a program con-
figured to execute the method according to claam 8 1is
recorded.

Compared to the prior art, the embodiment of the present
invention has advantages as follows:

The method for unlocking the file or the folder according
to the embodiments of the present invention may relieve the
protections arranged by the files infected with a virus by
using a plurality of means such as removing the read-only
lock, removing the routine lock, adding the authority and
closing the handle, thereby increasing the conirontation
capacity of the security software against malignant program.

The method for deleting the file or the folder according to
the embodiment of the present mmvention may remove the
read-only lock and open files by applying penetration tech-
nology, and zero clear the reference count of the file by
sending an IRP (I/O request packets) delete request to the
original address of the file system, thereby avoiding the
potential incompatible possibility formed between the secu-
rity software due to the mterference of the file operations.

By applying the embodiment of the present invention, the
kernel mode driver of the operating system may obtain and
verily the request from user mode, establish a file path input

US 10,061,926 B2

S

by the circular parse of the inquiry data structure, and find
the object type maintained in the object manager. This
procedure may elliciently confront the seizing risk of the
kernel mode. Then, the kernel mode driver of the operating
system may establish and fill the IRP request packet and >
send 1t to a preset original address of underlay device of a file
system. At this time, the file system may call the third-part
filter driver on the stack, and other security software and
driver-level malignant program can be penetrated. Thereby

it 1s possible to avoid the potential incompatible possibility 10
formed between the security software due to the interference
of the file operations, while increasing the confrontation
capacity against the driver-level malignant program when
attacking and defending.

15
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flow chart of a method for unlocking a file or
a folder shown 1n a first method embodiment of the embodi-
ments ol the present invention; 20

FI1G. 2 1s a code of a corresponding IopCreateFile function
when determining an address type input parameter in the
first method embodiment of the embodiments of the present
invention;

FIG. 3 1s a code of a corresponding IopCreateFile function 25
when determining whether the user mode address/structure
required to be repeatedly accessed and read needs to recre-
ates a same address/structure 1n a kernel, 1n the first method
embodiment of the embodiments of the present imnvention;

FI1G. 4 1s a flow chart of a method for deleting a file or a 30
folder 1n a second method embodiment of the embodiments
of the present invention;

FIG. 5 1s a flow chart of a method for unlocking a file in
a third method embodiment of the embodiments of the
present mvention; 35

FIG. 6 1s a flow chart of a method for deleting a file
according to a fourth method embodiment of the embodi-
ments of the present invention;

FIG. 7 1s a schematic block diagram of a system for
unlocking a file or a folder 1n a fifth system embodiment of 40
the embodiments of the present invention; and

FIG. 8 1s a schematic block diagram of a system for
deleting a file or a folder 1n a sixth system embodiment of

the embodiments of the present invention.
45

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1

The specific examples of the embodiments of the present
invention will be further described 1n detail with reference to 50
the accompanying drawings and embodiments. The follow-
ing examples are configured to illustrate the embodiments of
the present invention and are not used to limait the scope of
the embodiments of the present invention.

The core 1dea of the embodiments of the present invention 55
1s: 1ncreasing the confrontation capacity of a security sofit-
ware against a malignant program by using a plurality of
means to relieve the obstructions of files infected with a
virus layer by layer; removing a read-only lock and opening
a file by applying a penetration technology, zero clearing the 60
reference count of the file by sending an IRP delete request
to the original address of a file system, and thereby avoiding
the potential incompatible possibility formed between the
security software due to the interference of file operations.

Referring to FIG. 1, a flowchart of steps 1 a first 65
embodiment of unlocking a file or a folder 1s shown, and the
method may particularly comprise:

6

Step 101: receive an unlock request of a file or a folder,
wherein the unlock request comprises an input parameter;

Step 102: verily whether the mput parameter complies with
a preset condition;

Step 103: 11 the mput parameter complies with the preset
condition, correct a deformed path format, and/or the special
file name or folder name of the file or folder according to a
preset rule;

Step 104: determine the restrictive setting of the corrected
file or folder 1s present; and

Step 105: 11 yes, clean the restrictive setting of the file or the
folder.

In the procedure of step 104, the step of clean the
restrictive setting of the file or the folder may include: 1t a
read-only lock 1s present, clearing the read-only lock; if a
routine lock 1s present, clearing the routine lock; 1f a limit of
an authority 1s present, adding a corresponding authority; 1f
the occupation of a handle 1s present, closing the handle. The
restrictive setting of the file may include any one or more
combinations of the read-only lock, the routine lock, the
limit of authority, or the occupation of handle. The restric-
tive setting of folder may include any one or more combi-
nations of the read-only lock, the limit of the authority, or the
occupation of the handle. Generally, the routine lock 1s only
directed to a file. Of course, 1f an action of clearing the
routine lock 1s added to the clearance of the restrictive
setting of the folder, information without the routine lock of
the folder 1s returned. Theretore, the clearance restrictive
setting of the file/folder may be set the same settings.

