12 United States Patent

Burger et al.

US010061584B2

US 10,061,584 B2
*Aug. 28, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(51)

(52)

(58)

STORE NULLIFICATION IN THE TARGET
FIELD

Applicant: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Douglas C. Burger, Bellevue, WA
(US); Aaron L. Smith, Seattle, WA
(US)

Inventors:

Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/060,404

Filed: Mar. 3, 2016

Prior Publication Data
US 2017/0083328 Al Mar. 23, 2017
Related U.S. Application Data

Provisional application No. 62/221,003, filed on Sep.
19, 2015.

Int. CIL.
GO6F 9/312 (2018.01)
GO6F 9/44 (2018.01)
(Continued)
U.S. CL
CPC ... GO6F 9/3016 (2013.01); GO6F 9/268

(2013.01); GO6F 9/3004 (2013.01);

(Continued)

Field of Classification Search

CPC GO6F 11/36; GO6F 11/3656; GO6F 9/3016;
GO6F 9/268; GO6F 9/30007;

(Continued)

Block-Based Procassor 719
Conral Cinit 720
Core Scheduler 725
Memory access hardware ___,/"
structure TERT] TEE |
{30} [SM] £ 8¢]
Cora Cora
740 i
Cors Cora
142 743
Core Core
744 145
Cora Cora
145 i ¥

(56) References Cited
U.S. PATENT DOCUMENTS
5,615,350 A 3/1997 Hesson
5,790,822 A 8/1998 Sheafler et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO WO 2014/193878 12/2014

OTHER PUBLICATTONS

Bouwens et al., “Architecture Enhancements for the ADRES
Coarse-Grained Reconfigurable Array,” High Performance Embed-
ded Architectures and Compilers, Springer Berlin Heidelberg pp.

66-81 (2008).
(Continued)

Primary Examiner — Daniel H Pan

(74) Attorney, Agent, or Firm — Klarquist Sparkman,
LLP

(57) ABSTRACT

Apparatus and methods are disclosed for nullifying memory
store structions i1dentified 1n a target field of a nullification
istruction. In some examples of the disclosed technology,
an apparatus can include memory and one or more block-
based processor cores configured to fetch and execute a
plurality of istruction blocks. One of the cores can include
a control unit configured, based at least in part on receiving
a nullification instruction, to obtain an instruction identifi-
cation for a memory access instruction of a plurality of
memory access instructions, based on a target field of the
nullification instruction. The memory access instruction
associated with the instruction identification 1s nullified. The
memory access struction 1s 1n a first instruction block of
the plurality of istruction blocks. Based on the nullified
memory access instruction, a subsequent memory access
instruction from the first istruction block 1s executed.

33 Claims, 16 Drawing Sheets

Marnory
Fi=ll,
| Store Mask (SM) |
=T - E
Stare Count (50 §
152 El
Instruction Blocks

US 10,061,584 B2

Page 2
(51) Int. CL uspC 712/216-219, 226, 235, 236; 717/122,
GO6LF 9/30 (2018.01) 717/136, 140, 153
GO6F 15/80 (2006.01) See application file for complete search history.
Goel 9/32 (2018.01)
GO6F 9/38 (2018.01) (56) References Cited
GOOF 9/26 (2006.01) U.S. PATENT DOCUMENTS
GO6l 11/36 (2006.01)
Go6l 12/0862 (2016.01) 5,796,997 A 8/1998 Lesartre et al.
GO6F 9/35 (2018.01) 5.799.167 A 8/1998 Iesartre
H 5845103 A 12/1998 Sodani et al.
GOor 12/1009 (2016'03‘) 5,943,501 A 8/1999 Burger et al.
GO6F 13/42 (2006.01) 6,016,399 A 1/2000 Chang
GO6F 15/78 (2006.01) 6,061,776 A 5/2000 Burger et al.
GOGF 9/46 (2006.01) 6,115,808 A 9/2000 Arora
GOGF 9/52 (2006.01) CloAsAl A 122000 Moteoncral
GO6L 12/0875 (2016.01) 6,493,820 B2 12/2002 Akkary et al.
GO6F 12/0811 (2016.01) 6,529,922 Bl 3/2003 Hoge
GO6F 12/0806 (2016.01) 6,813,705 B2* 11/2004 Duesterwald GOGF 9/30043
/216
(52) U.S. CL 712
6,918,032 Bl 7/2005 Abdallah et al.
CPC GOoF 973005 (2013.01); GO6F 9/30007 6.965.969 B2 11/2005 Burger et al
(2013.01); GO6F 9/3009 (2013.01); GO6F 6,988,183 Bl 1/2006 Wong
930021 (2013.01); GO6F 9/30036 (2013.01); 7,032,217 B2 4/2006 Wu
GO6I" 930043 (2013.01); GO6F 9/30058 ;%ggaggg E% 1 ;/%88; gaﬂﬂﬂes
. . 380, ray
(2013.01); GO6F 9/30072 (2013.01); GO6F 7571284 Bl 22000 Olson
930098 (2013.01); GO6F 9/30101 (2013.01); 7.676.650 B2 3/2010 Ulkai
GO6I’ 930105 (2013.01); GO6F 9/30145 7,853,777 B2 12/2010 Jones et al.
(2013.01); GO6F 9/30167 (2013.01); GO6F 7,877,580 B2 1/201; Eickemeyer et al.
9/30189 (2013.01); GOGF 9/32 (2013.01); /917,735 B2 3§201;~ pasama
GO6F 9/35 (2013.01); GO6F 9/3802 gggggg; gg ﬂ /ggi Eﬁ{ﬁi al
(2013.01); GO6F 9/3804 (2013.01); GO6F 8.127.119 B2 2/2012 Burger et al.
9/3822 (2013.01); GO6F 9/3836 (2013.01); 8,180,997 B2 5/2012 Burger et al.
GO6F 9/3848 (2013.01); GO6F 9/3855 g%g(l)jggg g% ggg% Eurger elt al.
: : : : 1 ec et al.
(253}1151(%’()?308{)9/532; (92/222(()52)’1 g;gtg? 8,321,850 B2 11/2012 Bruening et al.
-J1)5 1) 8332452 B2 12/2012 Mejdrich et al.
GO6F 11/36 (2013.01); GOGF 11/3648 8,433,885 B2 4/2013 Burger et al.
(2013.01); GO6F 11/3656 (2013.01); GO6F 8447911 B2 5/2013 Burger et al.
12/0862 (2013.01);, GO6F 12/1009 (2013.01); gag?‘;hgg% E% gggi 5[111’%;1’ et al.
: ,, : | ushano
GO6I’ 13/4221 (2013.01); GO6F 15/7867 0021241 B 42015 Burger ef al.
(2013.01); GO6F 15/80 (2013.01); GO6F 9 043 769 B? 57015 Vorbach
15/8007 (2013.01); GO6F 9/3859 (2013.01); 9:053:292 B2 6/2015 Abdallah
GO6F 12/0506 (2013.01); GOOF 12/0811 2001/0032306 A1 10/2001 Duesterwald et al.
(2013.01); GO6F 12/0875 (2013.01); GO6F 2002/0083313 Al 6/2002 De Oliverra Kastrup Pereira
: et al.
s or) LS UL GF D162 s a1 220m i
(01); (01); 2007/0223629 Al 9/2007 Zeng et al.
2212/62 (2013.01); Y02D 10/13 (2018.01); 2008/0168233 Al* 7/2008 LUC weovvvoeoeii, GO6F 12/0804
Y02D 10/14 (2018.01); Y02D 10/151 711/133
(2018.01) 2009/0013135 Al 1/2009 Burger et al.
: : : 2009/0013160 Al 1/2009 Burger et al.
(58) Field of Classification Search 2010/0146209 Al 6/2010 Burger et al.
CPC ... GO6F 9/30021:; GO6F 9/30036; GO6F 2010/0325395 Al 12/2010 Burger et al.
9/3004; GO6F 9/30043; GO6F 9/3005; 2011/0060889 Al 3/2011 Burger et al.
GO6F 9/30038:; GO6F 9/30072; GO6F 20}1/0072239 A 3/201} Burger et al.
0/3009: GO6F 9/30098: GO6F 9/30101: 58 gg%gggg ia ligg_l-j 5{06111:1 ft ?—1*
_ _ | | | anet et al.
GOOL 9/30105; GO6L' 9/30145; GO6K 2012/0311306 Al 12/2012 Mushano
9/30167; GO6F 9/30189; GO6F 9/32; 2013/0024725 Al* 12013 Cremer GOG6F 9/30076
GO6F 9/35; GO6F 9/3802; GO6F 9/3804: 714/15
GO6F 9/3822; GO6F 9/3836; GO6F 20;3/0159674 A 6/20;3 M_u:f et al.
/3843, LOOE 9/3855; GOOE HI3867; 201310254486 AL* 92013 McComick, J. .. GOGF 12/0873
GO6F 12/0862; GO6F 12/1009: GO6F : ! o VICLOHHICR, AL . 1195
2212/452; GO6F 2212/602; GO6F 2013/0326200 Al 12/2013 Kleen et al.
2212/604; GO6F 2212/62; GO6F 15/7867, 2014/0108862 Al* 4/2014 Rafacz ..covvin... GO6F 9/3826
GO6F 15/80; GO6F 15/8007; GO6F 714/15
9/3859; GO6F 9/466; GO6F 9/528; GO6F ggjﬁgig;%; i gggj é\biﬂgﬂh |
. : . 1 1 1 calabrino et al.
11/3648; GO6F 12/0806; GO6F 12/0811; 014/0281404 Al 9/2014 Tyengar et al
GO6L' 12/0875; GOOL 13/4221; Y021 2014/0372736 Al 12/2014 Greenhalgh
60/1225; YO2B 60/1228; Y02B 60/1235; 2015/0067662 Al 3/2015 Palalau
YO02D 10/14; YO2D 10/13; YO2D 10/151 2015/0089188 Al 3/2015 Gonion et al.

US 10,061,584 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0089191 Al 3/2015 Gonion et al.

2015/0100757 Al 4/2015 Burger et al.

2015/0127928 Al 5/2015 Burger et al.

2015/0199199 Al 7/2015 Burger et al.

2015/0199272 Al 7/2015 Goel et al.

2017/0083324 Al1l* 3/2017 Burger GO6F 9/3004
2017/0083325 Al 3/2017 Burger et al.

2017/0083329 Al* 3/2017 Burger GO6F 9/3004
2017/0083330 Al* 3/2017 Burger GO6F 9/3004
2017/0083331 Al 3/2017 Burger et al.

OTHER PUBLICATIONS

Burger et al., “Design and Implementation of the TRIPS EDGE
Architecture”, In Proceedings of the 32nd Annual International

Symposium on Computer Architecture, Jun. 4, 2005, pp. 1-41.

Burger, et al., “Scaling to the End of Silicon with EDGE Architec-
tures”, In Journal of Computer, vol. 37 Issue 7, Jul. 2004, pp. 44-55.
Coons et al., “A Spatial Path Scheduling Algorithm for EDGE
Architectures,” In Proceedings of the 12th International Conference
on Architectural Support for Programming [L.anguages and Operat-
ing Systems (ASPLOS), Oct. 12, 2006, 12 pages.

Desikan et al., “Scalable Selective Re-Execution for EDGE Archi-
tectures,” In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems, Oct. 9, 2004, 13 pages.

Duric et al., “Dynamic-Vector Execution on a General Purpose
EDGE Chip Multiprocessor,” In Proceedings of the 2014 Interna-
tional Conference on Embedded Computers Syhstems: Architec-
tures, Modeling, and Simulation (SAMOS X1V), Jul. 14-17, 2014,
8 pages.

Duric et al., “EVX: Vector Execution on Low Power EDGE Cores,”
Design, Automation and Test in European Conference and Exhibi-
tion, Mar. 24-28, 2014, 4 pages.

Duric et al., “ReCompAc: Reconfigurable compute accelerator,”
IEEE 2013 International Conference on Reconfigurable Computing
and FPGAS (Reconfig), Dec. 9, 2013, 4 pages.

“Explicit Data Graph Execution”, Retrieved on: Jul. 13, 2015,
Available at: https://en.wikipedia.org/wiki/
Explicit_Data Graph_Execution.

Fallin, et al., “The Heterogeneous Block Architecture”, In Proceed-
ings of 32nd IEEE International Conference on Computer Design,
Oct. 19, 2014, pp. 1-8.

Gebhart et al., “An Evaluation of the TRIPS Computer System,” In
Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems, Mar. 7,
2009, 12 pages.

Govindan, “E3:Energy-Efficient EDGE Architectures”, In Disser-
tation, Aug. 2010, 244 pages.

Govindan et al., “Scaling Power and Performance via Processor
Composability,” IEEE Transaction on Computers, No. 1, Aug. 2014,
14 pages.

Govindaraju et al., “DySER: Unifying Functionality and Parallel-
1sm Speclalization for Energy-Eflicient Computing,” IEEE Micro,
IEEE Service Center, Sep. 1, 2012, 14 pages.

Gray and Smuth, “Towards an Area-Eflicient Implementation of a
High ILP EDGE Soft Processor: Comparing Out-of-Order Dataflow
Instruction Scheduler Designs,” poster temporarily on display dur-
ing The 22nd IEEE International Symposium on Field-Program-
mable Custom Computing Machines, May 11-13, 2014, Boston,
Massachusetts (poster on display for approximately 1-2 hours, and
less than one day, May 2014).

Gulat1 et al., “Multitasking Workload Scheduling on Flexible Core
Chip Multiprocessors,” In Proceedings of the Computer Architec-
ture News, vol. 36, Issue 2, May 2008, 10 pages.

Gupta, “Design Decisions for Tiled Architecture Memory Systems,”
document marked Sep. 18, 2009, available at: http://cseweb.ucsd.
edu/~a2gupta/uploads/2/2/7/3/22734540/researchexam.paper.pdf,

14 pages.

Huang et al., “Compiler-Assisted Sub-Block Reuse,” Retrieved on:
Apr. 9, 2015; available at: http://citeseerx.ist.psu.edu/viewdoc/
download?do1=10.1.1.33.155&rep=rep1&type=pdf (also published
as Huang & Lilja, “Compiler-Assisted Sub-Block Reuse,” UMSI
ResearchReport/University of Minnesota Supercomputer Institute
73 (2000)).

Huang, “Improving Processor Performance Through Compiler-

Assisted Block Reuse,” In Doctoral Dissertation, May 2000, 125
pages.

Keckler et al., “Tera-Op Reliable Intelligently Adaptive Processing
System (Trips),” In AFRL-IF-WP-TR-2004-1514, document dated
Apr. 2004, 29 Pages.

Kim et al., “Composable Lightweight Processors,” 13 pages (docu-
ment also published as Kim, et al., “Composable lightweight
processors,” 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pp. 381-394, (2007)).
Kozumplik, et al., “TRIPS to the Semantic EDGE”, Published on:
Sep. 21, 2015, Available at: http://vbn.aau.dk/ws/files/61072300/
1212050422 .pdf.

L1 et al., “Code Layout Optimization for Defensiveness and Polite-
ness 1n Shared Cache,” 11 pages, (also published as L1, et al, “Code
Layout Optimization for Defensiveness and Politeness in Shared
Cache” 43rd International Conference on Parallel Processing
(ICPP), IEEE, pp. 151-161 (2014)).

L1 et al., “Hybrid Operand Communication for Datatflow Proces-
sors,” document not dated, 10 pages (also published as L1 et al.,
“Hybrid operand communication for datatlow processors,” In Work-
shop on Parallel Execution of Sequential Programs on Multi-core
Architectures, pp. 61-71 (2009)).

Maher, “Atomic Block Formation for Explicit Data Graph Execu-
tion Architectures”, In Dissertation of Doctor of Philosophy, Aug.
2010, 185 pages.

