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CODING ESCAPE PIXELS FOR PALETTE
MODE CODING

This application claims the benefit of U.S. Provisional
Application No. 62/110,519, filed Jan. 31, 2015, which 1s
hereby incorporated by reference 1n its entirety.

TECHNICAL FIELD

This disclosure relates to video coding, and more particu-
larly, to coding video data using palette mode.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-
ing devices, video streaming devices, and the like. Digital
video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2,
MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advaneed Video Coding (AVC), ITU-T H.263, alse referred
to as High Efliciency Video Coding (HEVC), and extensions
of such standards. The video devices may transmit, receive,
encode, decode, and/or store digital video infermatien more
ciiciently by implementing such video coding techniques.

Video coding techniques include spatial (intra-picture)
prediction and/or temporal (inter-picture) prediction to
reduce or remove redundancy inherent 1n video sequences.
For block-based video coding, a video slice (e.g., a video
picture or a portion of a video picture) may be partitioned
into video blocks, which may also be referred to as coding
tree units (CTUs), coding units (CUs) and/or coding nodes.
Video blocks 1n an intra-coded (I) slice of a picture are
encoded using spatial prediction with respect to reference
samples 1n neighboring blocks i the same picture. Video
blocks 1n an inter-coded (P or B) slice of a picture may use
spatial prediction with respect to reference samples in neigh-
boring blocks 1n the same picture or temporal prediction
with respect to reference samples 1n other reference pictures.
Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

Spatial or temporal prediction results 1n a predictive block
for a block to be coded. Residual data represents pixel
differences between the original block to be coded and the
predictive block. An inter-coded block 1s encoded according,
to a motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicat-
ing the ditference between the coded block and the predic-
tive block. An mtra-coded block 1s encoded according to an
intra-coding mode and the residual data. For further com-
pression, the residual data may be transformed from the
pixel domain to a transform domain, resulting 1n residual
transform coellicients, which then may be quantized. The
quantized transform coeflicients, mitially arranged in a two-
dimensional array, may be scanned 1n order to produce a
one-dimensional vector of transform coeflicients, and
entropy coding may be applied to achieve even more com-

pression.

SUMMARY

In general, this disclosure describes techniques related to
quantizing values for escape-mode coded pixels of palette-
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mode coded blocks of video data. In particular, in some
instances, conventional escape-mode coding techniques
resulted 1n certain situations in which a binary value was to
be nght-shifted by a negative value. A bitwise shift operation
by a negative value 1s generally an undefined operation,
which may cause an error. The techniques of this disclosure
may be used to correct such errors when they occur. In
particular, the techniques of this disclosure may be used to
change the shift value from negative to positive, and to
perform a bitwise leit shift operation, instead of a bitwise
right shift operation.

In one example, a method includes determiming that a
value for a rnight shift parameter for an escape-mode coded
pixel of a palette-mode coded block of video data 1s less than
zero, based on the original value for the right shift parameter
bemg less than zero, setting a value for a left shift parameter
to a positive value having an absolute value equal to an
absolute value of the original value, and inverse quantizing
the escape-mode coded pixel using the value of the left shift
parameter.

In another example, a device for decoding video data
includes a memory configured to store video data and a
video decoder configured to determine that a value for a
right shift parameter for an escape-mode coded pixel of a
palette-mode coded block of the video data 1s less than zero,
based on the value for the right shift parameter being less
than zero, set a value for a left shift parameter to a positive
value having an absolute value equal to an absolute value of
the right shift parameter, and inverse quantize the escape-
mode coded pixel using the value of the left shift parameter.

In another example, a device for decoding video data
includes means for determining that a value for a right shait
parameter for an escape-mode coded pixel of a palette-mode
coded block of video data 1s less than zero, means for
setting, based on the value for the right shift parameter being
less than zero, a value for a left shift parameter to a positive
value having an absolute value equal to an absolute value of
the right shift parameter, and means for inverse quantizing
the escape-mode coded pixel using the value of the lett shift
parameter.

In another example, a computer-readable storage medium
1s encoded with instructions that, when executed, cause a
programmable processor to determine that a value for a right
shift parameter for an escape-mode coded pixel of a palette-
mode coded block of the video data 1s less than zero, based
on the value for the rnight shift parameter being less than
zero, set a value for a left shift parameter to a positive value
having an absolute value equal to an absolute value of the
right shift parameter, and inverse quantize the escape-mode
coded pixel using the value of the left shift parameter.

In another example, a method of encoding video data
includes determining that a value for a left shift parameter
for an escape-mode coded pixel of a palette-mode coded
block of video data 1s less than zero, based on the value for
the left shift parameter being less than zero, setting a value
for a nght shift parameter to a positive value having an
absolute value equal to an absolute value of the left shait
parameter, and quantizing the escape-mode coded pixel
using the value of the left shift parameter.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the

description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram illustrating an example video
encoding and decoding system that may utilize techniques of
this disclosure for coding escape pixels 1n palette-mode

coded blocks.




US 10,057,587 B2

3

FIG. 2 1s a block diagram illustrating an example of a
video encoder that may implement techniques for encoding,

escape pixels 1n palette-mode coded blocks 1in accordance
with the techniques of this disclosure.

FIG. 3 1s a block diagram illustrating an example of a
video decoder that may implement techniques for decoding,
escape pixels i palette-mode coded blocks 1n accordance
with the techniques of this disclosure.

FIG. 4 1s a flowchart 1llustrating an example method for
encoding a block of video data in accordance with the
techniques of this disclosure.

FIG. 5 1s a flowchart 1llustrating an example method for
decoding a block of video data in accordance with the
techniques of this disclosure.

FIG. 6 1s a flowchart 1llustrating an example techmique by
which a palette decoding unit may dequantize a quantized
escape pixel value of a palette-mode encoded block of video
data, 1n accordance with the techniques of this disclosure.