As well known, a routine 1s a collection of function
interfaces or services externally provided by a system, such
as a service or an API of an operating system. As an example
ol a specific application according to the embodiment of the
present mvention, the routine lock may be a Windows API
LockFile routine lock, and the removal of the routine lock
may be realized by calling a driver switch process environ-
ment.

In the procedure of step 101, the step of veritying whether
the input parameter complies with the preset condition may
be implemented with reference to the following example:

The kernel mode function IopCreateFile 1s a final real-
ization ol a user mode function CreateFile. The logic of
opening by penetrating technology may completely simulate
the IopCreateFile, including details of each parameter. The
function prototype of the IopCreateFile 1s as follows:

NTSTATUS
[opCreateFile {
OUT PHANDLE FileHandle,
IN ACCESS_ MASK DesiredAccess,
IN POBJECT__ATTRIBUTES ObjectAttributes,
OUT PIO__STATUS_ BLCOK IoStatusBlock,
IN PLARGE_INTEGER AllocationSize OPTIONAL,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG Disposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EalLength,
IN CREATE_FILE_ TYPE CreateFileType,
IN PVOID ExtraCreateParameters OPTIONAL,
IN ULONG Options,
IN ULONG InternalFlags,
IN PVOID DeviceObject

h

IN indicates that the parameter 1s an 1nput, that 1s input to
the IopCreateFile function; OUT indicates that the param-
eter 15 an output, that 1s output from the IopCreateFile

US 10,061,926 B2

7

function. The correctness of all the IN parameters should be
verified, and the writability of all the OUT parameters

(addresses for receiving the OUT) should be verified. 467

lines of codes are used totally by the IopCreateFile to verity
these parameters. The principle of verily may include:

(1) determining whether a numeric iput parameter 1s
within a preset range, as shown 1n the following codes:

/f
//Check that no 1nvalid file attributes flags were specified.
/f

/- (FileAttributes &~FILE ATTRIBUTE VALID SET_ FLAGS)
(FileAttributes &~FILE__ATTRIBUTE_VALID _ FLAGRS)
//

// Check that no invalid share access flags were specified.

//
(ShareAccess &~FILE__SHARE VALID_ FLAGS)
//

//Ensure that the disposition value is 1n range.
/f

(Disposition > FILE MAXIMUM__DISPOSITION)

(2) determining whether the contlict of the 1nput param-
cter exists; for example, file attributes “Writeable” and
“ReadOnly” are incompatible, so they could not be specified
at the same time, as referred to 1n the following codes:

//
// FILE__COMPLETE_IF__OPLOCK and FILE RESERVE OPFILTER
are

// Incompatible option.

/)
((CreateOptions & FILE_ COMPLETE_IF OPLOCKED) &&
(CreateOptions & FILE_RESERVE_ OPFILTER))

(3) determining whether an address input parameter 1is
required to have a corresponding authority; all the user mode
pointers (the “address™ input parameter) are needed to have
corresponding authorities (for example, 1f it 1s required to
read a certain user mode address, this user mode address
should be “readable’™; and 11 1t 1s required to write 1n a certain
user mode address, this user mode address should be “write-
able”), as 1t can be seen 1 FIG. 2.

(4) determining whether a same address/structure 1 a
kernel 1s re-established for the user mode address/structure
required to be repeatedly accessed and read. The corre-
sponding codes of the IopCreateFile function can refer to
FIG. 3.

In the procedure of step 101, 11 the mnput parameter does
not comply with the preset condition, the process of unlock-
ing the file or the folder may be ended directly.

In the procedure of step 103, 11 no restrictive setting of the
corrected file or folder 1s present, the unlocking 1s ended.

In the first embodiment as discussed above, steps 101, 102
and 103 can be performed under a state of the user mode 1n
the operating system, and steps 104 and 105 can be per-
formed under a state of the kernel mode 1n the operating
system. Generally, the unlock request may also include a
user mode address. In practice, after the step 101, the
embodiment of the present invention may also include the
following steps:

establishing a kernel mode structure parameter corre-
sponding to the platform and the version of the operating
system;
generating a corresponding file operation control code
according to the kernel mode structure parameter and send-
ing the file operation control code to a kernel mode driver of
the operating system; and

10

15

20

25

30

35

40

45

50

55

60

65

8

obtaining the unlock request of the file or the folder and
re-establishing the user mode address to a kernel mode
memory space by the kernel mode driver of the operating
system.

In the first embodiment as discussed above, 1n order to
understand the situation of unlocking the file, the method
may also include the following steps: setting an error code
corresponding to error information formed during the
unlocking of the file; and calling a GetLastError routine to
obtain detailed error information formed during the unlock-
ing of the file according to the error code.