Maher et al., “Merging Head and Tail Duplication for Convergent
Hyperblock Formation,” In Annual IEEE/ACM International Sym-
posium on Microarchitecture, Dec. 2006, 12 pages.

McDonald, et al., “TRIPS Processor Reference Manual” In Tech-
nical Report TR-05-19, Mar. 10, 2005, pp. 1-194.

Mer et al., “ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfiguration Matrix,” 10 pages,
(also published as Mei, et al. “ADRES: An architecture with tightly
coupled VLIW processor and coarse-grained reconfigurable
matrix,” In Proceedings of 13th International Conference on Field-
Programmable Logic and Applications, pp. 61-70 (Sep. 2003)).
Melvin et al., “Enhancing Instruction Scheduling with a Block-
Structured ISA,” International Journal of Parallel Programming,
vol. 23, No. 3, Jun. 1993, 23 pages.

Microsoft Research, “E2,” document downloaded on Apr. 10, 2015
from http://research.microsoft.com/en-us/projects/e2/.

Nagarajan et al., “Critical Path Analysis of the TRIPS Architecture,”
In IEEE International Symposium on Performance Analysis of
Systems and Software, Mar. 19, 2006, 11 pages.

Nagarajan et al., “A Design Space Evaluation of Grid Processor
Architectures,” In Proceedings of the 34th annual ACM/IEEE
international symposium on Microarchitecture, Dec. 1, 2001, pp.
40-51.

Nagarajan et al., “Static Placement, Dynamic Issue (SPDI) Sched-
uling for EDGE Architectures,” In Proceedings of the 13th Inter-
national Conference on Parallel Architecture and Compilation Tech-
niques, Sep. 29, 2004, 11 pages.

Park et al., “Polymorphic Pipeline Array: A flexible multicore
accelerator with virtualized execution for mobile multimedia appli-
cations,” 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 12, 2009, 11 pages.

Putnam et al., “Dynamic Vectorization in the E2 Dynamic Multicore
Architecture,” 6 pages (also published as Putnam, et al., “Dynamic
vectorization 1 the E2 dynamic multicore architecture” ACM
SIGARCH Computer Architecture News pp. 27-32. (2011)).
Robatmili et al., “Exploiting Criticality to Reduce Bottlenecks in
Distributed Uniprocessors,” 17 IEEE International Symposium on
High-Perfonnance Computer Architecture (HPCA-17), Feb. 2011,
12 pages.

Robatmili et al., “How to Implement Effective Prediction and
Forwarding for Fusable Dynamic Multicore Architectures,” In Pro-

US 10,061,584 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

ceedings of the 19th IEEE International Symposium on High-
Performance Computer Architecture, Feb. 23, 2013, 12 pages.
Roesner, “Counting Dependence Predictors,” In Undergraduate
Honors Thesis, May 2, 2008, 25 pages.

Sankaralingam et al., “Distributed Microarchitectural Protocols 1n
the TRIPS Prototype Processor,” 12 pages (also published as
“Distributed Microarchitectural Protocols in the TRIPS Prototype
Processor,” Proceedings of 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 480-491 (2006)).
Sankaralingam et al., “Exploiting ILP, TLP, and DLP with
Polymorphous TRIPS Architecture,” In Proceedings of the 30th
Annual International Symposium on Computer Architecture, Jun. 9,
2003, 12 pages.

Sankaralingam, Karthikeyan, “Polymorphous Architectures: A Uni-
fied Approach for Extracting Concurrency of Diflerent Granulari-
ties”, In Dissertation of the University of Texas, Aug. 2007, 276
pages.

Sankaralingam, et al., “TRIPS: A Polymorphous Architecture for
Exploiting ILP, TLP, and DLP”, In Journal of ACM Transactions on
Architecture and Code Optimization, vol. 1, No. 1, Mar. 2004, pp.
62-93.

Sethumadhavan et al., “Design and Implementation of the TRIPS
Primary Memory System,” In Proceedings of International Confer-
ence on Computer Design, Oct. 1, 2006, 7 pages.

Sibi et al., “Scaling Power and Performance via Processor Compos-
ability,” University of Texas at Austin technical report No. TR-10-
14 (2010), 20 pages.

Smith, et al., “Compiling for EDGE Architectures”, In Proceedings
of 4th International Symposium on Code Generation and Optimi-
zation, Mar. 26, 2006, pp. 1-11.

Smith, et al., “Dataflow Predication”, In Proceedings of 39th Annual
IEEE/ACM International Symposium on Microarchitecture, Dec. 9,
2006, 12 pages.

Smith, Aaron Lee, “Explicit Data Graph Compilation”, In Disser-
tation of The University of Texas, Dec. 2009, 201 pages.

Smith, “TRIPS Application Binary Interface (ABI) Manual,” Tech-
nical Report TR-05-22, Department of Computer Sciences, The
University of Texas at Austin, Technical Report TR-05-22, docu-
ment marked Oct. 10, 2006, 16 pages.

Tamches et al., “Dynamic Kernel Code Optimization,” In Workshop
on Binary Translation, 2001, 10 pages.

Wu, et al., “Block Based Fetch Engine for Superscalar Processors”,
In Proceedings of 15th International Conference on Computer
Applications in Industry and Engineering, Nov. 7, 2002, 4 pages.
International Search Report and Written Opinion for PCT/US2016/
051402, dated Dec. 22, 2016, 17 pages.

PCT Chapter II Demand for International Preliminary Examination
and amended claims under Article 34 submitted to the European

Patent Oflice dated May 23, 2017, for PCT/US2016/051402, 9
pages.

Abraham, et al., “Predictability of Load/Store Instruction Laten-
cies”, In Proceedings of the 26th annual international symposium on
Microarchitecture, Dec. 1, 1993, pp. 139-152.

Chrysos et al., “Memory Dependence Prediction using Store Sets”,

In Proceedings of the 25th Annual International Symposium on
Computer Architecture, Jun. 1998, pp. 142-153.

Hao et al., “Increasing the Instruction Fetch Rate via Block-
Structured Instruction Set Architectures™, In Proceedings of the 29th
Annual IEEE/ACM International Symposium on Microarchitecture,
Dec. 2, 1996, pp. 191-200.

“How Many Clock Cycles does a RISC/CISC Instruction Take to
Execute?”, Retrieved on: Aug. 24, 2015, Available at: http://elec-
tronics.stackexchange.com/questions/17055 1/how-many-clock-
cycles-does-a-risc-cisc-instruction-take-to-execute.

Ipek et al., “Core Fusion: Accommodating Software Diversity in
Chip Multiprocessors”, In Proceedings of the 34th annual interna-
tional symposium on Computer architecture, Jun. 9, 2007, 12 pages.
Kane, “PA-RISC 2.0 Architecture”, In Publication of Prentice Hall
PTR, Retrieved on: Sep. 17, 2015, 28 pages.

Kavi, et al.,, “Concurrency, Synchronization, Speculation—the
Dataflow Way”, In Journal of Advances in Computers, vol. 96, Nov.
23, 2013, pp. 1-41.

Liu, “Hardware Techniques to Improve Cache Efliciency”, In Dis-
sertation of the University of Texas at Austin, May 2009, 189 pages.
McDonald et al., “Characterization of TCC on Chip-Multiproces-

sors,” Parallel Architectures and Compilation Techniques, 2005.
PACT 2005. 14th International Conference on. IEEE, 2005, 12

pages.
“Microarchitecture”, Retrieved on: Aug. 24, 2015, Available at:
https://github.com/jbush001/NyuziProcessor/wiki/
Microarchitecture.

Munshi, et al., “A Parameterizable SIMD Stream Processor”, In
Proceedings of Canadian Conference on Electrical and Computer
Engineering, May 1, 2005, pp. 806-811.

Park, et al., “Reducing Design Complexity of the Load/Store
Queue”, In Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 3, 2003, 12 pages.
Pengfer et al., “M5 Based EDGE Architecture Modeling”, In
Proceedings of IEEE International Conference on Computer
Design, Oct. 3, 2010, pp. 289-296.

Pericas et al., “A Two-Level Load/Store Queue Based on Execution
Locality” “In Proceedings of 35th International Symposium on
Computer Architecture”, Jun. 21, 2008, 12 pages.

Pierce et al., “Wrong-Path Instruction Prefetching”, In Proceedings
of the 29th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2, 1996, pp. 1-17.

Rahman, Reza, “Intel® Xeon Phi™ Core Micro-Architecture”,
Published on: Aug. 29, 2014, Available at: https://software.intel.
com/en-us/articles/intel-xeon-phi-core-micro-architecture.
Sethumadhavan, et al. “Late-Binding: Enabling Unordered Load-
Store Queues™, In Proceedings of the 34th Annual International
Symposium on Computer Architecture, Jun. 9, 2007, pp. 347-357.
Souza et al., “Dynamically Scheduling VLIW Instructions”, In
Journal of Parallel and Distributed Computing, vol. 60, Jul. 2000,
pp. 1480-1511.

Valentine, “Introducing Sandy Bridge”, Retrieved on: Aug. 24,
20135, Available at: https://cesga.es/es/paginas/descargaDocumento/
1d/135.

Zmily, “Block-Aware Instruction Set Architecture”, In Doctoral
Dissertation, Jun. 2007, 176 pages.

Zmily et al., “Block-Aware Instruction Set Architecture”, In Pro-
ceedings of ACM Transactions on Architecture and Code Optimi-

zation, vol. 3, Issue 3, Sep. 2006, pp. 327-357.

Zmily, et al., “Improving Instruction Delivery with a Block-Aware
ISA”, In Proceedings of 11th International Euro-Par Conference on
Parallel Processing, Aug. 30, 2005, pp. 530-539.

International Preliminary Report on Patentability for PCT/US2016/
051402, dated Dec. 18, 2017, 20 pages.

Written Opinion of the International Preliminary Examining
Authority for PCT/US2016/051402, dated Aug. 29, 2017, 11 pages.

* cited by examiner

U.S. Patent Aug. 28, 2018 Sheet 1 of 16 US 10,061,584 B2

FIG. 1

Block-Based
Processor

Control Unit

Scheduler 165

Hardware

structure He,
167 145

Clock Generaior
170

L2 Cache 152
Memory System
150

U.S. Patent Aug. 28, 2018 Sheet 2 of 16 US 10,061,584 B2

Control Unit
205

Scheduler 206
Store Instruction
Data Store 207

|: Instruction Window 210 Instruction Window : |
; 215 211 w
I 8 . \ |
| Score Decoded LOP ROP Predicate ; I
i board Instructions buffer buffer buffer Broadcast 216 :
| 247 241 242 243 244 245 |

o e

s=S===""]

Router 270

D-Cache 277 LS Pipeline Registers 278

US 10,061,584 B2
300

Sheet 3 of 16

Aug. 28, 2018

U.S. Patent

FIG. 3

>310

>312

>313

314

ot

T

ol o B B e el W T R e e o e e R Tl R ol e 08 W e O e G R 0 e W O G e e
. I e - " my " " » "

e | 03] <F (Awl Tan Re i) Yoy
el O opr oo oo G P T N S T A N T s
CEEEEEEEEEBEEEHEEERE
e B B e e P B o e By B o B B RS B O B RS
=} -]] B HUGEEEEEEEEE
E] CF T] TS YOS DSE SO GE S SSE S LS
bRk ek kb R EEEEEEE

T U W A N W WE)] U A
R B e e e B B s [[R e o ot] O

LT E LNl

(B A R ISR AN
AT FPEC Fr i EE

L H FETE TETETTETE FETTRTIT. ETIOIRE SIRPIETH TIETETIER FRTIEEI [RCTAIER TIRTRICEN TETTTTEN. TRRTTt. TR
lvlvlrlvlvlvlvlqlvﬁT!hIiiitiItttiiil!ltlrttl?!wltlvl+iti#lfi:l?l.lrl.l:ii-lit-ill-'ltlil.l-ii:itnl-lnI'tﬂlitml'lnhitaiitwt‘

1

US 10,061,584 B2
400

Sheet 4 of 16

Aug. 28, 2018

U.S. Patent

FIG. 4

iFf4+ *rEN A FALRORDATTTR

11l ERER 1]
[EEENILLE]
IR REEE]
IATFFETRT

£ LZ

bro

mEmATTF AN,

1
1

IR EF+AarFIEFAFdTI0T

TYFFETEATY Y144 NTFEYr

| 4 | 4 | 4
bkl bddl birrh el
S EFREE R AFFERSSRFNFE]
LEBRFEFENBRRERRER S BEE]
IATHRALNAGIFENITARNE
rrETrrweY

O™ Egy
| i

AT
S

3) Y4
i
{)
o

read
add

bro 1«
bro

U.S. Patent Aug. 28, 2018 Sheet 5 of 16 US 10,061,584 B2

FIG. 5

510

215 517

63 Store Mask 32
127 Write Mask 96
520

51 0
T T e I

530

31 0
e few] o

240

31 0
o [resead] o

U.S. Patent Aug. 28, 2018 Sheet 6 of 16 US 10,061,584 B2

600

FIG. 6 /

620 - FETCH (IF)
630 DECODE (DE)

640 - EXECUTE (EX)
650 COMMIT / ABORT (C)

660 YES

670 IDLE (ID)

680 %
NO

U.S. Patent Aug. 28, 2018 Sheet 7 of 16 US 10,061,584 B2

FIG 7 700

Block-Based FProcessor 710 Memory

Control Unit 72

: Store Mask (SM)

Core Scheduler 25

Memory access hardware
structure :

nstruction Blocks
737a ' —

137k

7382 —————————
Core Core bevereeerr e e :
738b
744 745 N TEE T

- "

}ﬁ“"ﬂm"- ------------------

Core Core
747

A "R N—— AW NI W W e e

___________________________ "
------------------- L
.............. o LT
S T e A T T T e W ey kA ca e
S T T T LT - o S AL T
P R R S N .] A R R N N
---------------- W . A e L L
e T T - S P T T
P I D S A e [oE k. 'y I S N T
S S A AP RE a =t e P L N L P
LTl 3 - - . ST,
Ry I B .,
r . r
q r Oy
| '
k

uuuuuuuuuuuuuu

755 i, Store mask i

..............

.................

- -
llllll

Lt e Lk _

U.S. Patent Aug. 28, 2018 Sheet 8 of 16 US 10,061,584 B2

FIG. 8 e

31 17 16 15 0
OPCODE HH 0 | SHIFT | LSID MASK

804 806

810

N
804 806 808

SHIFT LSID MASK LSID TO NULLIFY

C 006G 00000

¢ ¢ 000000

0 0 6 6 00 0 0

0 ¢ 000000

G0 000000

U.S. Patent Aug. 28, 2018 Sheet 9 of 16 US 10,061,584 B2

FIG. 9

900
N

SHIFT LSID MASK LSID TO NULLIFY

902
4

O 00000C00CO0OCO0O000 11

904

¥

O 01100000000001101
906

¥

1 O 1100000000000V U

FIG. 10

1002

1004 |~ : \
§ U > 7 1008

Null LSID2 Null LSID1

U.S. Patent Aug. 28, 2018 Sheet 10 of 16 US 10,061,584 B2

FIG. 11A oz
/

1104

1106

1108 1110

1118

U.S. Patent Aug. 28, 2018 Sheet 11 of 16 US 10,061,584 B2

FIG. 11B o
/

1121 1d
1d

1122 °
T F

1123 1124

1125

U.S. Patent Aug. 28, 2018 Sheet 12 of 16 US 10,061,584 B2

1126

FIG. 11C /

1127

1128

1130

CEIR T

§£l EQA

T
o
lg Iﬁ‘
H

BRO

1134

U.S. Patent Aug. 28, 2018 Sheet 13 of 16 US 10,061,584 B2

FIG. 11D /‘"’

1141

1142

1143

sd 0]

sd ri]
null [2103774]

1146

U.S. Patent Aug. 28, 2018 Sheet 14 of 16 US 10,061,584 B2

FIG. 12

1200

1210

Receive a nullification instruction in a first instruction

block.