DETAILED DESCRIPTION

In general, this application describes techniques for sup-
porting coding of video content, especially screen content
with palette mode coding. More particularly, these tech-
niques relate to escape pixel coding for palette mode coding,
(also referred to as “palette coding™).

In traditional video coding, images are assumed to be
continuous-tone and spatially smooth. Based on these
assumptions, various tools have been developed, such as
block-based transform, filtering, etc., and such tools have
shown good performance for natural content videos. In
applications like remote desktop, collaborative work and
wireless display, however, computer generated screen con-
tent (e.g., such as text or computer graphics) may be the
dominant content to be compressed. This type of content
tends to have discrete-tone, and feature sharp lines and
high-contrast object boundaries. The assumption of continu-
ous-tone and smoothness may no longer apply for screen
content, and thus traditional video coding techniques may
not be eflicient ways to compress video data including
screen content.

Based on the characteristics of screen content video,
palette coding was introduced to improve screen content

coding (SCC) efliciency, and was firstly proposed in Guo et
al., “Palette Mode for Screen Content Coding,” JCT-VC of

ITU-T SG 13 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 137
Meeting, JCTVC-MO0323, Incheon, K R. 18-26 Apr. 2013.
Specifically, palette coding introduces a lookup table, 1.e.,
color palette, to compress repetitive pixel values based on
the fact that in SCC, colors within one coding unit (CU)
usually concentrate on a few peak values. Given a palette for
a specific CU, pixels within the CU are mapped to the palette
index. In the second stage, an effective copy from left run
length method 1s proposed to eflectively compress the index

block’s repetitive pattern. Later, in Guo et al., “Non-RCE3:
Modified Palette Mode for Screen Content Coding,” JCT-

VC of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, JCTVC-N0249, 14” Meeting, Vienna, A T, 25 Jul.-2
Aug. 2013, the palette index coding mode was generalized
to both copy from left and copy from above with run length
coding. Note that no transformation process 1s mvoked for
palette coding to avoid blurring sharp edges which has huge
negative impact on visual quality of screen contents.

A palette is a data structure that stores {index, pixel
value} pairs. A video encoder may determine a palette, e.g.,
based on a histogram of pixel values in a current CU. For
example, peak values 1n the histogram may be added 1nto the
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palette, while low 1frequency pixel values need not be
included 1n the palette. Palette size may be restricted to be
in the range of 0 to max_palette_size equal to 31.

For SCC, CU blocks within one slice may share many
dominant colors. Therefore, 1t 1s possible to predict a current
block’s palette using previous palette mode CUs’ palettes (in
CU decoding order) as reference. Specifically, a 0-1 binary
vector may be signaled to indicate whether the pixel values
in the reference palette 1s reused by the current palette or not.
As an example, in Tables 1 and 2 below, 1t 1s assumed that
the reference palette has 6 1tems. A vector (1, 0, 1, 1, 1, 1)
1s signaled with the current palette which indicates that vO,
v2, v3, v4, and v5 are re-used 1n the current palette while vl
1s not re-used. If the current palette contains colors which are
not predictable from a reference palette, the number of
unpredicted colors 1s coded and then these pixel values (e.g.,
luma or chroma values) are directly signaled. For example,
in Tables 1 and 2, u0 and ul are directly signaled into the
bitstream.

TABLE 1

Reterence Palette

Index Pixel Value

L P ) b o— D
<
Lad

TABLE 2

Current Palette

Prediction Flag Index Pixel Value
1 0 Vo
0
] 1 Vs,
2 V,
3 V4
4 \
5 Up
6 U,

For the block coded with the palette mode, the palette can
be predicted from the palette entries of the previously palette
coded blocks, can be explicitly signaled as a new entries or
the palette of the previously coded block can be completely
reused. The latter case 1s called palette sharing and a flag
palette_share_flag 1s signaled to indicate that the entire
palette of the previous block 1s reused without modification
as 1s. Examples of a reference palette and a current palette
are shown 1n Tables 1 and 2 above. In particular, Table 1
illustrates an example reference palette, and Table 2 1llus-
trates an example current palette that can be predicted from
the reference palette of Table 1.

In the current SCM3.0 reference soltware, the two pri-
mary aspects of palette coding from a normative perspective
are the coding of the palette and coding of the palette index
for each sample 1n the block being coded in the palette mode.
The coding of palette indices 1s performed using two pri-
mary modes, ‘index” mode and ‘copy above’ mode. This 1s
signaled by coding a palette_mode flag. The ‘index’ mode 1s
also used to indicate escape samples, 1.e., samples that do not
belong to the palette. In the current design, a ‘copy above’
mode 1s not possible for the first row of the palette block. In
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addition, a ‘copy above’ mode may not follow another ‘copy
above’ mode. In these cases, an ‘index’ mode 1s inferred.

Specifically, for palette mode, pixels in the CU are
encoded 1n a horizontal/vertical snake scan order as follows:

1. “Index” mode: In this mode, one palette index 1s first
signaled. If the index 1s equal to the size of the palette,
this indicates that the sample 1s an escape sample. In
this case, the sample value or quantized samples value
for each component (e.g., luma and chroma) 1s sig-
naled. For example, 11 the palette size 1s 4, for non-
escape samples, the palette indices are 1n the range [0,
3]. In this case, an index value of 4 signifies an escape
sample. If the index indicates a non-escape sample,
run-length 1s signaled, which specifies the number of
subsequent samples 1n scanning order that share the
same 1ndex, by a non-negative value n-1 indicating the
run length, which means that the following n pixels
including the current one have the same pixel index as
the first signaled one.