Herein, the called GetLastError routine may be a GetLas-
tError routine called by a caller in the user mode. In order
that the obtained error information 1s synchronized, it may
be set that the kernel synchronous call returns the result of
a user mode call. If the call fails, a corresponding error code
may be set by a user mode interface. As such, a caller thread
may obtain the detailed error information by the GetLastEr-
ror routine.

In order to make the kernel interface correspond to a user
mode export interface, control codes, such as FILE_
I0_FORCE_KILL_FILE, FILE_10_FORCE_KILL
DIRECTORY, FILE 10 GET_LOCK and FILE_IO_
SET LOCK define a uniform identifier at the time of the
communication between the user mode and the kernel mode
drivers. METHOD_BUFFERED transmission may be used
in 1put/output builers of the communication. A communi-
cation structure 1s compatible with 32-bit, 64-bit and 32-bit
compatibility mode.

Referring to FIG. 4, it shows a flowchart of steps of a
second embodiment of a method for deleting a file or a
folder, and the method may particularly comprise the fol-
lowing steps:

Step 401: receive a delete request of a file or a folder,
wherein the delete request includes an 1mput parameter;
Step 402: verily whether the imnput parameter complies with
a preset condition;

Step 403: if the mput parameter complies with the preset
condition, correct the deformed path format of the file or the
folder and/or the special file name of the file or the special
folder name of the folder according to a preset rule;

Step 404: establish a kernel mode structure parameter cor-
responding to the platform and the version of an operating
system;

Step 405: generate a corresponding file operation control
code according to the kernel mode structure parameter and
send the file operation control code to a kernel mode drniver
of the operating system:;

Step 406: obtain the delete request of the file or the folder by
the kernel mode driver of the operating system and re-
establish the user mode address to a kernel mode memory
space;

Step 407: determine whether the restrictive setting of the
corrected file or folder 1s present; 1f yes, continue to perform
step 408;

Step 408: clean the restrictive setting of the file or the folder;
and

Step 409: open the file or the folder by using penetration
technology and delete the file or folder; or zero clearing the
reference count of the file or the folder.

In a specific embodiment, an FSForceKill file removal
procedure mitiated by the caller process may be received;
the user request may be recerved and the input parameter
may be verified inside the FSForceKill routine. After the
processing ol the deformed path format and the special file
name, the routine determines the current platform (32-bit,
64-bit or 32-bit compatibility mode) and version of the

US 10,061,926 B2

9

operating system, establishes the kernel mode structure
parameter, send the control code FILE_I0O_FORCE_
KILL_FILE to the operating system kernel, and synchronize
and wait to return. The kermnel mode dnver of the
FSForceKill routine receives the user mode request, and
re-establishes the user mode address to the kernel memory
space after veritying the mput parameter again. The pen-
etration technology may be used to remove the read-only
lock of the file requested to be deleted with the read-only
lock and open the file requested to be deleted; 1n the prior art,
the methods for accomplishing penetration can be selected
according to requirement, and the description thereof will be
omitted. The IRP delete request data package established
and filled may be sent to the original address of the file
system; this step may cause a third-part filter driver (other
security solftware and driver-level malignant program) on
the call stack of the file system to be bypassed, thereby
increasing the compatibility between the security software to
which the embodiment of the present invention 1s applied
and other security software.

When facing a target file which cannot be opened by the
penetration method, such as the STATUS_DELETE_PEND-
ING, operations, such as enumerating a global handle and
closing a switching process may be driven to attempt.

In the embodiment for deleting a file, 1n order to under-
stand the situation of deleting the file, the method may also
include the following steps: setting an error code corre-
sponding to error information formed during the procedure
of deleting the file; and calling the GetLastError routine to
obtain detailed error information formed during the proce-
dure of deleting the file according to the error code.

Herein, the called GetLastError routine may be a GetLas-
tError routine called by a caller 1n the user mode. In order
to make the obtained error information to be synchronized,
it may be set that a kernel synchronously call and returns the
result of a user mode call. If the call fails, a corresponding,
error code may be set by a user mode interface. As such, a
caller thread may obtain the detailed error information by
the GetLastError routine.

The relation between the step 408, at which the penetra-
tion technology 1s used to open the file and the folder and
delete the file and the folder, and the step 409, at which the
reference count of the file or the folder 1s zero cleared, 1s
serial, which means they are independent two steps. When
the penetration technology 1s used to open the file and the
folder and delete the file and the folder at step 408, the step
408, at which the reterence count of the file or the folder 1s
zero cleared, may also efliciently delete the file or the folder.
I1 the file or the folder could be deleted at step 408, the step,
at which the reference count of the file or the folder i1s zero
cleared, may be skipped.