1220

Obtain an instruction identification for a memory
access instruction of a plurality of memory access
instructions, based on a target field of the
nullification instruction.

1230 Execute the nullification instruction to nullify the
] memory access instruction associated with the
iInstruction identification.

Based on the nullified memory access instruction,
1240 execute a subsequent memory access instruction
from the first instruction block.

U.S. Patent Aug. 28, 2018 Sheet 15 of 16 US 10,061,584 B2

FIG. 13 1300

/

1310 Retrieve data indicating execution ordering of a

plurality of memory store instructions.

Detect a predicated instruction during instruction

1320 -
execution.

Determine at least a first memory store instruction of

1330 the plurality of memory store instructions will not

execute when a condition of the predicated
Instruction 1s satisfied.

Generate a nullification instruction, where a target
field of the nullification instruction identifies a load/
store identifier (LSID) of the first memory store
instruction.

1340

1350 Nullity the first memory store instruction and issue

the predicated instruction.

U.S. Patent Aug. 28, 2018 Sheet 16 of 16 US 10,061,584 B2

FIG. 14

1400

Computing Cloud ,_________ Software 1480

1490 e T For described
technologies

Communication
Connection(s

(S) 0
Input Devi
m 1450
S
()1460

Processing

Unit(s) |
1410 Output Device

[

|

|

147 |

|

|
]
|

l

|

|

|

: 5 |
2 | ! l

Storage

1440

Instructions 1480 for
described technologies

US 10,061,584 B2

1

STORE NULLIFICATION IN THE TARGET
FIELD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 62/221,003, enfitled “BLOCK-

BASED PROCESSORS,” filed Sep. 19, 2013, which appli-
cation 1s incorporated herein by reference 1n 1ts entirety.

BACKGROUND

Microprocessors have benefitted from continuing gains in
transistor count, integrated circuit cost, manufacturing capi-
tal, clock frequency, and energy efliciency due to continued
transistor scaling predicted by Moore’s law, with little
change 1n associated processor Instruction Set Architectures
(ISAs). However, the benefits realized from photolitho-
graphic scaling, which drove the semiconductor industry
over the last 40 years, are slowing or even reversing.
Reduced Instruction Set Computing (RISC) architectures
have been the dominant paradigm in processor design for
many years. Out-of-order superscalar implementations have
not exhibited sustamned improvement in area or perior-
mance. Accordingly, there 1s ample opportunity for improve-
ments 1 processor ISAs to extend performance improve-
ments.

SUMMARY

Methods, apparatus, and computer-readable storage
devices are disclosed for configuring, operating, and com-
piling code for, block-based processor architectures (BB-
ISAs), including explicit data graph execution (EDGE)
architectures. The described techniques and tools for solu-
tions for, e.g., improving processor performance and/or
reducing energy consumption can be implemented sepa-
rately, or 1n various combinations with each other. As will be
described more fully below, the described techniques and
tools can be implemented 1n a digital signal processor,
microprocessor, application-specific integrated circuit
(ASIC), a soft processor (e.g., a microprocessor core imple-
mented 1 a field programmable gate array (FPGA) using
reconiigurable logic), programmable logic, or other suitable
logic circuitry. As will be readily apparent to one of ordinary
skill in the art, the disclosed technology can be implemented
in various computing platforms, including, but not limited
to, servers, mainirames, cellphones, smartphones, PDAs,
handheld devices, handheld computers, PDAs, touch screen
tablet devices, tablet computers, wearable computers, and
laptop computers.

In one example of the disclosed technology, a block-based
processor 1s configured to execute at least one predicated
instruction within an 1struction block based on a hardware
structure storing data indicating the relative ordering of the
memory access 1nstructions and/or a total number of
memory access instructions (e.g., memory store instruc-
tions) that will execute when a condition associated with a
predicated instruction 1s satisfied (or not satisfied). The
ordering of memory access instructions can be indicated by
load/store 1dentifiers (LSIDs). An 1nstruction block can be
committed (1.e., 1t completes and a subsequent block can be
executed) once the block produces all of 1ts outputs (i.e.,
register writes, memory stores and at least one branch
instruction). In reference to the predicated instruction in the
instruction block, memory store instructions can be located

10

15

20

25

30

35

40

45

50

55

60

65

2

in both predicated execution paths of the predicated instruc-
tion. However, since only one of the predicated execution
paths will be executed (based on whether the instruction
condition 1s satisfied or not), memory access instructions
(e.g., memory store 1nstructions) that are i the non-execut-
ing predicated path have to be nullified 1n the currently
executing predicated path in order to account for all memory
access mstructions and commit the predicated instruction.

In some examples, the compiler can generate at least one
nullification instruction, which can be used to nullify a
memory access instruction appearing in a non-executing
predicated path of a predicated instruction. More specifi-
cally, a nullification instruction can specilty an LSID of a
memory access instruction (e.g., memory store istruction)
in the target field. The LSID 1in the target field of the
nullification istruction can be used to nullity the corre-
sponding memory access 1instruction, as 1f the memory
access 1nstruction has been executed. In some examples, the
nullification mstruction can include a shift bit and an LSID
mask in 1ts target field, so that a range of LSIDs can be
covered by using the shift bit and the LSID mask (e.g., the
same L.SID mask can designate different LSIDs based on the
shift bit). In some examples, the nullification instruction can
include two target fields, each target field designating an
LSID of a memory access 1nstruction that has to be nullified.
In some examples, mstead of generating a nullification
istruction, a block-based processor can detect the memory
access 1nstructions appearing in a non-executing arm of a
predicated instruction, and can proceed with executing the
remaining arm of the predicated instruction as 11 the memory
access instructions 1n the non-executing arm have executed.
In some examples, the processor can use a counter (e.g., a
total count of memory access instructions), and memory
access 1nstructions can be nullified by incrementing the
counter (and committing the instruction block upon the
counter reaching the total number of memory access mstruc-
tions for the instruction block).

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limat
the scope of the claimed subject matter. The foregoing and
other objects, features, and advantages of the disclosed
subject matter will become more apparent from the follow-

ing detailed description, which proceeds with reference to
the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates a block-based processor core, as can be
used 1n some examples of the disclosed technology.

FIG. 2 illustrates a block-based processor core, as can be
used 1n some examples of the disclosed technology.

FI1G. 3 illustrates a number of instruction blocks, accord-
ing to certain examples of disclosed technology.

FIG. 4 illustrates portions of source code and nstruction
blocks, as can be used 1n some examples of the disclosed
technology.

FIG. 5 illustrates block-based processor headers and
instructions, as can be used in some examples of the
disclosed technology.

FIG. 6 1s a state diagram 1illustrating a number of states
assigned to an instruction block as 1t 1s mapped, executed,
and retired.

US 10,061,584 B2

3

FIG. 7 1llustrates a number of instructions blocks and
processor cores, as can be used in some examples of the
disclosed technology.

FIG. 8 illustrates an example nullification instruction
using a shift bit and an LSID mask as can be used 1n certain
examples of the disclosed technology.

FIG. 9 illustrates example LSID masks for nullifying
multiple store instructions as can be used in certain
examples of the disclosed technology.

FIG. 10 illustrates an example nullification instruction
with two separate LSIDs 1n the target fields as can be used
in certain examples of the disclosed technology.

FIGS. 11A-11D 1illustrate example control flow graphs
with store istruction nullification as can be used 1n certain
examples of the disclosed technology.

FIGS. 12-13 are flowcharts outlining example methods of
nullifying memory access instructions, as can be used in
certain examples of the disclosed technology.

FIG. 14 1s a block diagram 1llustrating a suitable com-
puting environment for implementing some embodiments of
the disclosed technology.

DETAILED DESCRIPTION

I. General Considerations

This disclosure 1s set forth 1n the context of representative
embodiments that are not intended to be limiting 1n any way.

As used 1n this application the singular forms “a,” “an,”
and “the” include the plural forms unless the context clearly
dictates otherwise. Additionally, the term “includes™ means
“comprises.” Further, the term “coupled” encompasses
mechanical, electrical, magnetic, optical, as well as other
practical ways of coupling or linking items together, and
does not exclude the presence of intermediate elements
between the coupled items. Furthermore, as used herein, the
term “and/or” means any one item or combination of 1tems
in the phrase.

The systems, methods, and apparatus described herein
should not be construed as being limiting in any way.
Instead, this disclosure 1s directed toward all novel and
non-obvious features and aspects of the various disclosed
embodiments, alone and in various combinations and sub-
combinations with one another. The disclosed systems,
methods, and apparatus are not limited to any specific aspect
or feature or combinations thereoi, nor do the disclosed
things and methods require that any one or more specific
advantages be present or problems be solved. Furthermore,
any features or aspects of the disclosed embodiments can be
used i various combinations and sub-combinations with
one another.

Although the operations of some of the disclosed methods
are described 1n a particular, sequential order for convenient
presentation, 1t should be understood that this manner of
description encompasses rearrangement, unless a particular
ordering 1s required by specific language set forth below. For
example, operations described sequentially may in some
cases be rearranged or performed concurrently. Moreover,
for the sake of simplicity, the attached figures may not show
the various ways 1n which the disclosed things and methods
can be used 1 conjunction with other things and methods.
Additionally, the description sometimes uses terms like
“produce,” “‘generate,” “display,” “receive,” “‘emit,”
“verily,” “execute,” and “mnitiate” to describe the disclosed
methods. These terms are high-level descriptions of the

actual operations that are performed. The actual operations

10

15

20

25

30

35

40

45

50

55

60

65

4

that correspond to these terms will vary depending on the
particular implementation and are readily discermible by one

of ordinary skill in the art.

Theories of operation, scientific principles, or other theo-
retical descriptions presented herein in reference to the
apparatus or methods of this disclosure have been provided
for the purposes of better understanding and are not intended
to be limiting in scope. The apparatus and methods in the
appended claims are not limited to those apparatus and
methods that function 1n the manner described by such
theories of operation.

Any of the disclosed methods can be implemented as
computer-executable instructions stored on one or more
computer-readable media (e.g., computer-readable media,
such as one or more optical media discs, volatile memory
components (such as DRAM or SRAM), or nonvolatile
memory components (such as hard drives)) and executed on
a computer (e.g., any commercially available computer,
including smart phones or other mobile devices that include
computing hardware). Any of the computer-executable
instructions for implementing the disclosed techmiques, as
well as any data created and used during implementation of
the disclosed embodiments, can be stored on one or more
computer-readable media (e.g., computer-readable storage
media). The computer-executable instructions can be part of,
for example, a dedicated software application or a software
application that 1s accessed or downloaded via a web
browser or other software application (such as a remote
computing application). Such soitware can be executed, for
example, on a single local computer (e.g., with general-
purpose and/or block based processors executing on any
suitable commercially available computer) or 1n a network
environment (e.g., via the Internet, a wide-area network, a
local-area network, a client-server network (such as a cloud
computing network), or other such network) using one or
more network computers.

For clarity, only certain selected aspects of the software-
based implementations are described. Other details that are
well known 1n the art are omitted. For example, it should be
understood that the disclosed technology i1s not limited to
any specific computer language or program. For instance,
the disclosed technology can be implemented by software
written 1n C, C++, Java, or any other suitable programming
language. Likewise, the disclosed technology 1s not limited
to any particular computer or type of hardware. Certain
details of suitable computers and hardware are well-known
and need not be set forth 1n detail in this disclosure.

Furthermore, any of the software-based embodiments
(comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed
methods) can be uploaded, downloaded, or remotely
accessed through a suitable communication means. Such
suitable communication means include, for example, the
Internet, the World Wide Web, an intranet, software appli-
cations, cable (including fiber optic cable), magnetic com-
munications, electromagnetic communications (including
RF, microwave, and infrared communications), electronic
communications, or other such communication means.

II. Introduction to the Disclosed Technologies

Superscalar out-of-order microarchitectures employ sub-
stantial circuit resources to rename registers, schedule
instructions 1n datatlow order, clean up after miss-specula-
tion, and retire results in-order for precise exceptions. This
includes expensive circuits, such as deep, many-ported
register files, many-ported content-accessible memories

US 10,061,584 B2

S

(CAMs) for datatlow instruction scheduling wakeup, and
many-wide bus multiplexers and bypass networks, all of
which are resource intensive. For example, FPGA-based
implementations of multi-read, multi-write RAMs typically
require a mix of replication, multi-cycle operation, clock
doubling, bank interleaving, live-value tables, and other

expensive techniques.

The disclosed technologies can realize performance
enhancement through application of techniques including
high struction-level parallelism (ILP), out-of-order (Oo0O),
superscalar execution, while avoiding substantial complex-
ity and overhead 1n both processor hardware and associated
software. In some examples of the disclosed technology, a
block-based processor uses an EDGE ISA designed for area-
and energy-eflicient, high-ILP execution. In some examples,
use of EDGE architectures and associated compilers finesses
away much of the register renaming, CAMs, and complex-
ity.

In certain examples of the disclosed technology, an EDGE
ISA can eliminate the need for one or more complex
architectural features, including register renaming, datatlow
analysis, misspeculation recovery, and in-order retirement
while supporting mainstream programming languages such
as C and C++. In certain examples of the disclosed tech-
nology, a block-based processor executes a plurality of two
or more instructions as an atomic block. Block-based
instructions can be used to express semantics ol program
data flow and/or instruction flow 1n a more explicit fashion,
allowing for improved compiler and processor performance.
In certain examples of the disclosed technology, an explicit
data graph execution instruction set architecture (EDGE
ISA) includes mformation about program control flow that
can be used to improve detection of improper control tlow
instructions, thereby increasing performance, saving
memory resources, and/or and saving energy.

In some examples of the disclosed technology, mstruc-
tions organized within instruction blocks are {fetched,
executed, and committed atomically. Instructions inside
blocks execute 1n dataflow order, which reduces or elimi-
nates using register renaming and provides power-ellicient
000 execution. A compiler can be used to explicitly encode
data dependencies through the ISA, reducing or eliminating
burdening processor core control logic from rediscovering
dependencies at runtime. Using predicated execution, intra-
block branches can be converted to datatlow instructions,
and dependencies, other than memory dependencies, can be
limited to direct data dependencies. Disclosed target form
encoding techniques allow instructions within a block to
communicate their operands directly via operand bullers,
reducing accesses to a power-hungry, multi-ported physical
register files.

Between instruction blocks, instructions can communi-
cate using memory and registers. Thus, by utilizing a hybrid
dataflow execution model, FDGE architectures can still
support imperative programming languages and sequential
memory semantics, but desirably also enjoy the benefits of
out-of-order execution with near i-order power efliciency
and complexity.

Apparatus, methods, and computer-readable storage
media are disclosed for generation and use of memory
access struction order encodings for block-based proces-
sors. In certain examples of the disclosed technology,
instruction blocks include an instruction block header and a
plurality of instructions. In other words, the executed
instructions of the instruction block affect the state, or do not
aflect the state as a unit.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some examples of the disclosed technology, a hardware
structure stores data indicating an execution order to be

adhered to for a number of memory access instructions,
including memory load and memory store instructions. A
control unit coupled to a processor core controls 1ssuance of
memory access instructions based at least 1n part on data
stored 1n the hardware structure. Thus, memory read/write
hazards can be avoided, while allowing for mstructions 1n an
istruction block to execute as soon as their dependencies
are available. In some examples, the control unit includes
wakeup and selection logic used to determine when memory
instructions 1ssue to a load/store queue.