2. “Copy from Above” run mode (CA): In this mode, only
a non-negative run length value m-1 1s transmitted to
indicate that for the following m pixels including the
current one, palette indexes are the same as their
neighbors directly above, respectively. Note that this
mode 1s different from “Index” mode, in the sense that
the palette indices could be different within the Copy
from Above run mode.

In the current design, the palette mode 1s signalled at a CU
level, but 1t may be possible to signal 1t at a PU level. A flag,
palette_esc_val_present_flag, 1s also signalled to indicate
the presence of escape samples 1 a current block.

In the palette mode, the pixel scanning 1n the block can be
of two types: vertical traverse or horizontal traverse (snake
like) scanning. The scanning pattern used 1n the block 1is
derived according to the tlag palette_transpose_tlag signaled
per block unit.

During palette index coding, the palette index adjustment
process can be applied. Starting from the second pixel in the
block, 1t consists of checking the palette mode of the
previously coded pixel. First, the palette size 1s reduced by
1, and 1f the left mode 1s equal to the Run mode, then the
palette index to be coded 1s reduced by 1 1f the index 1s
greater than the left palette index, or if the left mode 1s Copy
mode, then the palette index to be coded 1s reduced by 1 1t
the index 1s greater than the above palette index. The
description 1s provided from the encoding side, and the
corresponding process can be performed 1n the reverse order
at decoder side as well.

In SCM-3.0, the following syntax optimizations were
adopted:

If palette size 1s O, all escapes pixels are derived and no
escape present flag, palette mode, palette index, palette
run, and palette transpose flag are signaled, and the
escape present flag 1s inferred to be equal to 1, the
palette mode 1s inferred to be equal to the INDEX
mode, palette index 1s set equal to the ESCAPE, palette
run value 1s set equal to the block size, and the palette
transpose flag 1s set to O.

If palette size 1s 1 and no escape pixels are used in the
block, then no palette mode, palette run, or palette
transpose tlag are signaled, and palette mode 1s dertved
to be equal to the INDEX mode, palette index is set to
0, palette run value 1s set equal to the block size, and the
palette transpose flag 1s set to 0.

This disclosure describes techniques related to palette-

based coding, which may be particularly suitable for screen
generated content coding. For example, assuming that a
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particular area of video data has a relatively small number of
colors, a video coder (e.g., a video encoder or video decoder)
may form a so-called “palette’ to represent the video data of
the particular area. The palette may be expressed as a table
of colors or pixel values representing the video data of the
particular area (e.g., a given block). For example, the palette
may 1nclude the most dominant pixel values in the given
block. In some cases, the most dominant pixel values may
include the one or more pixel values that occur most
frequently within the block. Additionally, 1n some cases, a
video coder may apply a threshold value to determine
whether a pixel value 1s to be included as one of the most
dominant pixel values in the block. According to various
aspects of palette-based coding, the video coder may code
index values indicative of one or more of the pixels values
ol the current block, 1nstead of coding actual pixel values or
their residuals for a current block of video data. In the
context of palette-based coding, the index values indicate
respective entries in the palette that are used to represent
individual pixel values of the current block.

For example, the video encoder may encode a block of
video data by determining the palette for the block (e.g.,
coding the palette explicitly, predicting the palette, or a
combination thereof), locating an entry in the palette to
represent one or more of the pixel values, and encoding the
block with index values that indicate the entry 1n the palette
used to represent the pixel values of the block. In some
examples, the video encoder may signal the palette and/or
the index values 1n an encoded bitstream. In turn, the video
decoder may obtain, from an encoded bitstream, a palette for
a block, as well as index values for the individual pixels of
the block. The video decoder may relate the index values of
the pixels to entries of the palette to reconstruct the various
pixel values of the block.

More particularly, pixels of a block coded using palette
mode may be coded using an “index” mode, in which a pixel
1s coded using a reference to the palette, or a copy from
above mode, in which the pixel 1s coded using a reference
to an above-neighboring pixel. A third option 1s to code the
pixel as an escape pixel. In this case, the value of the pixel
(or a quantized value for the pixel) 1s signaled directly.

In the current SCM3.0 as of the time of this disclosure,
dequantization 1s used to reconstruct quantized escape pixels
in palette mode. Specifically, the following procedure 1is
used to reconstruct the escape pixels:

1. A quantization parameter gP 1s derived according to

different color component imndex (cldx) values as fol-
lows:

qP=(cldx==0)10p'Y:((cldx==1)70p'Cb:0Op'Cr)

2. A quantization ratio gPper and a quantization remainder
gPrem are derived as follows:

qgPper=qP/6

qPrem=gF %06

3. A night shift parameter mvQuantRightShift and an
offset parameter addOfiset derived as follows:

invQuantRightShift=6-gPper

addOfIset=1nvQuantRightShift==070:1<<(invQuant-
RightShift-1)

4. A dequantized escape pixel deQuantEspValue 1s
derived based on entropy decoded EspValue as follows

deQuantEspValue=(EspValue®mvQuantScale
[gPrem |+addOffset)>>1nvQuantRightShift
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5. deQuantEspValue 1s further modified to be 1n the depth
range as follows

deQuantEsp Value=clip3(0,27"r#_1 de-
QuantEspValue)

One problem that may be encountered in the current
design of SCM3.0 1s that, when gPper 1s larger than 6,
invQuantRightShiit 1s negative. There 1s no definition of
right shift by a negative number. Thus, this scenario may
cause different interpretation of dequantization for different
decoders, which 1s not desirable for a practical design.

In accordance with techniques of this disclosure, video
coders (e.g., video encoders and video decoders) may be
configured to avoid the problem described above. In par-
ticular, video coders may be configured to address the full
range ol quantization parameter (gqP) values. For instance,
gP can be 1n the range of [0, 1, . . ., 51] inclusive. And
different dequantization processes may be used to recon-
struct the escape pixels for palette mode. These and other
techniques are described 1n greater detail below.