In a preferred embodiment of the embodiments of the
present ivention, the step 408 may include the following
sub-steps:

searching a corresponding file or folder object parse
routine 1n an object manager according to a path of the file
or the folder;

if the corresponding file or folder object parse routine 1s
found, generating an I/O request package according to the
corresponding file or folder object parse routine and sending
it to a preset original address of a under layer device of a file
or folder system, wherein the I/O request package includes
a file removal information extracted from the delete request;
and deleting the corresponding file or folder according to the
file removal information by the under layer device of the file
or folder system.

10

15

20

25

30

35

40

45

50

55

60

65

10

In the second embodiment as discussed above, correcting
the deformed path format and/or special file name according
to the preset rule can be accomplished by calling an
FSDeleteFileA/FSDeleteFileW routine, and an FSDelete-
FileA/FSDeleteFileW export routine strictly follow the defi-
nition and the parameter of the Windows standard API. The
FSDeleteFileA may transform the mput parameter to UNI-
CODE type. The FSDeleteFi1leW may process the deformed
file name and file path, and practically accomplish parameter
transformation, control code communication and so on.
After calling the FSDeleteFi1leW routine, the kernel mode
driver of the routine may verily the user mode imput param-
cter again, then establish and fill the IRP request package
and send the IRP request package to the device object of the
file system (that 1s, send 1t to the original address of the file
system), thereby completing the file penetration removal
procedure. The kernel mode driver of the FSForceKill may
also accomplish the zero clearing of the reference count of
the file or the folder.

In the procedure of step 401, the detailed implementation
of verilying whether the mput parameter complies with a
preset condition can refer to the specific operations of the
first embodiment as discussed above, and thus the explana-
tion thereotf will be omitted.

Detailed description will be made to the interfaces and
main functions used herein to which the method of the
embodiments of invention 1s applied. Additionally, for the
purpose ol easy understanding, a specific flow chart 1s given
in the drawings.

The description of the interfaces and main functions 1s as
follows: 7 routines are exported from the unlocking of the
file or the folder and the removal of the user mode portion,
the set of interfaces covers most of demands for unlocking
and crushing files (the exported routines include FSDelete-
File, FSForceKill, FSRemoveDirectory, GetFileLock, Set-
FileL.ock and so on, the call modes of these routines are
different for the mput of UNICODE and ANSI), and the
“call convention” and “call parameter” of the interfaces
comply with the Windows standard API with the same
names.

Corresponding to the export interface, the control codes,

such as FILE 10 FORCE KILI, FILE, FILE IO _
FORCE_KILI, DIRECTORY, FILE 10 GET LOCK and
FILE IO SET [LOCK define a unitform identifier at the time

of the communication between the user mode and the kernel
mode drivers. METHOD_BUFFERED mode transmission
1s used for input/output buflers of the communication. A
communication structure 1s compatible with 32-bit, 64-bit
and 32-bit compatibility mode.

Taking the file penetration removal procedure as an
example, the FSDeleteFile A/FSDeleteFi1le W export routines
strictly follow the definition and the parameter of the Win-
dows standard API. The FSDeleteFileA may transform the
input parameter to a UNICODE type. The FSDeleteFileW
may process the deformed file name and a path of the file,
and practically accomplish parameter transformation, con-
trol code communication and so on.

The kernel mode driver of the FSDeleteFileW may verily
the user mode 1nput parameter, then establish and fill the IRP
request package and send the IRP request package to the
device object of the file system, thereby completing the file
penetration removal procedure. The kernel mode driver of
the FSForceKill may zero clear the reference count of the
file, and globally enumerate and close handles, and so on.

The third embodiment provides a specific procedure of
unlocking a file. Referring to FIG. 5, the procedure may
include the following steps: imitiating a GetFileLock/Set-

US 10,061,926 B2

11

FileLock file unlock procedure by a caller process; receiving
a user request and verilying an input parameter nside the
GetFileLock/SetFileLock routine; following the processing
of a deformed path format and a special file name, deter-
mimng whether a target file has a read-only attribute, and 11
a read-only lock 1s present, removing the read-only lock of
the file requested to be unlocked with the read-only lock;
determining whether the target file 1s locked by a Windows
API LockFile routine; if the target file 1s locked by the
LockFile routine, calling a driver switch process environ-
ment to unlock the file; determining whether the target file
has an authority and an owner restriction; 1f the target file has
a limit of authority, adding a corresponding authority; deter-
mimng whether the target file has the occupation of a handle;
if the target file has the occupation of the handle, calling and
driving a global handle enumerating procedure to close the
handle and unlock the file; returning the result of a user
mode call by the kernel synchronous call, and 1f the call
fails, setting a corresponding error code by a user mode
interface, as a result of which a caller thread obtains the
detailed error information by the GetLastError routine.