As will be readily understood to one of ordinary skill 1n
the relevant art, a spectrum of implementations of the
disclosed technology are possible with various area and
performance tradeodls.

I11.

Example Block-Based Processor

FIG. 1 1s a block diagram 10 of a block-based processor
100 as can be implemented 1n some examples of the dis-
closed technology. The processor 100 i1s configured to
execute atomic blocks of instructions according to an
instruction set archutecture (ISA), which describes a number
ol aspects of processor operation, including a register model,
a number of defined operations performed by block-based
instructions, a memory model, interrupts, and other archi-
tectural features. The block-based processor includes a plu-
rality of processing cores 110, including a processor core
111.

As shown 1n FIG. 1, the processor cores are connected to
cach other via core interconnect 120. The core interconnect
120 carries data and control signals between individual ones
of the cores 110, a memory interface 140, and an put/
output (I/O) interface 1435. The core interconnect 120 can
transmit and receive signals using electrical, optical, mag-
netic, or other suitable communication technology and can
provide communication connections arranged according to a
number of different topologies, depending on a particular
desired configuration. For example, the core interconnect
120 can have a crossbar, a bus, a point-to-point bus, or other
suitable topology. In some examples, any one of the cores
110 can be connected to any of the other cores, while 1n other
examples, some cores are only connected to a subset of the
other cores. For example, each core may only be connected
to a nearest 4, 8, or 20 neighboring cores. The core inter-
connect 120 can be used to transmit input/output data to and
from the cores, as well as transmit control signals and other
information signals to and from the cores. For example, each
of the cores 110 can receive and transmit semaphores that
indicate the execution status of instructions currently being
executed by each of the respective cores. In some examples,
the core interconnect 120 1s implemented as wires connect-
ing the cores 110, and memory system, while in other
examples, the core interconnect can include circuitry for
multiplexing data signals on the interconnect wire(s), switch
and/or routing components, including active signal drivers
and repeaters, or other suitable circuitry. In some examples
of the disclosed technology, signals transmitted within and
to/from the processor 100 are not limited to full swing
clectrical digital signals, but the processor can be configured
to mclude diflerential signals, pulsed signals, or other suit-
able signals for transmitting data and control signals.

In the example of FIG. 1, the memory interface 140 of the
processor icludes interface logic that 1s used to connect to
additional memory, for example, memory located on another
integrated circuit besides the processor 100. An external

US 10,061,584 B2

7

memory system 150 includes an L2 cache 152 and main
memory 155. In some examples the L2 cache can be
implemented using static RAM (SRAM) and the main
memory 155 can be implemented using dynamic RAM
(DRAM). In some examples the memory system 150 1s
included on the same 1ntegrated circuit as the other compo-
nents of the processor 100. In some examples, the memory
interface 140 includes a direct memory access (DMA)
controller allowing transfer of blocks of data in memory
without using register file(s) and/or the processor 100. In
some examples, the memory interface manages allocation of
virtual memory, expanding the available main memory 155.

The I/0 1nterface 1435 includes circuitry for receiving and
sending 1nput and output signals to other components, such
as hardware interrupts, system control signals, peripheral
interfaces, co-processor control and/or data signals (e.g.,
signals for a graphics processing unit, floating point copro-
cessor, physics processing unit, digital signal processor, or
other co-processing components), clock signals, sema-
phores, or other suitable I/0 signals. The 1/O signals may be
synchronous or asynchronous. In some examples, all or a
portion of the I/O mterface 1s implemented using memory-
mapped /O techniques in conjunction with the memory
interface 140.

The block-based processor 100 can also include a control
unit 160. The control unit 160 supervises operation of the
processor 100. Operations that can be performed by the
control unit 160 can include allocation and de-allocation of
cores for performing 1nstruction processing, control of input
data and output data between any of the cores, register files,
the memory interface 140, and/or the I/O interface 145,
modification of execution {flow, and verilying target
location(s) of branch instructions, mnstruction headers, and
other changes in control flow. The control unit 160 can
generate and control the processor according to control tlow
and metadata information representing exit points and con-
trol flow probabilities for instruction blocks.

The control unit 160 can also process hardware interrupts,
and control reading and writing of special system registers,
for example the program counter stored in one or more
register file(s). In some examples of the disclosed technol-
ogy, the control unit 160 1s at least partially implemented
using one or more of the processing cores 110, while 1n other
examples, the control unit 160 1s implemented using a
non-block-based processing core (e.g., a general-purpose
RISC processing core coupled to memory). In some
examples, the control unit 160 1s implemented at least 1n part
using one or more of: hardwired finite state machines,
programmable microcode, programmable gate arrays, or
other suitable control circuits. In alternative examples, con-
trol unit functionality can be performed by one or more of
the cores 110.

The control unit 160 includes a scheduler 1635 that 1s used
to allocate instruction blocks to the processor cores 110. As
used herein, scheduler allocation refers to directing opera-
tion of an instruction blocks, including 1nitiating instruction
block mapping, fetching, decoding, execution, committing,
aborting, 1dling, and refreshing an instruction block. Pro-
cessor cores 110 are assigned to instruction blocks during
instruction block mapping. The recited stages of instruction
operation are for i1llustrative purposes, and in some examples
of the disclosed technology, certain operations can be com-
bined, omitted, separated into multiple operations, or addi-
tional operations added. The scheduler 165 schedules the
flow of mstructions including allocation and de-allocation of
cores Tor performing instruction processing, control of input
data and output data between any of the cores, register files,

10

15

20

25

30

35

40

45

50

55

60

65

8

the memory intertace 140, and/or the I/O mterface 145. The
control unit 160 also includes memory access instruction

hardware structure 167, which can be used to store data
including a store mask and a store vector register, as
discussed 1n further detail below.

The block-based processor 100 also includes a clock
generator 170, which distributes one or more clock signals
to various components within the processor (e.g., the cores
110, interconnect 120, memory interface 140, and 1/0 1inter-
face 145). In some examples of the disclosed technology, all
of the components share a common clock, while 1n other
examples different components use a different clock, for
example, a clock signal having differing clock frequencies.
In some examples, a portion of the clock 1s gated to allowing
power savings when some of the processor components are
not 1n use. In some examples, the clock signals are generated
using a phase-locked loop (PLL) to generate a signal of
fixed, constant frequency and duty cycle. Circuitry that
receives the clock signals can be triggered on a single edge
(e.g., a rnising edge) while 1n other examples, at least some
of the recerving circuitry 1s triggered by rising and falling
clock edges. In some examples, the clock signal can be
transmitted optically or wirelessly.

IV. Example Block-Based Processor Core

FIG. 2 1s a block diagram further detailing an example
microarchitecture for the block-based processor 100, and 1n
particular, an instance of one of the block-based processor
cores, as can be used 1n certain examples of the disclosed
technology. For ease of explanation, the exemplary block-
based processor core 1s 1llustrated with five stages: mstruc-
tion fetch (IF), decode (DC), operand fetch, execute (EX),
and memory/data access (LS). However, it will be readily
understood by one of ordinary skill 1n the relevant art that
modifications to the illustrated microarchitecture, such as
adding/removing stages, adding/removing units that per-
form operations, and other implementation details can be
modified to suit a particular application for a block-based
Processor.

As shown 1n FIG. 2, the processor core 111 includes a
control unit 205, which generates control signals to regulate
core operation and schedules the flow of mstructions within
the core using an instruction scheduler 206. Operations that
can be performed by the control unit 205 and/or instruction
scheduler 206 can include generating and using generating
and using memory access instruction encodings, allocation
and de-allocation of cores for performing instruction pro-
cessing, control of mput data and output data between any
of the cores, register files, the memory interface 140, and/or
the I/O interface 145. The control unit can also control the
load-store queue, scheduler, global control unit, other unaits,
or a combination of these units used to determine the rate
and order of instruction 1ssue.

In some examples, the mstruction scheduler 206 1s imple-
mented using a general-purpose processor coupled to
memory, the memory being configured to store data for
scheduling instruction blocks. In some examples, instruction
scheduler 206 1s implemented using a special purpose pro-
cessor or using a block-based processor core coupled to the
memory. In some examples, the instruction scheduler 206 1s
implemented as a finite state machine coupled to the
memory. In some examples, an operating system executing
on a processor (e.g., a general-purpose processor or a
block-based processor core) generates priorities, predic-
tions, and other data that can be used at least in part to
schedule instruction blocks with the mnstruction scheduler

US 10,061,584 B2

9

206. As will be readily apparent to one of ordinary skill 1n
the relevant art, other circuit structures, implemented 1n an
integrated circuit, programmable logic, or other suitable
logic can be used to implement hardware for the 1nstruction
scheduler 206.

The control umt 205 further includes memory (e.g., 1n an
SRAM or register) for storing control flow information and
metadata. For example, data for memory access instruction
order can be stored 1n a hardware structure such as a store
instruction data store 207. The store instruction data store
207 can store data for a store mask (e.g., generated by
copying data encoded in an instruction block or by an
instruction decoder when decoding instructions). The store
mask can include one or more load/store identifiers (LLSIDs),
which can indicate ordering for memory access instructions
(loads and stores) associated with an instruction block. In
some examples, the store instruction data store 207 includes
a counter that tracks the number and type of memory access
instructions that have executed. In other examples, the store
instruction data store 207 can store a total number of
memory access instructions (e.g., memory store instruc-
tions) for one or more instruction blocks.

The control unit 203 can also process hardware interrupts,
and control reading and writing of special system registers,
for example the program counter stored in one or more
register {ile(s). In other examples of the disclosed technol-
ogy, the control unit 203 and/or 1nstruction scheduler 206 are
implemented using a non-block-based processing core (e.g.,
a general-purpose RISC processing core coupled to
memory). In some examples, the control unit 205 and/or
instruction scheduler 206 are implemented at least 1n part
using one or more of: hardwired finite state machines,
programmable microcode, programmable gate arrays, or
other suitable control circuits.

The exemplary processor core 111 includes two 1nstruc-
tions windows 210 and 211, each of which can be configured
to execute an instruction block. In some examples of the
disclosed technology, an instruction block 1s an atomic
collection of block-based-processor instructions that
includes an 1nstruction block header and a plurality of one or
more nstructions. As will be discussed further below, the
instruction block header includes information that can be
used to further define semantics of one or more of the
plurality of instructions within the instruction block.
Depending on the particular ISA and processor hardware
used, the mstruction block header can also be used during
execution of the instructions, and to improve performance of
executing an instruction block by, for example, allowing for
carly fetching of instructions and/or data, improved branch
prediction, speculative execution, improved energy efli-
ciency, and improved code compactness. In other examples,
different numbers of instructions windows are possible, such
as one, four, eight, or other number of instruction windows.

Each of the instruction windows 210 and 211 can receive
instructions and data from one or more of input ports 220,
221, and 222 which connect to an interconnect bus and
instruction cache 227, which 1n turn 1s connected to the
instruction decoders 228 and 229. Additional control signals
can also be received on an additional mnput port 225. Each
ol the instruction decoders 228 and 229 decodes instruction
headers and/or instructions for an instruction block and
stores the decoded instructions within a memory store 215

and 216 located 1n each respective mstruction window 210
and 211. Further, each of the decoders 228 and 229 can send
data to the control unit 205, for example, to configure

5

10

15

20

25

30

35

40

45

50

55

60

65

10

operation of the processor core 111 according to execution
flags specified 1n an 1instruction block header or in an
instruction.

The processor core 111 further includes a register file 230
coupled to an L1 (level one) cache 235. The register file 230
stores data for registers defined 1n the block-based processor
architecture, and can have one or more read ports and one or
more write ports. For example, a register file may include
two or more write ports for storing data 1n the register file,
as well as having a plurality of read ports for reading data
from individual registers within the register file. In some
examples, a single instruction window (e.g., instruction
window 210) can access only one port of the register file at
a time, while 1n other examples, the mstruction window 210
can access one read port and one write port, or can access
two or more read ports and/or write ports simultaneously. In
some examples, the register file 230 can include 64 registers,
cach of the registers holding a word of 32 bits of data. (For
convenient explanation, this application will refer to 32-bits
of data as a word, unless otherwise specified. Suitable
processors according to the disclosed technology could
operate with 8-, 16-, 64-, 128-, 256-bit, or another number
of bits words) In some examples, some of the registers
within the register file 230 may be allocated to special
purposes. For example, some of the registers can be dedi-
cated as system registers examples of which include regis-
ters storing constant values (e.g., an all zero word), program
counter(s) (PC), which indicate the current address of a
program thread that 1s being executed, a physical core
number, a logical core number, a core assignment topology,
core control tlags, execution flags, a processor topology, or
other suitable dedicated purpose. In some examples, there
are multiple program counter registers, one or each program
counter, to allow for concurrent execution of multiple execu-
tion threads across one or more processor cores and/or
processors. In some examples, program counters are imple-
mented as designated memory locations instead of as reg-
isters 1n a register file. In some examples, use of the system
registers can be restricted by the operating system or other
supervisory computer instructions. In some examples, the
register file 230 1s implemented as an array of thip-tlops,
while 1n other examples, the register file can be implemented
using latches, SRAM, or other forms of memory storage.
The ISA specification for a given processor, for example
processor 100, specifies how registers within the register file
230 are defined and used.

In some examples, the processor 100 1ncludes a global
register file that 1s shared by a plurality of the processor
cores. In some examples, individual register files associate
with a processor core can be combined to form a larger file,
statically or dynamically, depending on the processor ISA
and configuration.

As shown in FIG. 2, the memory store 215 of the
instruction window 210 1includes a number of decoded
instructions 241, a left operand (LOP) bufler 242, a right
operand (ROP) bufler 243, a predicate buller 244, three
broadcast channels 245, and an nstruction scoreboard 247.
In some examples of the disclosed technology, each instruc-
tion of the instruction block 1s decomposed mnto a row of
decoded instructions, lett and right operands, and scoreboard
data, as shown 1n FIG. 2. The decoded instructions 241 can
include partially- or fully-decoded versions of instructions
stored as bit-level control signals. The operand bullers 242
and 243 store operands (e.g., register values received from
the register file 230, data received from memory, immediate
operands coded within an instruction, operands calculated
by an earlier-i1ssued instruction, or other operand values)

US 10,061,584 B2

11

until their respective decoded instructions are ready to
execute. Instruction operands and predicates are read from
the operand buflers 242 and 243 and predicate buller 244,
respectively, not the register file. The instruction scoreboard
247 can include a bufler for predicates directed to an
instruction, including wire-OR logic for combiming predi-
cates sent to an instruction by multiple instructions.

The memory store 216 of the second instruction window
211 stores similar 1nstruction iformation (decoded 1nstruc-
tions, operands, and scoreboard) as the memory store 215,
but 1s not shown in FIG. 2 for the sake of simplicity.
Instruction blocks can be executed by the second instruction
window 211 concurrently or sequentially with respect to the
first instruction window, subject to ISA constraints and as
directed by the control unit 205.

In some examples of the disclosed technology, front-end
pipeline stages IF and DC can run decoupled from the
back-end pipelines stages (IS, EX, LS). The control unit can
tetch and decode two 1nstructions per clock cycle into each
of the instruction windows 210 and 211. The control unit 2035
provides instruction window datatlow scheduling logic to
monitor the ready state of each decoded nstruction’s mputs
(c.g., each respective 1nstruction’s predicate(s) and
operand(s) using the scoreboard 247. When all of the mput
operands and predicate(s) for a particular decoded 1nstruc-
tion are ready, the instruction 1s ready to issue. The control
unit 205 then nitiates execution of (1ssues) one or more next
instruction(s) (e.g., the lowest numbered ready instruction)
cach cycle, and control signals based on the decoded instruc-
tion and the instruction’s input operands are sent to one or
more of functional units 260 for execution. The decoded
instruction can also encodes a number of ready events. The
scheduler 1n the control unit 205 accepts these and/or events
from other sources and updates the ready state of other
instructions in the window. Thus execution proceeds, start-
ing with the processor core’s 111 ready zero input instruc-
tions, mstructions that are targeted by the zero input mnstruc-
tions, and so forth.