FIG. 1 1s a block diagram illustrating an example video
encoding and decoding system 10 that may utilize tech-
niques of this disclosure for coding escape pixels 1n palette-
mode coded blocks. As shown in FIG. 1, system 10 includes
a source device 12 that provides encoded video data to be
decoded at a later time by a destination device 14. In
particular, source device 12 provides the video data to
destination device 14 via a computer-readable medium 16.
Source device 12 and destination device 14 may comprise
any of a wide range of devices, including desktop comput-
ers, notebook (1.e., laptop) computers, tablet computers,
set-top boxes, telephone handsets such as so-called “smart”
phones, so-called “smart” pads, televisions, cameras, dis-
play devices, digital media players, video gaming consoles,
video streaming device, or the like. In some cases, source
device 12 and destination device 14 may be equipped for
wireless communication.

Destination device 14 may receive the encoded video data
to be decoded via computer-readable medium 16. Computer-
readable medium 16 may comprise any type of medium or
device capable of moving the encoded video data from
source device 12 to destination device 14. In one example,
computer-readable medium 16 may comprise a communi-
cation medium to enable source device 12 to transmit
encoded video data directly to destination device 14 1n
real-time. The encoded wvideo data may be modulated
according to a communication standard, such as a wireless
communication protocol, and transmitted to destination
device 14. The communication medium may comprise any
wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmis-
sion lines. The communication medium may form part of a
packet-based network, such as a local area network, a
wide-area network, or a global network such as the Internet.
The communication medium may include routers, switches,
base stations, or any other equipment that may be useful to
facilitate communication from source device 12 to destina-
tion device 14.

In some examples, encoded data may be output from
output interface 22 to a storage device. Similarly, encoded
data may be accessed from the storage device by input
interface. The storage device may include any of a variety of
distributed or locally accessed data storage media such as a
hard drive, Blu-ray discs, DVDs, CD-ROMs, flash memory,
volatile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further
example, the storage device may correspond to a file server
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or another intermediate storage device that may store the
encoded video generated by source device 12. Destination
device 14 may access stored video data from the storage
device via streaming or download. The file server may be
any type of server capable of storing encoded video data and
transmitting that encoded wvideo data to the destination
device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage
(NAS) devices, or a local disk drive. Destination device 14
may access the encoded video data through any standard
data connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi1 connection), a
wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that 1s suitable for accessing encoded
video data stored on a file server. The transmission of
encoded video data from the storage device may be a
streaming transmission, a download transmission, or a com-
bination thereof.

The techmiques of this disclosure are not necessarily
limited to wireless applications or settings. The techniques
may be applied to video coding 1n support of any of a variety
of multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite televi-
s1on transmissions, Internet streaming video transmissions,
such as dynamic adaptive streaming over HI'TP (DASH),
digital video that 1s encoded onto a data storage medium,
decoding of digital video stored on a data storage medium,
or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmis-
s10n to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

In the example of FIG. 1, source device 12 includes video
source 18, video encoder 20, and output interface 22.
Destination device 14 includes input interface 28, video
decoder 30, and display device 32. In accordance with this
disclosure, video encoder 20 of source device 12 may be
configured to apply the techniques for coding escape pixels
in palette-mode coded blocks. In other examples, a source
device and a destination device may include other compo-
nents or arrangements. For example, source device 12 may
recerve video data from an external video source 18, such as
an external camera. Likewise, destination device 14 may
interface with an external display device, rather than includ-
ing an integrated display device.

The illustrated system 10 of FIG. 1 1s merely one
example. Techniques for coding escape pixels 1n palette-
mode coded blocks may be performed by any digital video
encoding and/or decoding device. Although generally the
techniques of this disclosure are performed by a video
encoding device, the techniques may also be performed by
a video encoder/decoder, typically referred to as a
“CODEC.” Moreover, the techniques of this disclosure may
also be performed by a video preprocessor. Source device 12
and destination device 14 are merely examples of such
coding devices in which source device 12 generates coded
video data for transmission to destination device 14. In some
examples, devices 12, 14 may operate 1n a substantially
symmetrical manner such that each of devices 12, 14
includes video encoding and decoding components. Hence,
system 10 may support one-way or two-way video trans-
mission between video devices 12, 14, e.g., for video
streaming, video playback, video broadcasting, or video
telephony.

Video source 18 of source device 12 may include a video
capture device, such as a video camera, a video archive
containing previously captured video, and/or a video feed
interface to receive video from a video content provider. As
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a further alternative, video source 18 may generate computer
graphics-based data as the source video, or a combination of
live video, archived video, and computer-generated video.
In some cases, 1f video source 18 1s a video camera, source
device 12 and destination device 14 may form so-called
camera phones or video phones. As mentioned above, how-
ever, the techniques described in this disclosure may be
applicable to video coding 1n general, and may be applied to
wireless and/or wired applications. In each case, the cap-
tured, pre-captured, or computer-generated video may be
encoded by video encoder 20. The encoded video informa-
tion may then be output by output interface 22 onto a
computer-readable medium 16.

Computer-readable medium 16 may include transient
media, such as a wireless broadcast or wired network
transmission, or storage media (that 1s, non-transitory stor-
age media), such as a hard disk, flash drive, compact disc,
digital video disc, Blu-ray disc, or other computer-readable
media. In some examples, a network server (not shown) may
receive encoded video data from source device 12 and
provide the encoded video data to destination device 14,
¢.g., via network transmission. Similarly, a computing
device of a medium production facility, such as a disc
stamping facility, may receive encoded video data from
source device 12 and produce a disc containing the encoded
video data. Therefore, computer-readable medium 16 may
be understood to include one or more computer-readable
media of various forms, 1n various examples.