The fourth embodiment provides a specific procedure of
deleting a file. Referring to FIG. 6, the procedure may
include the following steps: imtiating a FSForceKill file
crush procedure by a caller process; receiving a user request
and veritying an input parameter inside a FSForceKill
routine. Following the processing of a deformed path format
and a special file name, the routine determines the platiorm
(32-bit, 64-bit or 32-bit compatibility mode) and version of
a current operating system, establishes a kernel mode struc-
ture parameter, sends a control code FILE_10_
FORCE_KILL_FILE, and synchronizes and waits {for
returning; the kernel mode driver of the FSForceKill routine
receives a user mode request, verifies the mput parameter
again, and captures the user mode address to a kernel
memory space; a penetration technology 1s used to deter-
mine and remove the read-only attribute of a target file; the
penetration technology 1s used to open the target file, estab-
lishes and fills an IRP delete request data package, and sends
it to the original address of a file system, and at this time, the
third-part filter driver (other security software and driver-
level malignant program) on the call stack of the file system
may be bypassed; for a target file which cannot be opened
by the penetration method, such as STATUS_
DELETE_PENDING, operations for deleting a file, such as
enumerating a global handle and closing switching process
may be driven to attempt; the operation of zero clearing the
reference count of the file may be driven 1f necessary; the
kernel synchronous call returns the result of user mode call.
IT the call fails, the corresponding error code may be set by
a user mode 1nterface. As such, a caller thread may obtain
the detailed error information by the GetLastError routine.

Referring to FIG. 7, a block diagram of a system for
unlocking a file or a folder according to a fifth embodiment
of the present invention 1s shown. The system may include
the following modules:

an unlock request receiving module 701, configured to
receive an unlock request of a file or a folder, wherein the
unlock request comprises an mput parameter;

a verifying module 702, configured to verity whether the
input parameter complies with a preset condition;

a correcting module 703, configured to, if the input
parameter complies with the preset condition, correct a
deformed path format of the file or the folder and/or a special
file name of the file or a special folder name of the folder
according to a preset rule; a file restriction determining
module 704, configured to determine whether a restrictive

5

10

15

20

25

30

35

40

45

50

55

60

65

12

setting of the corrected file or folder 1s present and, 1t yes,
call a cleaning module 705; and a cleaning module 705,
configured to clean the restrictive setting of the file or folder.

After the unlock request receiving module 701 receives an
unlock request from a user, the veritying module 702 verifies
whether the mput parameter complies with the preset con-
dition. If the input parameter does not comply with a preset
condition, end the unlocking of the file or the folder; and 1f
the input parameter complies with the preset condition, the
verilying module 702 sends an instruction to the correcting
module 702. After the correcting module 702 receives the
instruction, the correcting module 702 corrects the deformed
path format and/or the special file or folder name according,
to the preset rule; for file or folder information processed by
the correcting module 702, it 1s determined by a file restric-
tion determining module 703 whether the restrictive setting
of the corrected file or folder that 1s to be unlocked 1is
present; 1 yes, the cleaning module 704 cleans the restrictive
setting of the file or folder, thereby accomplishing the
unlocking of the file or the folder.

In the specific implementation, the restrictive setting of
the file may include any one or more combinations of a
read-only lock, a routine lock, a limit of an authority, or an
occupation of a handle; the restrictive setting of the folder
may include any one or more combinations of the read-only
lock, the limit of the authority, or the occupation of handle;
in this case, the clearing module includes:

a read-only lock removal sub-module, configured to
remove the read-only lock when the read-only lock 1s
present;

a routine lock removal sub-module, configured to remove
the routine lock when the routine lock 1s present;

an authority adding sub-module, configured to add a
corresponding authority when the limit of the authority 1s
present; and

a handle closing sub-module, configured to close the
handle when the handle 1s occupied.

In the specific application, the routine lock removal
sub-module may remove the routine lock by calling a driver
switch process environment.

As an example of a specific application according to the
embodiments of the present invention, the unlock request
may also include a user mode address, and the embodiment
of the system for unlocking the file or folder may also
include the following modules:

a kernel mode structure parameter establishing module,
connected to the unlock request receiving module 701,
configured to establish a kernel mode structure parameter
corresponding to a platform and a version of the operating
system;

a control code generating and sending module, configured
to generate a corresponding file operation control code
according to the kernel mode structure parameter and send
the file operation control code to a kernel mode driver of the
operating system; and

an address re-establishing module, configured to obtain
the unlock request of the file or the folder and re-establish
the user mode address to a kernel mode memory space by
the kernel mode driver of the operating system.

In a preferred embodiment of the present invention, the
input parameter may include a numeric input parameter, an
address 1nput parameter and the user mode address/struc-
ture, and the veritying module 702 may include the follow-
ing sub-modules:

a first determining sub-module, configured to determine
whether the numeric input parameter 1s within a preset
range;

US 10,061,926 B2

13

a second determining sub-module, configured to deter-
mine whether the contlict of the input parameter i1s present;

a third determiming sub-module, configured to determine
whether the address input parameter has a corresponding
authority; and

a fourth determining sub-module, configured to determine
whether a same address/structure 1s re-established in the
kernel for the user mode address/structure required to be
repeatedly accessed and read.