The decoded instructions 241 need not execute in the
same order 1n which they are arranged within the memory
store 215 of the instruction window 210. Rather, the instruc-
tion scoreboard 245 1s used to track dependencies of the
decoded instructions and, when the dependencies have been
met, the associated individual decoded instruction 1s sched-
uled for execution. For example, a reference to a respective
istruction can be pushed onto a ready queue when the
dependencies have been met for the respective instruction,
and ready instructions can be scheduled 1n a first-in first-out
(FIFO) order from the ready queue. For instructions encoded
with load store identifiers (LLSIDs), the execution order will
also follow the priorities enumerated in the instruction
LSIDs, or by executed imn an order that appears as i the
istructions were executed 1n the specified order.

Information stored 1n the scoreboard 245 can include, but
1s not limited to, the associated instruction’s execution
predicate(s) (such as whether the mstruction 1s waiting for a
predicate bit to be calculated and whether the instruction
executes 1 the predicate bit 1s true or false), availability of
operands to the instruction, or other prerequisites required
before 1ssuing and executing the associated individual
instruction. The number of instructions that are stored in
cach instruction window generally corresponds to the num-
ber of instructions within an instruction block. In some
examples, operands and/or predicates are recerved on one or
more broadcast channels that allow sending the same oper-
and or predicate to a larger number of 1nstructions. In some
examples, the number of mstructions within an instruction

10

15

20

25

30

35

40

45

50

55

60

65

12

block can be 32, 64, 128, 1024, or another number of
istructions. In some examples of the disclosed technology,
an 1nstruction block 1s allocated across multiple instruction
windows within a processor core. Out-of-order operation
and memory access can be controlled according to data
specilying one or more modes of operation.

In some examples, restrictions are imposed on the pro-
cessor (e.g., according to an architectural definition, or by a
programmable configuration of the processor) to disable
execution of instructions out of the sequential order 1n which
the mstructions are arranged 1n an 1nstruction block. In some
examples, the lowest-numbered instruction available 1s con-
figured to be the next instruction to execute. In some
examples, control logic traverses the instructions in the
instruction block and executes the next instruction that i1s
ready to execute. In some examples, only one 1nstruction can
issue and/or execute at a time. In some examples, the
instructions within an instruction block 1ssue and execute 1n
a deterministic order (e.g., the sequential order in which the
instructions are arranged in the block). In some examples,
the restrictions on instruction ordering can be configured
when using a software debugger to by a user debugging a
program executing on a block-based processor.

Instructions can be allocated and scheduled using the
control unit 205 located within the processor core 111. The
control umt 205 orchestrates fetching of instructions from
memory, decoding of the mstructions, execution of instruc-
tions once they have been loaded into a respective 1nstruc-
tion window, data flow into/out of the processor core 111,
and control signals mput and output by the processor core.
For example, the control unit 205 can include the ready
queue, as described above, for use in scheduling instruc-
tions. The instructions stored in the memory store 2135 and
216 located 1n each respective instruction window 210 and
211 can be executed atomaically. Thus, updates to the visible
architectural state (such as the register file 230 and the
memory) allected by the executed 1nstructions can be budil-
ered locally within the core 200 until the instructions are
committed. The control umit 205 can determine when
instructions are ready to be committed, sequence the commiut
logic, and 1ssue a commit signal. For example, a commiut
phase for an instruction block can begin when all register
writes are bullered, all writes to memory are buflered, and
a branch target 1s calculated. The 1nstruction block can be
committed when updates to the visible architectural state are
complete. For example, an instruction block can be com-
mitted when the register writes are written to as the register
file, the stores are sent to a load/store unit or memory
controller, and the commit signal 1s generated. The control
umt 205 also controls, at least 1n part, allocation of func-
tional units 260 to each of the respective instructions win-
dows.

As shown 1n FIG. 2, a first router 250, which has a number
of execution pipeline registers 255, 1s used to send data from
either of the mstruction windows 210 and 211 to one or more
of the functional units 260, which can include but are not
limited to, integer AL Us (arithmetic logic units) (e.g., inte-
ger ALUs 264 and 265), tloating point units (e.g., floating
point ALU 267), shift/rotate logic (e.g., barrel shifter 268),
or other suitable execution units, which can including graph-
ics functions, physics functions, and other mathematical
operations. The first router 250 further includes wakeup/
select logic 258, which 1s used to determine when memory
instructions are sent to a load/store queue 275. For example,
the wakeup/select logic 258 can determine 1t all source
operands and predicate conditionals are available for a

US 10,061,584 B2

13

memory access instruction and based on the determination,
send the address (and data, if applicable) to the load/store
queue 273.

Data from the functional units 260 can then be routed
through a second router 270 to outputs 290, 291, and 292,
routed back to an operand bufler (e.g. LOP bufler 242 and/or
ROP bufler 243), or fed back to another functional unit,
depending on the requirements of the particular instruction
being executed. The second router 270 include the load/store
queue 273, which can be used to 1ssue memory instructions,
a data cache 277, which stores data being input to or output
from the core to memory, and load/store pipeline register
278.

The load/store queue 275 recerves and temporarily stores
information for performing memory access instructions
(e.g., memory store and memory load instructions). The
istruction block can execute all the memory access mstruc-
tions as a single, atomic transactional block. In other words,
cither all or none of the memory access instructions are
performed. The relative order in which memory access
instructions 1s determined based on LSIDs associated with
cach memory access mstruction (e.g., an LSID encoded with
the corresponding instruction) and 1n some cases, the store
mask. In some examples, additional performance can be
obtained by executing the memory access mstructions out of
the LSID-specified relative ordering, but the state of
memory must still appear as 1f the instructions were
executed 1n order. The load/store queue 275 also receives
addresses for load instructions, and addresses and data for
store 1nstructions. In some examples, the load/store queue
waits to perform the queued memory access instructions
until i1t 1s determined that the containing instruction block
will actually commit. In other examples, the load/store
queue 275 can 1ssue at least some memory access 1nstruc-
tions speculatively, but will need to flush the memory
operations 1n the event the block does not commit. In other
examples, the control unit 2035 determines the order 1n which
memory access instructions are executed, by providing
functionalities described as being performed by the wakeup/
select logic and/or load/store queue 275. In some examples,
the processor 100 includes a debug mode that allows for
step-by-step 1ssuance of memory access instructions with
the aid of a debugger. The load/store queue 275 can be
implemented using control logic (e.g., with a finite state
machine) and memory (e.g., registers or SRAM) to execute
the memory transactions and store memory instruction oper-
ands, respectively.

The core also includes control outputs 295 which are used
to indicate, for example, when execution of all of the
instructions for one or more of the mnstruction windows 210
or 211 has completed. When execution of an instruction
block 1s complete, the instruction block 1s designated as
“commuitted” and signals from the control outputs 295 can 1n
turn can be used by other cores within the block-based
processor 100 and/or by the control unmit 160 to mmtiate
scheduling, fetching, and execution of other instruction
blocks. Both the first router 250 and the second router 270
can send data back to the instruction (for example, as
operands for other 1nstructions within an 1nstruction block).

As will be readily understood to one of ordinary skill 1n
the relevant art, the components within an individual core
200 are not limited to those shown in FIG. 2, but can be
varied according to the requirements of a particular appli-
cation. For example, a core may have fewer or more
instruction windows, a single istruction decoder might be
shared by two or more mstruction windows, and the number
of and type of functional units used can be varied, depending

10

15

20

25

30

35

40

45

50

55

60

65

14

on the particular targeted application for the block-based
processor. Other considerations that apply in selecting and

allocating resources with an 1nstruction core include perfor-
mance requirements, energy usage requirements, itegrated
circuit die, process technology, and/or cost.

It will be readily apparent to one of ordinary skill in the
relevant art that trade-ofls can be made in processor perior-
mance by the design and allocation of resources within the
instruction window (e.g., instruction window 210) and con-
trol unit 205 of the processor cores 110. The area, clock
period, capabilities, and limitations substantially determine
the realized performance of the individual cores 110 and the
throughput of the block-based processor 100.

The 1nstruction scheduler 206 can have diverse function-
ality. In certain higher performance examples, the mstruc-
tion scheduler 1s hughly concurrent. For example, each cycle,
the decoder(s) write instructions’ decoded ready state and
decoded 1nstructions 1nto one or more instruction windows,
selects the next instruction to 1ssue, and, 1n response the back
end sends ready events—either target-ready events targeting
a specific instruction’s mput slot (predicate, left operand,
right operand, etc.), or broadcast-ready events targeting all
instructions. The per-instruction ready state bits, together
with the decoded ready state can be used to determine that
the 1nstruction 1s ready to 1ssue.

In some cases, the scheduler 206 accepts events for target
istructions that have not yet been decoded and must also
inhibit reissue of 1ssued ready instructions. In some
examples, mstructions can be non-predicated, or predicated
(based on a true or false condition). A predicated nstruction
does not become ready until it 1s targeted by another
instruction’s predicate result, and that result matches the
predicate condition. If the associated predicate condition
does not match, the instruction never issues. In some
examples, predicated instructions may be 1ssued and
executed speculatively. In some examples, a processor can
subsequently check that speculatively 1ssued and executed
instructions were correctly speculated. In some examples a
misspeculated 1ssued instruction and the specific transitive
closure of instructions 1n the block that consume 1ts outputs
can be re-executed, or misspeculated side eflects annulled.
In some examples, discovery of a misspeculated instruction
leads to the complete roll back and re-execution of an entire
block of instructions. In some examples, the scheduler
performs some or all of the operations described as being
performed by the wakeup/selection logic and/or load/store
queue discussed above.

Upon branching to a new 1nstruction block, the respective
istruction window(s) ready state 1s cleared (a block reset).
However when an instruction block branches back to itself
(a block refresh), only active ready state 1s cleared. The
decoded ready state for the instruction block can thus be
preserved so that 1t 1s not necessary to re-fetch and decode
the block’s instructions. Hence, block refresh can be used to
save time and energy 1n loops.

V. Example Stream of Instruction Blocks

Turning now to the diagram 300 of FIG. 3, a portion 310
of a stream of block-based instructions, including a number
of variable length instruction blocks 311-314 is illustrated.
The stream of instructions can be used to implement user
application, system services, or any other suitable use. The
stream of 1nstructions can be stored in memory, received
from another process 1n memory, received over a network
connection, or stored or received i any other suitable
manner. In the example shown 1n FIG. 3, each instruction

US 10,061,584 B2

15

block begins with an instruction header, which 1s followed
by a varying number of instructions. For example, the
instruction block 311 includes a header 320 and twenty

instructions 321. The particular instruction header 320 1llus-
trated includes a number of data fields that control, 1n part,
execution of the instructions within the instruction block,
and also allow for improved performance enhancement
techniques including, for example branch prediction, specu-
lative execution, lazy evaluation, and/or other techniques.
The mstruction header 320 also includes an indication of the
istruction block size. The instruction block size can be 1n
larger chunks of instructions than one, for example, the

number of 4-1nstruction chunks contained within the mnstruc-
tion block. In other words, the size of the block 1s shifted 4
bits 1n order to compress header space allocated to specily-
ing instruction block size. Thus, a size value of 0 indicates
a minimally-sized instruction block which 1s a block header
tollowed by four mstructions. In some examples, the mstruc-
tion block size 1s expressed as a number of bytes, as a
number of words, as a number of n-word chunks, as an
address, as an address oflset, or using other suitable expres-
sions for describing the size of instruction blocks. In some
examples, the instruction block size 1s indicated by a termi-
nating bit pattern in the instruction block header and/or
footer.

The 1nstruction block header 320 can also include one or
more execution tlags that indicate one or more modes of
operation for executing the instruction block. For example,
the modes of operation can include core fusion operation,
vector mode operation, memory dependence prediction,
and/or 1n-order or deterministic istruction execution.

In some examples of the disclosed technology, the mnstruc-
tion header 320 includes one or more 1dentification bits that
indicate that the encoded data 1s an instruction header. For
example, 1n some block-based processor ISAs, a single 1D
bit 1n the least significant bit space 1s always set to the binary
value 1 to indicate the beginning of a valid instruction block.
In other examples, different bit encodings can be used for the
identification bit(s). In some examples, the instruction
header 320 includes information indicating a particular
version of the ISA for which the associated instruction block
1s encoded.

The block instruction header can also include a number of
block exit types for use 1n, for example, branch prediction,
control flow determination, and/or branch processing. The
exit type can indicate what the type of branch instructions
are, for example: sequential branch instructions, which point
to the next contiguous instruction block 1n memory; oflset
instructions, which are branches to another instruction block
at a memory address calculated relative to an oflset; sub-
routine calls, or subroutine returns. By encoding the branch
exit types 1n the 1struction header, the branch predictor can
begin operation, at least partially, before branch instructions
within the same struction block have been fetched and/or
decoded.

The 1llustrated 1nstruction block header 320 also includes
a store mask that indicates which of the load-store queue
identifiers encoded 1n the block instructions are assigned to
store operations. For example, for a block with eight
memory access instructions, a store mask 01011011 would
indicate that there are three memory store istructions (bits
0, corresponding to LSIDs O, 2, and 5) and five memory load
instructions (bits 1, corresponding to LSIDs 1, 3, 4, 6, and
7). The struction block header can also include a write
mask, which identifies which global register(s) the associ-
ated instruction block will write.

10

15

20

25

30

35

40

45

50

55

60

65

16

In some examples, the store mask 1s stored in a store
vector register by, for example, an instruction decoder (e.g.,

decoder 228 or 229). In other examples, the instruction
block header 320 does not include the store mask, but the
store mask 1s generated dynamically by the instruction
decoder by analyzing instruction dependencies when the
instruction block 1s decoded. For example, the decoder can
analyze load store identifiers of istruction block instruc-
tions to determine a store mask and store the store mask data
in a store vector register. Similarly, 1n other examples, the
write mask 1s not encoded 1n the instruction block header,
but 1s generated dynamically (e.g., by analyzing registers
referenced by instructions in the instruction block) by an
instruction decoder) and stored 1n a write mask register. The
store mask and the write mask can be used to determine
when execution of an instruction block has completed and
thus to 1nitiate commitment of the instruction block. The
associated register file must receive a write to each entry
betore the instruction block can complete. In some examples
a block-based processor architecture can include not only
scalar 1nstructions, but also single-instruction multiple-data
(SIMD) instructions, that allow for operations with a larger
number of data operands within a single instruction. In some
examples, the block header 320 can also 1include an instruc-
tion count for one or more nstruction types within an
mstruction block (e.g., memory access instructions or
memory store instructions count), as illustrated n FIG. 7.

Examples of suitable block-based instructions that can be
used for the instructions 321 can include instructions for
executing integer and floating-point arithmetic, logical
operations, type conversions, register reads and writes,
memory loads and stores, execution of branches and jumps,
and other suitable processor instructions. In some examples,
the instructions include structions for configuring the
processor to operate according to one or more of operations
by, for example, speculative execution based on control flow
and data regarding memory access instructions stored 1n a
hardware structure, such as a store instruction data store 207.
In some examples, the store mstruction data store 207 1s not
architecturally visible. In some examples, access to the store
istruction data store 207 1s configured to be limited to
processor operation 1n a supervisory mode or other protected
mode of the processor.