Input interface 28 of destination device 14 receives inior-
mation from computer-readable medium 16. The informa-
tion ol computer-readable medium 16 may include syntax
information defined by video encoder 20, which 1s also used
by video decoder 30, that includes syntax elements that
describe characteristics and/or processing of blocks and
other coded units. Display device 32 displays the decoded
video data to a user, and may comprise any of a variety of
display devices such as a cathode ray tube (CRT), a liquid
crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display
device.

Video encoder 20 and video decoder 30 may operate
according to a video coding standard, such as the High
Efficiency Video Coding (HEVC) standard, also referred to
as I'TU-T H.265. Alternatively, video encoder 20 and video
decoder 30 may operate according to other proprietary or
industry standards, such as the ITU-T H.264 standard,
alternatively referred to as MPEG-4, Part 10, Advanced
Video Coding (AVC), or extensions of such standards. The
techniques of this disclosure, however, are not limited to any
particular coding standard. Other examples of video coding,
standards imnclude MPEG-2 and ITU-T H.263. Although not
shown 1n FIG. 1, 1n some aspects, video encoder 20 and
video decoder 30 may each be integrated with an audio
encoder and decoder, and may include appropriate MUX-
DEMUX units, or other hardware and software, to handle
encoding of both audio and video 1n a common data stream
or separate data streams. If applicable, MUX-DEMUX units
may conform to the ITU H.223 multiplexer protocol, or
other protocols such as the user datagram protocol (UDP).

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder cir-
cuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereol. When the techniques are implemented partially in
software, a device may store mnstructions for the software 1n
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a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the techniques of this disclosure. Each
of video encoder 20 and video decoder 30 may be included
in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC)

in a respective device.

In general, according to I'TU-T H.2635, a video picture
may be divided 1nto a sequence of coding tree units (CTUs)
(or largest coding unmits (LCUSs)) that may include both luma
and chroma samples. Alternatively, CTUs may include
monochrome data (1.e., only luma samples). Syntax data
within a bitstream may define a size for the CTU, which 1s
a largest coding unit 1n terms of the number of pixels. A slice
includes a number of consecutive CTUs 1n coding order. A
video picture may be partitioned into one or more slices.
Each CTU may be split into coding units (CUs) according to
a quadtree. In general, a quadtree data structure includes one
node per CU, with a root node corresponding to the CTU. IT
a CU 1s split into four sub-CUs, the node corresponding to
the CU 1includes four leatf nodes, each of which corresponds
to one of the sub-CUs.

Each node of the quadtree data structure may provide
syntax data for the corresponding CU. For example, a node
in the quadtree may include a split tlag, indicating whether
the CU corresponding to the node 1s split into sub-CUSs.
Syntax elements for a CU may be defined recursively, and
may depend on whether the CU 1s split into sub-CUs. If a
CU 1s not split further, 1t 1s referred as a leal-CU. In this
disclosure, four sub-CUSs of a leat-CU will also be referred
to as leal-CUs even 1f there 1s no explicit splitting of the
original leat-CU. For example, 11 a CU at 16x16 size 1s not
split further, the four 8x8 sub-CUs will also be referred to as
leat-CUs although the 16x16 CU was never split.

A CU has a similar purpose as a macroblock of the H.264
standard, except that a CU does not have a size distinction.
For example, a CTU may be split into four child nodes (also
referred to as sub-CUs), and each child node may 1n turn be
a parent node and be split into another four child nodes. A
final, unsplit child node, referred to as a leal node of the
quadtree, comprises a coding node, also referred to as a
leat-CU. Syntax data associated with a coded bitstream may
define a maximum number of times a CTU may be split,
referred to as a maximum CU depth, and may also define a
minimum size of the coding nodes. Accordingly, a bitstream
may also define a smallest coding unit (SCU). This disclo-
sure uses the term “block™ to refer to any of a CU, prediction
unit (PU), or transform unit (TU), 1n the context of HEVC,
or similar data structures in the context of other standards
(e.g., macroblocks and sub-blocks thereof 1n H.264/AVC).

A CU 1includes a coding node and prediction units (PUs)
and transform units (TUs) associated with the coding node.
A s1ze of the CU corresponds to a size of the coding node
and 1s generally square in shape. The size of the CU may
range from 8x8 pixels up to the size of the CTU with a
maximum size, e.g., 64x64 pixels or greater. Each CU may
contain one or more PUs and one or more TUs. Syntax data
associated with a CU may describe, for example, partition-
ing of the CU into one or more PUs. Partitioning modes may
differ between whether the CU 1s skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction
mode encoded. PUs may be partitioned to be non-square in
shape. Syntax data associated with a CU may also describe,
for example, partitioning of the CU into one or more TUs
according to a quadtree. A TU can be square or non-square
(e.g., rectangular) 1n shape.
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The HEVC standard allows for transformations according,
to TUs, which may be different for different CUs. The TUs
are typically sized based on the size of PUs within a given
CU defined for a partitioned CTU, although this may not
always be the case. The TUs are typically the same size or
smaller than the PUs. In some examples, residual samples
corresponding to a CU may be subdivided into smaller units
using a quadtree structure known as “residual quad tree”
(RQT). The leal nodes of the RQT may be referred to as
transform units (1Us). Pixel difference values associated
with the TUs may be transformed to produce transform
coellicients, which may be quantized.