In the specific implementation, the embodiment of the
system for unlocking the file or the folder may also include
the following module:

an unlock ending module, configured to end the unlocking,
of the file or the folder i1t the input parameter does not
comply with the preset condition.

In a preferred embodiment of the present invention, the
embodiment of the system for unlocking the file or the folder
may also include the following modules:

an error code setting module, configured to set an error
code corresponding to error information formed during the
unlocking of the file or the folder; and

an error information obtaining module, configured to call
a GetLastError routine to obtain detailed error information
tformed during the unlocking of the file or the folder accord-
ing to the error code.

Referring to FIG. 8, a block diagram of a system for
deleting a file or a folder according to a six embodiment of
the present invention 1s shown. In particular, the system may
include the following modules:

a delete request receiving module 801, configured to
receive a delete request of a file or a folder, wherein the
delete request comprises an mput parameter;

a veritying module 802, configured to verily whether the
input parameter complies with a preset condition;

a correcting module 803, configured to correct a deformed
path format of the file or the folder and/or a special file name
of the file or a special folder name of the folder according to
a preset rule if the mput parameter complies with the preset
condition;

a cleaning module 804, configured to clean the restrictive
setting of the file or the folder; and

a deleting module 803, configured to open the file or the
folder by using penetration technology and delete the file or
the folder.

In the specific implementation, the delete request may
also include a user mode address, and the embodiment of the
system for deleting the file or the folder may also include the
following modules:

a kernel mode structure parameter establishing module,
connected to the delete request receiving module 801, con-
figured to establish a kernel mode structure parameter cor-
responding to the platform and version of the operating
system:

a control code generating and sending module, configured
to generate a corresponding file operation control code
according to the kernel mode structure parameter and send
the file operation control code to a kernel mode driver of the
operating system; and

an address re-establishing module, configured to obtain
the unlock request of the file or the folder by the kernel mode
driver of the operating system and re-establish the user mode
address to a kernel mode memory space.

In the specific implementation, the restrictive setting of
the file may include any one or more combinations of a
read-only lock, a routine lock, the limit of an authority, or the
occupation of a handle; the restrictive setting of the folder
may include any one or more combinations of the read-only

10

15

20

25

30

35

40

45

50

55

60

65

14

lock, the limit of the authority, or the occupation of the
handle; 1n this case, the cleaning module may include:

a read-only lock removal sub-module, configured to
remove the read-only lock when the read-only lock 1s
present;

a routine lock removal sub-module, configured to remove
the routine lock when the routine lock 1s present;

an authority adding sub-module, configured to add a
corresponding authority when a limit of authority 1s present;
and

a handle closing sub-module, configured to close the
handle when the handle 1s occupied.

In a preferred embodiment of the present invention, the
deleting module 805 may include the following sub-mod-
ules:

an object parse routine searching sub-module, configured
to search the corresponding file or folder object parse routine
in an object manager according to the path of the file or the
folder; a request package generating and sending sub-mod-
ule, configured to, when the corresponding file or folder
object parse routine 1s found, generate an I/O request pack-
age according to the corresponding file or folder object parse
routine and send 1t to an preset original address of a under
layer device of the file or folder system, wherein the I/O
request package includes file removal information extracted
from the delete request; and

a removal processing sub-module, configured to delete
the corresponding file or folder according to the file removal
information by the under layer device of the file or folder
system.

In a preferred embodiment of the present invention, the
embodiment of the file or folder removal system may also
include the following module:

a process end operation module, configured to switch the
process close operation when the file or folder cannot be
opened by the penetration technology.

In the specific implementation, the embodiment of the
system for deleting the file or the folder may also include the
following module:

an error code setting module, configured to set an error
code corresponding to the error mmformation formed during
the unlocking of the file or the folder; and

an error information obtaining module, configured to call
the GetLastError routine to obtain the detailed error infor-
mation formed during the unlocking of the file or the folder
according to the error code.

In the specific implementation, the mput parameter may
include a numeric input parameter, an address iput param-
eter and the user mode address/structure, and 1n this case, the
verilying module may include the following sub-modules:

a first determining sub-module, configured to determine
whether the numeric input parameter 1s within a preset
range;

a second determining sub-module, configured to deter-
mine whether the contlict of the input parameter i1s present;

a third determining sub-module, configured to determine
whether the address input parameter has a corresponding
authority; and

a Tourth determining sub-module, configured to determine
whether a same address/structure 1s re-established i the
kernel for the user mode address/structure required to be
repeatedly accessed and read.