V1. Example Block Instruction Target Encoding

FIG. 4 1s a diagram 400 depicting an example of two
portions 410 and 415 of C language source code and their
respective instruction blocks 420 and 425, illustrating how
block-based mstructions can explicitly encode their targets.
In this example, the first two READ 1nstructions 430 and
431 target the right (T[2R]) and left (T[2L]) operands,
respectively, of the ADD struction 432 (2R indicates
targeting the right operand of instruction number 2; 2L
indicates the left operand of instruction number 2). In the
illustrated ISA, the read instruction 1s the only 1nstruction
that reads from the global register file (e.g., register file 230);
however any instruction can target, the global register file.
When the ADD instruction 432 receives the result of both
register reads 1t will become ready and execute. It 1s noted
that the present disclosure sometimes refers to the right
operand as OPO and the left operand as OP1.

When the TLEI (test-less-than-equal-immediate) instruc-
tion 433 receives 1ts single input operand from the ADD, 1t
will become ready to 1ssue and execute. The test then
produces a predicate operand that 1s broadcast on channel
one (B[1P]) to all instructions listening on the broadcast

US 10,061,584 B2

17

channel for the predicate, which in this example are the two
predicated branch imstructions (BRO_T 434 and BRO_F

435). The branch 1nstruction that receives a matching predi-
cate will fire (execute), but the other instruction, encoded
with the complementary predicated, will not fire/execute.
A dependence graph 440 for the instruction block 420 1s
also 1llustrated, as an array 450 of instruction nodes and their
corresponding operand targets 455 and 4356. This 1llustrates
the correspondence between the block instructions 420, the
corresponding instruction window entries, and the underly-
ing dataflow graph represented by the instructions. Here
decoded nstructions READ 430 and READ 431 are ready to
1ssue, as they have no input dependencies. As they 1ssue and
execute, the values read from registers RO and R7 are written
into the right and lett operand buflers of ADD 432, marking
the left and right operands of ADD 432 “ready.” As a result,
the ADD 432 instruction becomes ready, 1ssues to an ALU,

executes, and the sum 1s written to the left operand of the
TLEI struction 433.

VII. Example Block-Based Instruction Formats

FIG. 5 1s a diagram 1illustrating generalized examples of
instruction formats for an mstruction header 510, a generic
istruction 520, a branch instruction 530, and a memory
access 1nstruction 540 (e.g., a memory load or store instruc-
tion). The instruction formats can be used for instruction
blocks executed according to a number of execution tlags
specified 1 an instruction header that specily a mode of
operation. Each of the mstruction headers or instructions 1s
labeled according to the number of bits. For example the
instruction header 510 includes four 32-bit words and 1is
labeled from 1ts least significant bit (Isb) (b1t 0) up to its most
significant bit (msb) (bit 127). As shown, the instruction
header includes a write mask field, a store mask field 515, a
number of exit type fields, a number of execution flag fields,
an 1nstruction block size field, and an 1nstruction header 1D
bit (the least significant bit of the instruction header). In
some examples, the store mask field 515 i1s replaced or
supplemented by an LSID count 517, which can indicate the
number of store istructions on each predicate path of the
instruction block (or a total number of store instructions for
an 1nstruction block). For instruction blocks that have dii-
ferent numbers of store istructions on different predicate
paths, one or more mstructions can be nullified, and the
executed count of store instructions incremented, such that
cach predicate path will indicate the same number of store
instructions have executed at runtime. In some examples, the
header 510 does not indicate either an LSID count or store
mask, but the information 1s generated dynamically by the
instruction decoder based on LSIDs encoded in individual
store 1nstructions.

The execution flag fields depicted 1n FIG. 5 occupy bits 6
through 13 of the instruction block header 510 and indicate
one or more modes of operation for executing the 1nstruction
block. For example, the modes of operation can include core
fusion operation, vector mode operation, branch predictor
inhibition, memory dependence predictor inhibition, block
synchronization, break after block, break before block,
block fall through, and/or m-order or deterministic mnstruc-
tion execution.

The exit type fields include data that can be used to
indicate the types of control flow instructions encoded
within the mnstruction block. For example, the exit type fields
can indicate that the mnstruction block includes one or more
of the following: sequential branch instructions, offset
branch 1instructions, indirect branch instructions, call

10

15

20

25

30

35

40

45

50

55

60

65

18

instructions, and/or return instructions. In some examples,
the branch instructions can be any control flow instructions
for transferring control flow between instruction blocks,
including relative and/or absolute addresses, and using a
conditional or unconditional predicate. The exit type fields
can be used for branch prediction and speculative execution
in addition to determining implicit control flow instructions.

The 1llustrated generic block instruction 520 is stored as
one 32-bit word and includes an opcode field, a predicate
field, a broadcast ID field (BID), a vector operation field (V),
a single instruction multiple data (SIMD) field, a first target
field (T1), and a second target field (12). For instructions
with more consumers than target fields, a compiler can build
a fanout tree using move instructions, or i1t can assign
high-fanout instructions to broadcasts. Broadcasts support
sending an operand over a lightweight network to any
number of consumer 1nstructions 1n a core.

While the generic instruction format outlined by the
generic mstruction 520 can represent some or all instructions
processed by a block-based processor, 1t will be readily
understood by one of skill 1n the art that, even for a particular
example of an ISA, one or more of the mstruction ficlds may
deviate from the generic format for particular instructions.
The opcode field specifies the operation(s) performed by the
istruction 520, such as memory read/write, register load/
store, add, subtract, multiply, divide, shiit, rotate, system
operations, or other suitable mstructions. The predicate field
specifies the condition under which the mstruction waill
execute. For example, the predicate field can specily the
value “true,” and the instruction will only execute if a
corresponding condition flag matches the specified predicate
value. In some examples, the predicate field specifies, at
least 1n part, which 1s used to compare the predicate, while
in other examples, the execution 1s predicated on a flag set
by a previous instruction (e.g., the preceding instruction in
the 1nstruction block). In some examples, the predicate field
can specily that the instruction will always, or never, be
executed. Thus, use of the predicate field can allow for
denser object code, improved energy efliciency, and
improved processor performance, by reducing the number of
branch instructions that are decoded and executed.

The target fields T1 and T2 speciiying the istructions to
which the results of the block-based instruction are sent. For
example, an ADD instruction at instruction slot 5 can specity
that 1its computed result will be sent to instructions at slots
3 and 10, including specification of the operand slot (e.g.,
left operation, right operand, or predicate operand). Depend-
ing on the particular istruction and ISA, one or both of the
illustrated target fields can be replaced by other information,
for example, the first target field T1 can be replaced by an
immediate operand, an additional opcode, specily two tar-
gets, etc.

The branch instruction 330 includes an opcode field, a
predicate field, a broadcast ID field (BID), and an oiflset
field. The opcode and predicate fields are similar 1n format
and function as described regarding the generic instruction.
The oflset can be expressed 1n units of groups of four
instructions, thus extending the memory address range over
which a branch can be executed. The predicate shown with
the generic mstruction 520 and the branch instruction 530
can be used to avoid additional branching within an mstruc-
tion block. For example, execution of a particular instruction
can be predicated on the result of a previous instruction (e.g.,
a comparison of two operands). I the predicate 1s false, the
instruction will not commit values calculated by the par-
ticular 1nstruction. If the predicate value does not match the
required predicate, the instruction does not 1ssue. For

US 10,061,584 B2

19

example, a BRO_F (predicated false) instruction will 1ssue
if 1t 1s sent a false predicate value.

It should be readily understood that, as used herein, the
term “‘branch instruction” 1s not limited to changing program
execution to a relative memory location, but also includes
jumps to an absolute or symbolic memory location, subrou-
tine calls and returns, and other instructions that can modify
the execution flow. In some examples, the execution flow 1s
modified by changing the value of a system register (e.g., a
program counter PC or imstruction pointer), while 1n other
examples, the execution flow can be changed by modifying
a value stored at a designated location 1n memory. In some
examples, a jump register branch nstruction 1s used to jump
to a memory location stored 1n a register. In some examples,
subroutine calls and returns are implemented using jump and
link and jump register instructions, respectively.

The memory access instruction 540 format includes an

opcode field, a predicate field, a broadcast ID field (BID), a
load store ID field (LSID), an immediate field (IMM) offset
field, and a target field. The opcode, broadcast, predicate
fields are similar 1n format and function as described regard-
ing the generic instruction. For example, execution of a
particular instruction can be predicated on the result of a
previous 1nstruction (e.g., a comparison of two operands). I
the predicate 1s false, the mstruction will not commit values
calculated by the particular instruction. I1 the predicate value
does not match the required predicate, the instruction does
not 1ssue. The immediate field (e.g., and shifted a number of
bits) can be used as an offset for the operand sent to the load
or store istruction. The operand plus (shifted) immediate
offset 1s used as a memory address for the load/store
instruction (e.g., an address to read data from, or store data
to, 1n memory). The LSID field specifies a relative order for
load and store instructions within a block. In other words, a
higher-numbered LSID indicates that the mnstruction should
execute alter a lower-numbered LSID. In some examples,
the processor can determine that two load/store instructions
do not conflict (e.g., based on the read/write address for the
instruction) and can execute the instructions in a different
order, although the resulting state of the machine should not
be different than as 1f the instructions had executed in the
designated LSID ordering. In some examples, load/store
instructions having mutually exclusive predicate values can
use the same LSID value. For example, i1 a first load/store
instruction 1s predicated on a value p being true, and second
load/store 1nstruction 1s predicated on a value p being false,
then each instruction can have the same LSID value.

VIII.

Example Processor State Diagram

FIG. 6 1s a state diagram 600 1llustrating number of states
assigned to an instruction block as 1t 1s mapped, executed,
and retired. For example, one or more of the states can be
assigned during execution of an instruction according to one
or more execution flags. It should be readily understood that
the states shown in FIG. 6 are for one example of the
disclosed technology, but that in other examples an instruc-
tion block may have additional or fewer states, as well as
having different states than those depicted in the state
diagram 600. At state 605, an instruction block 1s unmapped.
The mstruction block may be resident 1n memory coupled to
a block-based processor, stored on a computer-readable
storage device such as a hard drive or a flash drive, and can
be local to the processor or located at a remote server and
accessible using a computer network. The unmapped
instructions may also be at least partially resident 1n a cache
memory coupled to the block-based processor.

10

15

20

25

30

35

40

45

50

55

60

65

20

At 1nstruction block map state 610, control logic for the
block-based processor, such as an instruction scheduler, can
be used to monitor processing core resources of the block-
based processor and map the instruction block to one or
more of the processing cores.

The control unit can map one or more of the mstruction
block to processor cores and/or instruction windows of
particular processor cores. In some examples, the control
unit monitors processor cores that have previously executed
a particular instruction block and can re-use decoded
instructions for the instruction block still resident on the
“warmed up” processor core. Once the one or more mstruc-
tion blocks have been mapped to processor cores, the
istruction block can proceed to the fetch state 620.

When the 1nstruction block 1s 1n the fetch state 620 (e.g.,
instruction fetch), the mapped processor core fetches com-
puter-readable block instructions from the block-based pro-
cessors’ memory system and loads them into a memory
associated with a particular processor core. For example,
tetched instructions for the instruction block can be fetched
and stored 1n an 1nstruction cache within the processor core.
The 1nstructions can be communicated to the processor core
using core interconnect. Once at least one instruction of the
instruction block has been fetched, the instruction block can
enter the instruction decode state 630.

During the instruction decode state 630, various bits of the
fetched instruction are decoded 1nto signals that can be used
by the processor core to control execution of the particular
instruction. For example, the decoded instructions can be
stored 1n one of the memory stores 215 or 216 shown above,
in FIG. 2. The decoding includes generating dependencies
for the decoded instruction, operand information for the
decoded 1nstruction, and targets for the decoded instruction.
Once at least one instruction of the instruction block has
been decoded, the instruction block can proceed to execu-
tion state 640.

During the execution state 640, operations associated with
the instruction are performed using, for example, functional
units 260 as discussed above regarding FIG. 2. As discussed
above, the functions performed can include arithmetical
functions, logical functions, branch instructions, memory
operations, and register operations. Control logic associated
with the processor core monitors execution of the instruction
block, and once 1t 1s determined that the instruction block
can either be committed, or the instruction block 1s to be
aborted, the instruction block state 1s set to commait/abort
650. In some examples, the control logic uses a write mask
and/or a store mask for an instruction block to determine
whether execution has proceeded sutliciently to commait the
instruction block. Executed memory access instructions
send data and address information to a load/store queue for
accessing memory. In some examples, some memory access
instructions (e.g., memory load instructions) can be per-
formed before the block executes while other instructions
(c.g., memory store instructions) wait to execute until the
block 1s committing. In some examples, all memory access
instructions wait to access memory until the block 1s com-
mitting. In some examples, memory load and store instruc-
tions access memory during execution of the istruction
block, but additional hardware catches memory hazard con-
ditions (e.g., read after write hazards) to ensure that the main
memory appears as 1f the mstructions were executed accord-
ing to their relative ordering.

At the commuit/abort state 650, the processor core control
unit determines that operations performed by the 1nstruction
block can be completed. For example, memory load store
operations, register read/writes, branch instructions, and

US 10,061,584 B2

21

other instructions will definitely be performed according to
the control flow of the 1nstruction block. Alternatively, if the

istruction block is to be aborted, for example, because one
or more of the dependencies of instructions are not satisfied,
or the instruction was speculatively executed on a predicate
for the 1nstruction block that was not satisfied, the instruc-
tion block 1s aborted so that i1t will not affect the state of the
sequence of structions in memory or the register file. Any
outstanding memory access operations are also completed.
Regardless of whether the instruction block has committed
or aborted, the instruction block goes to state 660 to deter-
mine whether the mstruction block should be refreshed. I
the instruction block i1s refreshed, the processor core re-
executes the instruction block, typically using new data
values, particularly the registers and memory updated by the
just-commuitted execution of the block, and proceeds directly
to the execute state 640. Thus, the time and energy spent in
mapping, fetching, and decoding the instruction block can
be avoided. Alternatively, 11 the mstruction block 1s not to be
refreshed, then the instruction block enters an idle state 670.

In the 1dle state 670, the processor core executing the
instruction block can be idled by, for example, powering
down hardware within the processor core, while maintaining
at least a portion of the decoded instructions for the instruc-
tion block. At some point, the control unit determines 680
whether the 1dle mstruction block on the processor core 1s to
be refreshed or not. If the idle instruction block 1s to be
refreshed, the instruction block can resume execution at
execute state 640. Alternatively, 11 the mnstruction block 1s
not to be refreshed, then the instruction block 1s unmapped
and the processor core can be flushed and subsequently
instruction blocks can be mapped to the flushed processor
core.

While the state diagram 600 illustrates the states of an
instruction block as executing on a single processor core for
case of explanation, it should be readily understood to one
of ordinary skill in the relevant art that in certain examples,
multiple processor cores can be used to execute multiple
instances of a given instruction block, concurrently.

IX.

Example Block-Based Processor and Memory
Configuration

FIG. 7 1s a diagram 700 1llustrating an apparatus com-
prising a block-based processor 710, including a control unit
720 configured to execute instruction blocks according to
data for one or more operation modes. The control unit 720
includes a core scheduler 725 and a memory access hard-
ware structure 730. The core scheduler 725 schedules the
flow of mstructions including allocation and de-allocation of
cores Tor performing instruction processing, control of input
data and output data between any of the cores, register files,
memory interfaces and/or I/O interfaces. The memory
access hardware structure 730 stores data including, for
example, store mask (SM) data, store count (SC) data,
and/or other data such as control flow data. The memory
access hardware structure 730 can be implemented using
any suitable technology, including SRAM, registers (e.g.,
including arrays of flip-flops or latches), or other suitable
memory technology. The store mask (SM) and store count
(SC) can be generated when decoding instructions by the
control unit 720. In some examples, the store mask and store
count are read from the memory 750 (e.g., store mask 751
and store count 752), from instruction block headers (e.g.,
store masks 737a and 738a, and store counts 7374 and
738b), or 1n a computer-readable storage medium, such as a
storage media disc 755.