A leaf-CU may include one or more prediction units
(PUs). In general, a PU represents a spatial area correspond-
ing to all or a portion of the corresponding CU, and may
include data for retrieving and/or generating a reference
sample for the PU. Moreover, a PU includes data related to
prediction. For example, when the PU 1is intra-mode
encoded, data for the PU may be included in a residual
quadtree (RQT), which may include data describing an
intra-prediction mode for a TU corresponding to the PU. The
RQT may also be referred to as a transform tree. In some
examples, the intra-prediction mode may be signaled in the
leat-CU syntax, mstead of the RQT. As another example,
when the PU 1s mter-mode encoded, the PU may include
data defining motion information, such as one or more
motion vectors, for the PU. The data defining the motion
vector for a PU may describe, for example, a horizontal
component of the motion vector, a vertical component of the
motion vector, a resolution for the motion vector (e.g.,
one-quarter pixel precision or one-eighth pixel precision), a
reference picture to which the motion vector points, and/or
a reference picture list (e.g., List O or List 1) for the motion
vector.

A leaf-CU having one or more PUs may also include one
or more transform units (1'Us). The transform units may be
specified using an RQT (also referred to as a TU quadtree
structure), as discussed above. For example, a split flag may
indicate whether a leat-CU 1s split into four transform units.
Then, each transform unit may be split further into further
sub-TUs. When a TU 1s not split further, it may be referred
to as a leal-TU. Generally, for intra coding, all the leat-TUs
belonging to a leaf-CU share the same 1ntra prediction mode.
That 1s, the same 1ntra-prediction mode 1s generally applied
to calculate predicted values for all TUs of a leaf-CU. For
intra coding, a video encoder may calculate a residual value
for each leal-TU using the intra prediction mode, as a
difference between the portion of the CU corresponding to
the TU and the original block. A TU 1s not necessarily
limited to the size of a PU. Thus, TUs may be larger or
smaller than a PU. For intra coding, a PU may be collocated
with a corresponding leat-TU for the same CU. In some
examples, the maximum size of a leat-TU may correspond
to the size of the corresponding leaf-CU.

Moreover, TUs of leal-CUs may also be associated with
respective quadtree data structures, referred to as residual
quadtrees (RQTs). That 1s, a leat-CU may include a quadtree
indicating how the leat-CU 1s partitioned into TUs. The root
node of a TU quadtree generally corresponds to a leat-CU,
while the root node of a CU quadtree generally corresponds
to a CTU (or LCU). TUs of the RQT that are not split are
referred to as leal-TUs. In general, this disclosure uses the
terms CU and TU to refer to leal-CU and leaf-TU, respec-
tively, unless noted otherwise.

A video sequence typically includes a series of video
frames or pictures, starting with a random access point
(RAP) picture. A video sequence may include syntax data in

10

15

20

25

30

35

40

45

50

55

60

65

12

a sequence parameter set (SPS) that characteristics of the
video sequence. Each slice of a picture may include slice
syntax data that describes an encoding mode for the respec-
tive slice. Video encoder 20 typically operates on video
blocks within individual video slices 1n order to encode the
video data. A video block may correspond to a coding node
within a CU. The video blocks may have fixed or varying
s1zes, and may difler in size according to a specified coding
standard.

As an example, prediction may be performed for PUs of
various sizes. Assuming that the size of a particular CU 1s
2Nx2N, 1ntra-prediction may be performed on PU sizes of
2Nx2N or NxN, and inter-prediction may be performed on
symmetric PU sizes of 2Nx2N, 2NxN, Nx2ZN, or NxN.
Asymmetric partitioning for inter-prediction may also be
performed for PU sizes of 2NxnU, 2NxnD, nLLx2N, and
nRx2N. In asymmetric partitioning, one direction of a CU 1s
not partitioned, while the other direction 1s partitioned 1nto
25% and 75%. The portion of the CU corresponding to the
25% partition 1s indicated by an “n” followed by an 1ndi-
cation of “Up”, “Down,” “Leit,” or “Right.” Thus, for
example, “2ZNxnU” refers to a 2Nx2N CU that 1s partitioned
horizontally with a 2ZNx0.5N PU on top and a 2Nx1.5N PU
on bottom.

In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of a video
block 1n terms of vertical and horizontal dimensions, e.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block
will have 16 pixels 1n a vertical direction (y=16) and 16
pixels 1 a horizontal direction (x=16). Likewise, an NxN
block generally has N pixels 1n a vertical direction and N
pixels 1n a horizontal direction, where N represents a non-
negative integer value. The pixels mn a block may be
arranged 1 rows and columns. Moreover, blocks need not
necessarily have the same number of pixels 1n the horizontal
direction as 1n the vertical direction. For example, blocks
may comprise NxM pixels, where M 1s not necessarily equal
to N.

Following intra-predictive or inter-predictive coding
using the PUs of a CU, video encoder 20 may calculate
residual data for the TUs of the CU. The PUs may comprise
syntax data describing a method or mode of generating
predictive pixel data 1n the spatial domain (also referred to
as the pixel domain) and the TUs may comprise coeflicients
in the transform domain following application of a trans-
form, e.g., a discrete cosine transform (DCT), an integer
transform, a wavelet transform, or a conceptually similar
transform to residual video data. The residual data may
correspond to pixel differences between pixels of the unen-
coded picture and prediction values corresponding to the
PUs. Video encoder 20 may form the TUs to include
quantized transform coellicients representative of the
residual data for the CU. That 1s, video encoder 20 may
calculate the residual data (in the form of a residual block),
transform the residual block to produce a block of transform
coellicients, and then quantize the transform coethicients to
form quantized transform coethicients. Video encoder 20
may form a TU including the quantized transform coetli-
cients, as well as other syntax information (e.g., splitting
information for the TU).

As noted above, following any transforms to produce
transform coeflicients, video encoder 20 may perform quan-
tization of the transform coeflicients. Quantization generally
refers to a process 1 which transform coeflicients are
quantized to possibly reduce the amount of data used to
represent the coeflicients, providing further compression.
The quantization process may reduce the bit depth associ-
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ated with some or all of the coeflicients. For example, an
n-bit value may be rounded down to an m-bit value during
quantization, where n 1s greater than m.