In a preferred embodiment of the present invention, the
embodiment of system for deleting the file or the folder may
also include the following module:

a reference count zero clearing module, configured to zero
clear the reference count of the file or the folder.

US 10,061,926 B2

15

In the specific application, after the delete request receiv-
ing module receives a delete request of the file or the folder
from a user, the verifying module verifies whether the input
parameter complies with a preset condition. If the input
parameter does not comply with a preset condition, end the
deleting of file or folder; and if the input parameter complies
with the preset condition, the veritying module sends an
instruction to the removal processing module. Following the
receipt of the instruction, the removal processing module
corrects the deformed path format and/or the special file or
folder name according to the preset rule; then the kernel
mode structure parameter establishing module determines
the platform (32-bit, 64-bit or 32-bit compatibility mode)
and version of the current operating system, and establishes
the kernel mode structure parameter corresponding to the
plattorm and the version of the system; the control code
generating and sending module generates a corresponding
file operation control code according to the kernel mode
structure parameter and sends the file operation control code
to a kernel mode driver of the operating system; the address
re-establishing module re-establishes the file delete request
end address to the kernel memory space; then the cleaning
module cleans the restrictive setting of the file or the folder;
the deleting module opens the file or folder requested to be
deleted by using the penetration technology and delete the
file or folder; the reference count zero clearing module zero
clears the reference count of the file or the folder. The
relation between the deleting module and the zero clearing
module 1s serial, which means they are independent two
modules. When the deleting module fails to delete the file of
tolder, the zero clearing module 808 may efliciently delete
the file or the folder by zero clearing the reference count of
the file or the folder. If the deleting module 1s able to delete
the file or folder, the zero clearing module may not be called.

The embodiments of the invention also discloses a com-
puter-readable recording medium on which a program for
executing the method embodiment for unlocking a file or a
folder 1s recorded, and a computer-readable recording
medium on which a program for executing the method
embodiment for deleting a file or the folder i1s recorded. The
computer readable recording medium may include any
mechanism which can be used to store and transmit infor-
mation 1n a computing device (for example, a computer)-
readable form. For example, the machine-readable medium
may include read only memory (ROM), a random access
memory (RAM), magnetic disk storage media, optical stor-
age media, flash memory media, and/or the signal propaga-
tion 1n electrical, optical, acoustical or other forms (e.g.,
carrier waves, inirared signals, digital signals, etc.).

The each of embodiments 1n the description has only
emphasized the differences from others, and the same or
similar explanations of each embodiment could be made
reference to each other. For the embodiment of system, since
the embodiment of system 1s substantially similar to that of
corresponding method, the explanations thereof are rela-
tively brief and reference could be made to the embodiment
of corresponding method.

The above descriptions are only the preferred examples
according to the embodiments of the mnvention. It should be
understood to an ordinary person skilled in the art that
improvements and modifications could be made without
departing from spirit and principle of the present invention,
and therefore these improvements and modifications should
be constructed within protection scope of the present inven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

16

The mnvention claimed 1s:

1. A computing device, comprising:

a processor; and

a memory communicatively coupled to the processor and
storing 1instructions that upon execution on the com-
puting device cause the computing device to at least:

recerve a request for unlocking a stored data 1tem, wherein
the request comprises at least an input parameter,
wherein the stored data item 1s a file or folder:;

correct at least one of a deformed path format and special
name of the stored data i1tem 1n response to verifying
that the at least an iput parameter complies with at
least a preset condition;

clean at least a restrictive setting of the stored data item
in response to determining that the stored data item has
at least a restrictive setting, wherein the at least a
restrictive setting of the stored data 1tem comprises a
read-only lock, a routine lock, a limit of an authority, or

an occupation of a handle; and
delete the stored data item.

2. The computing device of claim 1 wherein the at least
an 1input parameter comprises a number, an address, or a user
mode address.

3. The computing device of claim 2 wherein the veritying
that the at least an input parameter complies with at least a
preset condition comprises determining whether at least one

of:
the numeric input parameter 1s within a preset range;

a conflict of the mput parameter exists;

the address mput parameter has a corresponding author-

ity; and

a same address as the user mode address 1s re-established

in a kernel.
4. The computing device of claim 2, further comprising
instructions upon execution on the computing device causes
the computing device to at least:
establish a kernel mode structure parameter correspond-
ing to a platform and a version of an operating system;

generate a corresponding file operation control code
according to a kernel mode structure parameter and
send the file operation control code to a kernel mode
driver of the operating system; and

obtain a request to delete the stored data item by the

kernel mode driver of the operating system and re-
establish the user mode address to a kernel mode
memory space.