10

15

20

25

30

35

40

45

50

55

60

65

22

The block-based processor 710 also includes one or more
processor cores 740-747 configured to fetch and execute

istruction blocks. The illustrated block-based processor
710 has up to eight cores, but in other examples there could
be 64, 512, 1024, or other numbers of block-based processor
cores. The block-based processor 710 1s coupled to a
memory 750 which includes a number of instruction blocks,
including instruction blocks A and B, and to a computer-
readable storage media disc 755.

X. Example Nullification Instruction Formats

FIG. 8 illustrates an example nullification instruction
using a shift bit and an LSID mask as can be used 1n certain
examples of the disclosed technology. Referring to FIG. 8,
there 1s 1llustrated an example instruction format for a
nullification mstruction 802. The opcode field specifies the
operation performed by the instruction 802, such as a
nullification operation. The predicate field (PR) specifies the
condition under which the instruction will execute. For
example, the predicate field can specity the value “true,” and
the mstruction will only execute 1f a corresponding condi-
tion flag matches the specified predicate value. In some
examples, the predicate field specifies, at least in part, which
1s used to compare the predicate, while 1n other examples,
the execution 1s predicated on a flag set by a previous
instruction (e.g., the preceding instruction in the 1nstruction
block). In some examples, the predicate field can specily
that the 1nstruction will always, or never, be executed. Thus,
use of the predicate field can allow for denser object code,
improved energy efliciency, and improved processor perfor-
mance, by reducing the number of branch instructions that
are decoded and executed. A broadcast 1D (BID) field can
follow the PR field. The nullification instruction 802 also
includes a shift bit 804 and an LSID mask 806 in 1ts target
field. The LSID mask 806 can indicate an LSID of a memory
access 1nstruction (e.g., a memory store), which will be
nullified by the nullification instruction 802. When a
memory access instruction identified by the LSID 1s nulli-
fied, 1its LSID can be marked as completed as 1f the memory
access 1struction has executed.

Table 810 illustrates example LSIDs that can be deter-
mined using the LSID mask 806 and the shift bit 804. For
example, the LSID mask 806 can be a 16-bit mask, so that
32 total number of LSIDs can be represented by the 16-bit
LSID mask and 2 possible values for the shift bit 804. In this
regard, the same LSID mask (e.g., 0000000000000001) can
represent two different LSIDs (e.g., [0] and [16]) for corre-
sponding values of the shift bit 804 (e.g., for shift bit 0 and
1, respectively).

FIG. 9 illustrates example LSID masks for nullifying
multiple store instructions as can be used 1n certain
examples of the disclosed technology. In some examples, the
nullification instruction 802 can use an LSID mask which
can indicate more than one LSID for nullification. The LSID
mask can be associated with LSIDs [0]-[15] for shift bit 0,
and LSIDs [16]-[32] for shift bit 1. As seen 1 table 900,
more than one bit can be set 1n the LSID mask, indicating a
corresponding LSID {for nullification. For example, the
LSID mask 902 has bits 0 and 1 set, which indicates [.SIDs
{0} and [1] for nullification. LSID mask 904 indicates
LSIDs [0], [1], [2], [13], and [14] for nullification. Similarly,
LSID mask 906 indicates LSIDs [29] and [30] since shift bat
1s set to 1.

FIG. 10 1illustrates an example nullification instruction
with two separate LSIDs in the target fields as can be used
in certain examples of the disclosed technology. Referring to

US 10,061,584 B2

23

FIG. 10, the nullification instruction 1002 includes two
separate 9-bit target fields, TO and T1. In some examples,

cach target field can store an LSID mask (e.g., as 1llustrated
in F1G. 8) for two separate LSIDs. In yet other examples, the
two target fields can store two separate LSIDs—ISID1 and
LSID2. In this regard, a single nullification instruction 1002
can be used to nullity both LSID1 and LSID2 (1004 and
1006 in FIG. 10).

XI. Example Control Flow Graphs

FIGS. 11A-11D 1illustrate example control flow graphs
with store istruction nullification as can be used 1n certain
examples of the disclosed technology. Referring to FIGS.
11A-11D, the control flow graphs 1102, 1120, 1126 and 1140
are depicted 1n a graphical form for ease of illustration
including nodes and edges, but can be represented in other
forms, as will be readily apparent to one of ordinary skill 1n
the relevant art. For ease of explanation, only load and store
instructions are shown in the control flow graph, but 1t
should be understood that other instructions will be placed
or referenced by nodes of the control flow graph according
to each respective mstruction’s dependencies and predicates.

Referring to graph 1102 1n FIG. 11A, the first node 1104
includes two load (L D) mstructions. For ease of illustration,
only the Store (ST) instructions have an associated LSID,
and not the LD instructions. The two LD instructions are
unpredicted and can 1ssue and execute as soon as their
operands are available. Node 1106 includes a predicated
istruction p, which can be associated with a condition.
Based on whether the condition 1s True or False, instruction
execution can proceed to nodes 1108 and 1110, respectively.
At node 1108, two ST mstructions with LSIDs [0] and [1]

can execute. Since store mstruction with LSID [2] will not
execute, a Nullification (Null) mnstruction for LSID [2] 1s
inserted in node 1108. If the predicated instruction condition
of instruction p 1s false and execution proceeds to node 1110,
only store instruction with LSID [2] will execute, and ST
istructions with LSIDs [0] and [1] will not execute. There-
fore, since all memory access instructions have to be
accounted for (and produced) in order for the instruction
block to commit, node 1110 has to include a nullification
instruction to nullity LSIDs [0] and [1]. The LSIDs can be
encoded as part of the target field of the nullification
istruction (e.g., as described 1n FIGS. 8-10).

The nullification mstruction (“Null [0] [1]”) can be auto-
matically generated and inserted in the instruction block by
the compiler to account for all LSIDs and balance the
number of memory access instructions that appear to have
been executed for each path of the control flow graph. The
ellect of a nullification 1nstruction associated with an LSID
(e.g., specilying a store instruction LSID 1n its target field)
can be that the LSID 1s marked as completed as 1f the
memory access instruction associated with the LSID has
executed. In some other examples, a store instruction 1is
nullified by the processor core hardware such that 1t appears
as 11 a memory store instruction has executed, but without
storing/inserting a separate nullification instruction in the
instruction block.

In yet some other examples, an instruction counter (e.g.,
a store instruction counter) can be incremented for purposes
of mstruction nullification. For example, a store instruction
count can be set at 2 for the True arm of predicated
instruction p, a second store instruction count can be set to
2 for the false arm of instruction p. Each counter can be
decreased every time a store instruction 1s executed (regard-
less of which predicated arm 1s selected), and the predicated

10

15

20

25

30

35

40

45

50

55

60

65

24

instruction p can be committed once at least one of the
counters reaches 0. In other examples, a single store instruc-
tion count can also be used and the count can be adjusted
alter each store instruction i1s executed and a store instruc-
tion 1n a non-executing predicated arm 1s not executed.

After instruction node 1110, node 1112 can execute,
which 1s a predicated instruction g, which includes predi-
cated paths for True (node 1114) and False (node 1116)
outcomes of an associated condition. Since only node 1116
(and not 1114) includes a ST instruction (LSID [3]), a
corresponding Null instruction 1s inserted in node 1114,
which can be used to nullity Store with LSID [3]. The
conditional flow graph 1102 completes with a Branch
istruction (BRO) at node 1118, which can be used to
resume 1nstruction execution at another instruction block.

Retferring to FIG. 11B, the control flow graph 1120
includes node 1121 with two Load instructions, a predicated
instruction p 1 node 1122, and a branch instruction in node
1125. Predicated execution paths of instruction p mclude a
True path with node 1123 and a False path with node 1124.
As seen 1n FIG. 11B, the LSIDs are used only for Store
instructions, and the LSIDs are overlapping between oppo-
site predicated execution paths. For example, since node
1123 has two Store mstructions with LSIDs [0] and [1].
LSID [0] can be re-used for the single Store instruction 1n
node 1124. Additionally, a nullification struction 1dentify-
ing L.SID [1] 1n 1ts target field can be added/inserted for node
1124 1n order to account for all available LSIDs so that the
predicated instruction p can commit and 1nstruction execu-
tion can branch at node 1125.

Referring to FIG. 11C, the control flow graph 1126 1s
similar to graph 1102 in FIG. 11A. However, a number of
edges of the control flow graph 1126 have been updated to
indicate the number of memory store instructions that will
have executed after the associated source code portion has
been executed. For example, node 1127 does not include any
store 1nstructions and the count 1s set to 0 on the edge leaving
node 1127. Source code portion of node 1129 includes 2
store mstructions and, thus, the edge exiting node 1129 1s set
with a count of 2. Source code portion of node 1130 includes
1 store instruction and, thus, the edge exiting node 1130 1s
set with a count of 1. The node 1133 has one store instruc-
tion, but the count at the exit of node 1133 1s set to 2, which
1s the cumulative number of store mstructions (one 1n 1130
and one 1 1133), which would execute for that path through
the control flow graph. Further, as shown, source code
portion of node 1132 does not include a store instruction, but
a Null instruction has been inserted, that will increment the
memory store instruction count, which 1s indicated as 2 at
the exit of node 1132. At node 1134, 1t may be determined
that the branch instruction can be executed when the store
instruction count from any of the paths reaching node 1134
has been incremented to 2. In some examples, 1 lieu of
inserting the null instruction in node 1132, the counter can
simply be incremented to 2 at the exit of node 1132, 1n order
to account for the non-executing store instruction in node

1133.

Retferring to FIG. 11D, the control flow graph 1140
includes predicated instructions p and g, similar to the graph
in FIG. 11A. However, graph 1140 illustrates the use of a
single nullification instruction to nullify multiple store
istructions. More specifically, if processing proceeds to
nodes 1141, 1142 and 1147, then store instructions with
LSIDs [2], [3], [4], [5], and [6] have to be nullified at node
1142. Therefore, a single Null instruction can be generated
and 1nserted 1n node 1142, where multiple LSIDs [2]-[6] can
be specified 1n the target field (e.g., by using an LSID mask

US 10,061,584 B2

25

as described 1n FIG. 9. Similarly, 1if processing proceeds to
nodes 1141, 1143, a nullification instruction for LSIDs
[0]-[1] ({or the stores in the non-executing node 1142) 1s
mserted at node 1143. Nullification instructions for LSIDs
[6] and [4]/]5] are inserted 1n nodes 1145 and 1146, respec-

tively.
XII. Example Methods of Instruction Nullification

FIGS. 12-13 are flowcharts outlining example methods of
nullifying memory access instructions, as can be used in

certain examples of the disclosed technology. Referring to
FIG. 12, the example method 1200 starts at 1210, when a
nullification n instruction 1s received 1n a first instruction

block. For example, a nullification instruction can be
receirved for node 1143 1n FIG. 11D. At 1220, an instruction

identification 1s obtained for a memory access nstruction of
a plurality of memory access instructions, based on a target
field of the nullification (Null) instruction. For example,

LSIDs [0] and [1] can be encoded (e.g., by using an LSID
mask as seen 1 FIG. 9) in the target field of the Null
instruction. At 1230, the nullification instruction 1s executed
to nullify the memory access instruction associated with the
instruction identification. For example, the nullification
instruction 1n node 1143 i1s executed to nullily the store
instructions with LSIDs [0] and [1] (e.g., the LSIDs [0] and
[1] can be marked as 1 the store instructions with those
LSIDs have executed). At 1240, a subsequent memory
access 1nstruction from the {first instruction block 1is
executed, based on the nullified memory access instruction.
For example, after the nullification instruction 1n node 1143
1s executed and memory stores with LSIDs [0]-[1] are
nullified, processing can resume by executing the predicated
instruction 1n node 1144.

Referring to FIG. 13, the example method 1300 starts at
1310, when data indicating execution ordering of a plurality
of memory store instructions is retrieved. For example, a
store mask 515 or LSID count 517 is retrieved from the
header 510 of an instruction block. At 1320, a predicated
istruction 1s detected during instruction execution. For
example, a predicated instruction p 1n node 1106 1s detected.
At 1330, at least a first memory store instruction of the
plurality of memory store instructions 1s determined, where
the memory access istruction will not execute when a
condition of the predicated instruction is satisfied. For
example, when condition for instruction p 1s True and node
1108 1s executed, store instruction with LSID [2] 1n node
1110 will not execute. At 1340, a nullification instruction 1s
generated, where a target field of the nullification 1nstruction
identifies a load/store 1dentifier (LSID) of the first memory
store instruction. For example, a nullification instruction
identifying LSID [2] 1n 1ts target field 1s generated and
inserted 1n the instructions for node 1108. At 1350, the first
memory store mstruction (e.g., memory store with LSID [2])
1s nullified and the predicated instruction (e.g., istruction p)
1SSUEs.

XIII. Exemplary Computing Environment

FIG. 14 illustrates a generalized example of a suitable
computing environment 1400 1n which described embodi-
ments, techniques, and technologies, including configuring a
block-based processor, can be implemented. For example,
the computing environment 1400 can implement disclosed
techniques for configuring a processor to operating accord-
ing to one or more mstruction blocks, or compile code into

10

15

20

25

30

35

40

45

50

55

60

65

26

computer-executable 1nstructions
operations, as described herein.

The computing environment 1400 i1s not intended to
suggest any limitation as to scope of use or functionality of
the technology, as the technology may be implemented in
diverse general-purpose or special-purpose computing envi-
ronments. For example, the disclosed technology may be
implemented with other computer system configurations,
including hand held devices, multi-processor systems, pro-
grammable consumer electronics, network PCs, minicom-
puters, mainirame computers, and the like. The disclosed
technology may also be practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed computing environment, program
modules (including executable instructions for block-based
istruction blocks) may be located 1n both local and remote
memory storage devices.

With reference to FIG. 14, the computing environment
1400 1ncludes at least one block-based processing unit 1410
and memory 1420. In FIG. 14, this most basic configuration
1430 1s included within a dashed line. The block-based
processing unit 1410 executes computer-executable mnstruc-
tions and may be a real or a virtual processor. In a multi-
processing system, multiple processing units execute com-
puter-executable instructions to increase processing power
and as such, multiple processors can be running simultane-
ously. The memory 1420 may be volatile memory (e.g.,
registers, cache, RAM), non-volatile memory (e.g., ROM,
EEPROM, flash memory, etc.), or some combination of the
two. The memory 1420 stores software 1480, images, and
video that can, for example, implement the technologies
described herein. A computing environment may have addi-
tional features. For example, the computing environment
1400 includes storage 1440, one or more mput device(s)
1450, one or more output device(s) 1460, and one or more
communication connection(s) 1470. An 1nterconnection
mechanism (not shown) such as a bus, a controller, or a
network, interconnects the components of the computing
environment 1400. Typically, operating system software
(not shown) provides an operating environment for other
soltware executing 1in the computing environment 1400, and
coordinates activities of the components of the computing
environment 1400.

The storage 1440 may be removable or non-removable,
and includes magnetic disks, magnetic tapes or cassettes,
CD-ROMs, CD-RWs, DVDs, or any other medium which
can be used to store information and that can be accessed
within the computing environment 1400. The storage 1440
stores instructions for the software 1480, plugin data, and
messages, which can be used to implement technologies
described herein.