Following quantization, the video encoder may scan the
transform coeflicients, producing a one-dimensional vector
from the two-dimensional matrix including the quantized
transform coeflicients. The scan may be designed to place
higher energy (and therefore lower frequency) coellicients at
the front of the array and to place lower energy (and
therefore higher frequency) coetlicients at the back of the
array. In some examples, video encoder 20 may utilize a
predefined scan order to scan the quantized transform coet-
ficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform
an adaptive scan. After scanning the quantized transiorm
coeflicients to form a one-dimensional vector, video encoder
20 may entropy encode the one-dimensional vector, e.g.,
according to context-adaptive variable length coding
(CAVLC), context-adaptive binary arithmetic coding (CA-
BAC), syntax-based context-adaptive binary arithmetic cod-
ing (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements
associated with the encoded video data for use by video
decoder 30 1n decoding the video data.

To perform CABAC, video encoder 20 may assign a
context within a context model to a symbol to be transmiut-
ted. The context may relate to, for example, whether neigh-
boring values of the symbol are non-zero or not. To perform
CAVLC, video encoder 20 may select a vaniable length code
for a symbol to be transmitted. Codewords 1n VLC may be
constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to
less probable symbols. In this way, the use of VLC may
achieve a bit savings over, for example, using equal-length
codewords for each symbol to be transmitted. The probabil-
ity determination may be based on a context assigned to the
symbol.

In general, video decoder 30 performs a substantially
similar, albeit reciprocal, process to that performed by video
encoder 20 to decode encoded data. For example, video
decoder 30 inverse quantizes and inverse transforms coet-
ficients of a received TU to reproduce a residual block.
Video decoder 30 uses a signaled prediction mode (intra- or
inter-prediction, or palette mode) to form a predicted block.
Then video decoder 30 combines the predicted block and the
residual block (on a pixel-by-pixel basis) to reproduce the
original block. Additional processing may be performed,
such as performing a deblocking process to reduce visual
artifacts along block boundaries. Furthermore, video

decoder 30 may decode syntax elements using CABAC 1n a
manner substantially similar to, albeit reciprocal to, the
CABAC encoding process of video encoder 20.

Video encoder 20 may further send syntax data, such as
block-based syntax data, picture-based syntax data, and
sequence-based syntax data, to video decoder 30, e.g., in a
picture header, a block header, a slice header, or other syntax
data, such as a sequence parameter set (SPS), picture param-
eter set (PPS), or video parameter set (VPS). Video decoder
30 may use these parameters to decode video data.

In accordance with the techniques of this disclosure,
video encoder 20 may perform the following process to
quantize an escape pixel value during palette mode coding:
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1. A gquantization parameter gP i1s dernived according to
different color component imdex (cldx) values as fol-
lows:

gP=(cldx==0)70p'Y:((cldx==1)?0p'Cb:0Op'Cr)

2. Video encoder 20 derives a quantization ratio gPper and
a quantization remainder gPrem as follows:

qgPper=qP/6

qPrem=gF %06

3. Video encoder 20 derntves a right shift parameter
quantRightShift and an ofiset parameter Offset as fol-
lows:

quantRightShift=14-gPper

Offset=1<<(quantRightShift-1)

4. The dequantized escape pixel value 1s derived as
follows

EspValue=(pixelValue*quantScale[gPrem |+
Offset)>>quantRightShift

Likewise, as a reciprocal process, video decoder 30 may
perform the Ifollowing process to inverse quantize (or
dequantize) an escape pixel value during palette mode
coding:

1. Video decoder 30 denives a quantization parameter qP

according to different color component index (cldx)
values as follows:

qP=(cldx==0)10p'Y:((cldx==1)70p'Cb:0Op'Cr)

2. Video decoder 30 derives a quantization ratio gPper and
a quantization remainder gPrem as follows:

qgPper=qP/6

qPrem=gf%06

3. Video decoder 30 derives a right shift parameter
invQuantRightShiit and an oflset parameter addOflset
as follows:

invQuantRightShift=6-gPper
addOfIset=1nvQuantRight Shift==070:1<<(invQuant-
RightShift-1)

4A. If invQuantRightShift 1s larger than 0, video decoder
30 performs the following procedure:

deQuantEspValue=(EspValue®mmvQuantScale
[gPrem |+addOffset)>>1nvQuantRightShift

4B. Otherwise (invQuantRightShift<=0), video decoder
30 performs the following procedure:

invQuantLeftShift=—invQuantRightShift

deQuantEspValue=EspValue* mvQuantScale[gPrem]
<<invQuantLeftShift

3. Video decoder 30 further modifies deQuantEspValue to
be 1n the depth range as follows:

deQuantEsp Value=clip3(0,277"_1 de-
QuantEspValue)

quantScale|.] and mmvQuantScale[.] may be lookup tables
(e.g., implemented as arrays) that may be {26214, 23302,
20560, 18396, 16384, 14564}, 140, 45, 51, 57, 64, 72}
respectively, or another lookup table (or array) of 6 entries
when Adaptive Quantization Scaling i1s enabled. For
example, when Adaptive Quantization Scaling 1s enabled,
video decoder 30 may adjust invQuantRightShift and/or
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invQuantLeftShift to normalize the scaling factor introduced
by Adaptive Quantization Scaling.

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder or
decoder circuitry, as applicable, such as one or more micro-
processors, digital signal processors (DSPs), application
specific 1ntegrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic circuitry, software, hard-
ware, firmware or any combinations thereof. Each of video
encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be inte-
grated as part of a combined video encoder/decoder (CO-
DEC). A device 111c1ud111g video encoder 20 and/or video
decoder 30 may comprise an integrated circuit, a micropro-
cessor, and/or a wireless communication device, such as a
cellular telephone.