5. The computing device of claim 1 wherein the instruc-
tions upon execution on the computing device causing the
computing device to clean at least a restrictive setting of the
stored data item further comprises instructions that upon
execution on the computing device cause the computing
device to at least:

remove the read-only lock when the read-only lock 1is

present;

remove the routine lock when the routine lock 1s present;

add a corresponding authority when the limit of the

authority 1s present; and

close the handle when the handle 1s occupied.

6. The computing device of claim 1 wherein the instruc-
tions upon execution on the computing device causing the
computing device to delete the file or the folder further
comprises 1nstructions that upon execution on the comput-
ing device cause the computing device to at least:

search a corresponding file or folder object parse routine

in an object manager according to a path of the file or
the folder:

in response to finding the corresponding file or folder

object parse routine, generate an I/O request package
according to the file or folder object parse routine and

US 10,061,926 B2

17

send 1t to a preset original address of an underlying
device of a file or folder system, wherein the I/O
request package comprises a file removal information;
and

delete, by the underlying device of the file or folder

system, the corresponding file or folder according to
the file removal 1nformation.
7. The computing device of claim 1, further comprising
istructions that upon execution on the computing device
cause the computing device to at least:
zero clear a reference count of the stored data item.
8. A computing device, comprising:
a processor; and
a memory communicatively coupled to the processor and
storing 1instructions that upon execution on the com-
puting device cause the computing device to at least:

receive a request for unlocking a file or folder, wherein the
request comprises at least an mput parameter;

correct at least one of a deformed path format of the file

or folder, a special file name of the file, and a special
folder name of the folder 1n response to veritying that
the at least an 1input parameter complies with at least a
preset condition; and

clean at least a restrictive setting in response to a deter-

mination that the file or folder has the at least a
restrictive setting, wherein the at least a restrictive
setting of the stored data item comprises a read-only
lock, a routine lock, a limit of an authority, or an
occupation of a handle.

9. The computing device of claim 8 wherein the nstruc-
tions upon execution on the computing device causing the
computing device to clean at least a restrictive setting of the
file or the folder further comprises instructions that upon
execution on the computing device cause the computing
device to at least:

remove the read-only lock when the read-only lock 1s

present,

remove the routine lock when the routine lock 1s present,

add a corresponding authority when the limit of the

authority 1s present, and
close the handle when the handle 1s occupied.
10. The computing device of claim 8 wherein the at least
an iput parameter comprises a numeric mput parameter, an
address mput parameter, or a user mode address.
11. The computing device of claim 10, further comprising
instructions upon execution on the computing device causes
the computing device to at least:
establish a kernel mode structure parameter correspond-
ing to a platiorm and a version of an operating system;

generate a corresponding file operation control code
according to a kernel mode structure parameter and
send the file operation control code to a kernel mode
driver of the operating system; and

obtain, by the kernel mode driver of the operating system,

a request to unlock the file or the folder and re-establish
the user mode address to a kernel mode memory space.

10

15

20

25

30

35

40

45

50

55

18

12. The computing device of claaim 10 wherein the veri-
tying that the at least an mput parameter complies with at
least a preset condition further comprises determining
whether at least one of:

the numeric input parameter 1s within a preset range;

a conflict of the mput parameter exists;

the address mput parameter has a corresponding author-

ity; and

a same address as the user mode address 1s re-established

in a kernel.

13. The computing device of claim 8, further comprising
instructions that upon execution on the computing device
cause the computing device to at least:

end a process of unlocking the file or the folder when the

at least an 1input parameter does not comply with the at
least a preset condition.

14. The computing device of claim 8, further comprising
istructions that upon execution on the computing device
cause the computing device to at least:

set an error code corresponding to error information

formed during a process of unlocking the file or the
folder; and

call a GetLastError routine to obtain detailed error infor-

mation formed during the process of unlocking the file
or the folder according to the error code.

15. A non-transitory computer-readable storage medium,
bearing computer-executable instructions that upon execu-
tion on a computing device cause the computing device to at
least:

recerve a request for unlocking a file or folder, wherein the

request comprises at least an mput parameter;

correct at least one of a deformed path format of the file

or folder, a special file name of the file, and a special
folder name of the folder in response to veritying that
the at least an input parameter complies with at least a
preset condition; and

clean at least a restrictive setting 1n response to a deter-

mination that the file or folder has the at least a
restrictive setting, wherein the at least a restrictive
setting of the file or folder comprises a read-only lock,
a routine lock, a limit of an authority, or an occupation
of a handle.

16. The non-transitory computer-readable storage
medium of claim 15 wherein the computer-executable
instructions that upon execution on the computing device
cause the computing device to at least clean the at least a
restrictive setting of the file or folder further comprise
istructions that upon execution on the computing device
cause the computing device to at least:

remove the read-only lock when the read-only lock 1s

present;

remove the routine lock when the routine lock 1s present;

add a corresponding authority when the limit of the

authority 1s present; and

close the handle when the handle 1s occupied.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