The mput device(s) 1450 may be a touch input device,
such as a keyboard, keypad, mouse, touch screen display,
pen, or trackball, a voice input device, a scanning device, or
another device, that provides mput to the computing envi-
ronment 1400. For audio, the mput device(s) 1450 may be
a sound card or similar device that accepts audio input 1n
analog or digital form, or a CD-ROM reader that provides
audio samples to the computing environment 1400. The
output device(s) 1460 may be a display, printer, speaker,
CD-writer, or another device that provides output from the
computing environment 1400.

The communication connection(s) 1470 enable commu-
nication over a communication medium (e.g., a connecting
network) to another computing entity. The communication
medium conveys mnformation such as computer-executable

for performing such

US 10,061,584 B2

27

instructions, compressed graphics information, video, or
other data in a modulated data signal. The communication

connection(s) 1470 are not limited to wired connections
(e.g., megabit or gigabit Ethernet, Infiniband, Fibre Channel
over electrical or fiber optic connections) but also 1nclude
wireless technologies (e.g., RF connections via Bluetooth,
WikF1 (IEEE 802.11a/b/n), WiMax, cellular, satellite, laser,
infrared) and other suitable communication connections for
providing a network connection for the disclosed methods.
In a virtual host environment, the communication(s) con-
nections can be a virtualized network connection provided
by the virtual host.

Some embodiments of the disclosed methods can be
performed using computer-executable instructions imple-
menting all or a portion of the disclosed technology 1n a
computing cloud 1490. For example, disclosed compilers
and/or block-based-processor servers are located in the
computing environment, or the disclosed compilers can be
executed on servers located in the computing cloud 1490. In
some examples, the disclosed compilers execute on tradi-
tional central processing units (e.g., RISC or CISC proces-
SOr'S).

Computer-readable media are any available media that
can be accessed within a computing environment 1400. By
way ol example, and not limitation, with the computing
environment 1400, computer-readable media 1nclude
memory 1420 and/or storage 1440. As should be readily
understood, the term computer-readable storage media
includes the media for data storage such as memory 1420
and storage 1440, and not transmission media such as
modulated data signals.

XIV. Additional Examples of the Disclosed
Technology

Additional examples of the disclosed subject matter are
discussed herein 1n accordance with the examples discussed
above.

In one embodiment, an apparatus includes a block-based
processor. The block-based processor includes one or more
processing cores configured to fetch and execute a plurality
of mnstruction blocks. The processor also 1includes a control
unit configured, based at least in part on receiving a nulli-
fication instruction, to obtain an instruction identification for
a memory access mstruction of a plurality of memory access
instructions, based on a target field of the nullification
instruction. The control unit 1s further configured to nullity
the memory access instruction associated with the mnstruc-
tion i1dentification. The memory access instruction 1s 1n a
first 1nstruction block of the plurality of instruction blocks.
The control unit 1s further configured to, based on the
nullified memory access 1nstruction, execute a subsequent
memory access instruction from the first mstruction block.
The control unit 1s configured to nullity the memory access
instruction by fetching and executing the nullification
instruction encoded 1n the first instruction block.

The apparatus further includes a hardware structure con-
figured to store data indicating execution ordering of the
plurality of memory access instructions. The data indicating
execution ordering 1s a store mask based at least 1n part on
a plurality of load/store 1dentifiers (LLSIDs) encoded for the
plurality memory access instructions in the first instruction
block. The memory access instruction 1s a memory store
instruction, and the instruction identification comprises an
LSID from the plurality of LSIDs for the memory store
instruction. The instruction 1dentification 1s an LSID, and the
control unit 1s further configured, during the nullifying, to

10

15

20

25

30

35

40

45

50

55

60

65

28

mark the LSID of the memory access instruction as com-
pleted as 1 the memory access instruction has executed.

The apparatus further includes an instruction decoder
configured to decode the plurality of memory access instruc-
tions of the first instruction block, and detect at least one
predicated istruction. The predicated instruction i1s associ-
ated with a first predicated execution path and a second
predicated execution path. The control unit 1s further con-
figured to, during execution of instructions 1n the first
predicated execution path, detect a memory store instruction
in the second predicated execution path, and nullily the
memory store instruction while executing the instructions in
the first predicated execution path, as 1f the memory store
instruction has executed. The nullifying of the memory store
instruction while executing the instructions in the first
predicated execution path takes place without 1nserting a
separate nullification 1nstruction 1 the first 1nstruction
block.

The control unit 1s configured to nullity the memory
access 1nstruction by increasing a count of store instructions
that have been executed within the first instruction block.
The control unit 1s configured to execute the subsequent
memory access istruction when the count of store mstruc-
tions reaches a pre-determined value. The control unit 1s
turther configured to, based on the nullified memory access
istruction, commit the first instruction block and execute at
least one instruction from at least a second instruction block
of the plurality of instruction blocks.

In one embodiment, a method of operating a processor to
execute a block of instructions with a plurality of memory
store 1nstructions 1cludes retrieving data indicating execu-
tion ordering of the plurality of memory store instructions.
A predicated instruction 1s detected during instruction
execution. It 1s determined that at least a first memory store
instruction of the plurality of memory store 1nstructions will
not execute when a condition of the predicated instruction 1s
satisfied. A nullification instruction 1s generated, where a
target field of the nullification nstruction identifies a load/
store 1dentifier (LSID) of the first memory store instruction.
The predicated instruction then issues. The target field
turther comprises a mask and a shift bit, the LSID of the first
memory store mnstruction i1dentified based on the mask and
the shift bit. The target field of the nullification instruction
includes a mask 1dentifying multiple memory store instruc-
tions of the plurality of memory store instructions. During
execution of the block of instructions, 1t may be detected that
the condition of the predicated instruction i1s not satisiied.
The multiple memory store instructions identified by the
nullification instruction are then nullified. The nullifying
further includes proceeding execution of a subsequent
memory access instruction as 1f the multiple memory store
instructions have executed. The first memory store instruc-
tion 1s 1n a first predicated execution path of the predicated
instruction, and the method further includes executing the
nullification instruction during executing instructions in a
second predicated execution path of the predicated instruc-
tion. The executing of the nullification instruction includes
marking the LSID of the first memory store instruction as
completed, as 1f the first memory store instruction has
executed.

In one embodiment, one or more computer-readable stor-
age media storing computer-readable instructions for an
instruction block that when executed by a block-based
processor, cause the processor to perform a method. The
computer-readable 1nstructions include instructions for ana-
lyzing memory accesses encoded in source code and/or
object code to determine memory dependencies for the

US 10,061,584 B2

29

instruction block. The computer-readable instructions also
include istructions for transforming the source code and/or
object code mnto computer-executable code for the nstruc-
tion block, the computer-executable code including memory
access 1nstructions that can be used to generate one or more
nullification 1nstructions. The computer-readable instruc-
tions further include nstructions for storing the one or more
nullification mstructions in the instruction block. The one or
more nullification instructions include a target field 1denti-
tying a load/store identifier of at least one of the memory
access 1nstructions.

In view of the many possible embodiments to which the
principles of the disclosed subject matter may be applied, 1t
should be recognized that the illustrated embodiments are
only preferred examples and should not be taken as limiting
the scope of the claims to those preferred examples. Rather,
the scope of the claimed subject matter 1s defined by the
following claims. We therefore claim as our invention all
that comes within the scope of these claims.

We claim:
1. An apparatus comprising a block-based processor, the
block-based processor comprising:
one or more processing cores; and
a control unit configured, based at least in part on execut-
ing a nullification 1nstruction encoded 1n a first instruc-
tion block, to cause at least one of the processing cores
to:
obtain an 1nstruction identification for a memory access
instruction of a plurality of memory access instruc-
tions encoded 1n the first instruction block, based on
a target field of the nullification 1nstruction;

nullify the memory access instruction associated with
the instruction identification, causing the nullified
memory access instruction to not execute; and

based on the nullified memory access instruction,
execute a subsequent memory access instruction
from the first instruction block.

2. The apparatus of claim 1, wherein the control unit 1s
configured to nullify the memory access mstruction by
fetching and executing the nullification instruction encoded
in the first instruction block.

3. The apparatus of claim 1, further comprising:

a hardware structure configured to store data indicating
execution ordering of the plurality of memory access
instructions, wherein the data indicating execution
ordering 1s a store mask based at least in part on a
plurality of load/store identifiers (LSIDs) encoded for
the plurality memory access instructions in the first
istruction block.

4. The apparatus of claim 3, wherein the memory access
instruction 1s a memory store mstruction, and the instruction
identification comprises an LSID from the plurality of
LSIDs for the memory store instruction.

5. The apparatus of claim 1, wherein the instruction
identification 1s an LSID, and the control unit 1s further
configured, during the nullifying, to mark the LSID of the
memory access istruction as completed as 1f the memory
access 1nstruction has executed.

6. The apparatus of claim 1, further comprising an instruc-
tion decoder configured to:

decode the plurality of memory access instructions of the
first 1nstruction block; and

detect at least one predicated instruction of the plurality of
memory access instructions, the predicated instruction
being associated with a first predicated execution path
and a second predicated execution path.

10

15

20

25

30

35

40

45

50

55

60

65

30

7. The apparatus of claim 6, wherein the control unit 1s
turther configured to, during execution of instructions in the
first predicated execution path:

detect a memory store instruction 1n the second predicated

execution path; and

nullify the memory store mstruction while executing the

istructions 1n the first predicated execution path, as 1f
the memory store nstruction has executed.

8. The apparatus of claim 7, wherein the nullifying of the
memory store instruction while executing the instructions in
the first predicated execution path takes place without insert-
ing a separate nullification instruction in the first instruction
block.

9. The apparatus of claim 1, wherein the control unit 1s
configured to nullify the memory access instruction by
increasing a count of store instructions that have been
executed within the first instruction block.

10. The apparatus of claim 9, wherein the control unit 1s
configured to execute the subsequent memory access
instruction when the count of store instructions reaches a
pre-determined value.

11. The apparatus of claim 10, wherein the control unit 1s
turther configured to:

based on the nullified memory access 1nstruction, commiut

the first instruction block and execute at least one
instruction from at least a second, diflerent instruction
block.

12. A method of operating a processor to execute a block
of instructions comprising a plurality of memory store
instructions, the method comprising:

retrieving data indicating execution ordering of the plu-

rality of memory store instructions;

detecting a predicated instruction during instruction

execution;

determining at least one predicated, first memory store

instruction of the plurality of memory store instructions
will not execute when a condition of the predicated
instruction 1s satisfied:

generating a nullification instruction, wherein a target

field of the nullification instruction identifies a load/

store 1dentifier (LSID) indicating a relative ordering for

executing the first memory store instruction; and
1ssuing the predicated instruction.

13. The method according to claim 12, wherein the target
field further comprises a mask and a shift bit, the LSID of

the first memory store instruction identified based on the
mask and the shift bat.

14. The method according to claim 12, wherein the target
field of the nullification instruction comprises a mask 1den-
tifying multiple memory store instructions of the plurality of
memory store instructions.

15. The method according to claim 14, further compris-
ng:

detecting during execution of the block of instructions

that the condition of the predicated instruction 1s not
satisfied; and

nullifying the multiple memory store instructions 1denti-

fied by the nullification instruction.

16. The method according to claim 15, wherein the
nullifying further comprises:

proceeding execution of a subsequent memory access

istruction as i1 the multiple memory store mstructions
have executed.

17. The method according to claim 12, wherein the first
memory store instruction 1s 1 a first predicated execution
path of the predicated instruction, and the method further
comprising;

US 10,061,584 B2

31

executing the nullification instruction during executing
istructions in a second predicated execution path of
the predicated 1nstruction.
18. The method according to claim 17, wherein the
executing of the nullification instruction comprises:
marking the LSID of the first memory store instruction as

completed, as 11 the first memory store instruction has
executed.

19. The method of claim 12, further comprising storing
computer-readable instructions for an instruction block that
when executed by a block-based processor, cause the pro-
cessor to perform the recited acts of retrieving data, detect-
ing the predicated instruction, determining at least one
predicated, first memory store instruction, generating the
nullification instruction, and issuing the predicated instruc-
tion.

20. One or more computer-readable storage media storing,
computer-readable instructions that when executed by a
processor, cause the processor to perform a method, the
computer-readable instructions comprising;:

instructions for analyzing memory accesses encoded in

source code and/or object code to determine memory
dependencies for an instruction block executable by a
block-based processor; and

instructions for transforming the source code and/or

object code into computer-executable code for the
istruction block, the computer-executable code
including;

memory access mstructions comprising at least one predi-

cated memory access instruction, and

at least one nullification instruction comprising a target

field i1dentitying a load/store identifier indicating a
relative ordering for executing at least one of the
memory access instructions.

21. A method, comprising;:

responsive to executing a nullification 1nstruction

encoded 1n a first instruction block, causing a processor

to:

obtain an mstruction identification for a memory access
instruction of a plurality of memory access instruc-
tions encoded 1n the first instruction block, based on
a target field of the nullification 1nstruction;

nullify the memory access instruction associated with
the instruction identification, causing the nullified
memory access instruction to not execute; and

based on the nullified memory access instruction,
execute a subsequent memory access instruction
from the first 1nstruction block.

22. The method of claim 21, further comprising, by the
Processor:

nullifying the memory access instruction by fetching and

executing the nullification istruction encoded 1n the
first 1nstruction block.

23. The method of claim 22, further comprising, by the
Processor:

storing data in a hardware structure indicating execution

ordering of the plurality of memory access instructions,
wherein the data indicating execution ordering 1s a
store mask based at least in part on a plurality of

5

10

15

20

25

30

35

40

45

50

55

32

load/store 1dentifiers (LSIDs) encoded for the plurality
memory access 1nstructions in the first istruction
block.

24. The method of claim 23, wherein the memory access
instruction 1s a memory store nstruction, and the instruction
identification comprises an LSID from the plurality of
LSIDs for the memory store instruction.

25. The method of claim 21, wherein the instruction
identification 1s an LSID, and wherein the method further
comprises, during the nullifying, marking the LSID of the

memory access instruction as completed as 1f the memory
access mstruction has executed.

26. The method of claim 21, further comprising, by the
Processor:

nullifying the memory access instruction by increasing a
count of store instructions that have been executed
within the first mstruction block.

277. The method of claim 26, further comprising;

executing the subsequent memory access instruction
when the count of store imstructions reaches a pre-
determined value.

28. The method of claim 26, further comprising:

based on the nullified memory access 1nstruction, com-
mitting the first instruction block and execute at least
one 1nstruction from at least a second, diflerent instruc-
tion block.

29. An apparatus comprising a block-based processor
core, the core comprising:

a control circuit configured to cause the core to:

retrieve data indicating execution ordering of a plural-
ity ol memory store instructions;

detect a predicated instruction during instruction
execution;

determine at least one predicated, first memory store
instruction of the plurality of memory store instruc-
tions will not execute when a condition of the
predicated 1nstruction 1s satisfied;

generate a nullification instruction, wherein a target
field of the nullification instruction identifies a load/
store 1dentifier (LSID) indicating a relative ordering
for executing the first memory store instruction; and

issue the predicated instruction.

30. The apparatus of claim 29, wherein the target field
turther comprises a mask and a shiit bit, the LSID of the first
memory store mstruction 1dentified based on the mask and
the shift bat.

31. The apparatus of claim 29, wherein the target field of
the nullification instruction comprises a mask identifying
multiple memory store instructions of the plurality of
memory store instructions.

32. The apparatus of claim 31, wherein the control circuit
1s Turther configured to:

detect that the condition of the predicated instruction 1s

not satisfied; and

nullify the multiple memory store instructions i1dentified

by the nullification 1nstruction.

33. The apparatus of claim 31, wherein the control circuit
1s Turther configured to:

execute a subsequent memory access instruction as 1f the

multiple memory store instructions have executed.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