FI1G. 2 1s a block diagram illustrating an example of video
encoder 20 that may implement techniques for encoding
escape pixels 1n palette-mode coded blocks 1in accordance
with the techniques of this disclosure. Video encoder 20 may
perform intra- and mter-coding of video blocks within video
slices. Intra-coding relies on spatial prediction to reduce or
remove spatial redundancy in video within a given video
frame or picture. Inter-coding relies on temporal prediction
to reduce or remove temporal redundancy in video within
adjacent frames or pictures of a video sequence. Intra-mode
(I mode) may refer to any of several spatial based coding
modes. Inter-modes, such as uni-directional prediction (P
mode) or bi-prediction (B mode), may refer to any of several
temporal-based coding modes.

As shown 1n FIG. 2, video encoder 20 receives a current
video block within a video frame to be encoded. In the
example of FIG. 2, video encoder 20 includes mode select
unit 40, reference picture memory 64 (which may also be
referred to as a decoded picture builer (DPB)), summer 50,
transform processing unit 52, quantization unit 354, and
entropy encoding unit 56. Mode select unit 40, 1 turn,
includes motion compensation unit 44, motion estimation
unit 42, intra-prediction unit 46, palette-mode encoding unit
49, and partition unit 48. For video block reconstruction,
video encoder 20 also includes inverse quantization unit 58,
inverse transform unmit 60, and summer 62. A deblocking
filter (not shown 1n FIG. 2) may also be included to filter
block boundaries to remove blockiness artifacts from recon-
structed video. If desired, the deblocking filter would typi-
cally filter the output of summer 62. Additional filters (in
loop or post loop) may also be used 1n addition to the
deblocking filter. Such filters are not shown for brevity, but
if desired, may {ilter the output of summer 50 (as an 1n-loop
f1lter).

During the encoding process, video encoder 20 receives a
video frame or slice to be coded. The frame or slice may be
divided into multiple video blocks. Motion estimation unit
42 and motion compensation unit 44 perform inter-predic-
tive encoding of the received video block relative to one or
more blocks in one or more reference frames to provide
temporal prediction. Intra-prediction unit 46 may alterna-
tively perform intra-predictive encoding of the received
video block relative to one or more neighboring blocks 1n the
same Irame or slice as the block to be coded to provide
spatial prediction. Video encoder 20 may perform multiple
coding passes, €.g., to select an appropriate coding mode for
cach block of video data.

Moreover, partition unit 48 may partition blocks of video
data into sub-blocks, based on evaluation of previous par-
titioning schemes 1n previous coding passes. For example,
partition unit 48 may initially partition a frame or slice 1nto
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CTUs, and partition each of the CTUs into sub-CUs based
on rate-distortion analysis (e.g., rate-distortion optimiza-
tion). Mode select unit 40 may further produce a quadtree
data structure indicative of partitioning of a CTU into
sub-CUs. Leaf-node CUs of the quadtree may include one or
more PUs and one or more TUs.

Mode select unit 40 may select one of the prediction
modes, intra or inter, e.g., based on error results, and
provides the resulting predicted block to summer 50 to
generate residual data and to summer 62 to reconstruct the
encoded block for use as a reference frame. In addition,
mode select unit 40 may select palette mode as an alternative
to intra- and inter-prediction modes. Mode select unit 40
also provides syntax elements, such as motion vectors,
intra-mode 1ndicators, partition information, and other such
syntax information, to entropy encoding unit 56.

Motion estimation unit 42 and motion compensation unit
44 may be highly integrated, but are illustrated separately for
conceptual purposes. Motion estimation, performed by
motion estimation unit 42, 1s the process of generating
motion vectors, which estimate motion for video blocks. A
motion vector, for example, may indicate the displacement
of a PU of a video block within a current video frame or
picture relative to a predictive block within a reference
frame (or other coded unit) relative to the current block
being coded within the current frame (or other coded unait).
A predictive block 1s a block that 1s found to closely match
the block to be coded, 1n terms of pixel difference, which
may be determined by sum of absolute difference (SAD),
sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values
for sub-1nteger pixel positions of reference pictures stored 1n
reference picture memory 64. For example, video encoder
20 may interpolate values of one-quarter pixel positions,
one-eighth pixel positions, or other fractional pixel positions
of the reference picture. Therefore, motion estimation unit
42 may perform a motion search relative to the full pixel
positions and fractional pixel positions and output a motion
vector with fractional pixel precision.

Motion estimation unit 42 calculates a motion vector for
a PU of a video block 1n an inter-coded slice by comparing
the position of the PU to the position of a predictive block
ol a reference picture. The reference picture may be selected
from a first reference picture list (List O) or a second
reference picture list (List 1), each of which i1dentify one or
more reference pictures stored 1n reference picture memory
64. Motion estimation unit 42 sends the calculated motion
vector to entropy encoding unit 56 and motion compensation
unit 44.

Motion compensation, performed by motion compensa-
tion unit 44, may mvolve fetching or generating the predic-
tive block based on the motion vector determined by motion
estimation unit 42. Again, motion estimation unit 42 and
motion compensation unit 44 may be functionally inte-
grated, 1n some examples. Upon receiving the motion vector
for the PU of the current video block, motion compensation
umt 44 may locate the predictive block to which the motion
vector points 1n one of the reference picture lists. Summer 50
forms a residual video block by subtracting pixel values of
the predictive block from the pixel values of the current
video block being coded, forming pixel diflerence values, as
discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components,
and motion compensation unit 44 uses motion vectors
calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may
also generate syntax elements associated with the video
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blocks and the video slice for use by video decoder 30 in
decoding the video blocks of the video slice.

Intra-prediction unit 46 may intra-predict a current block,
as an alternative to the inter-prediction performed by motion
estimation unit 42 and motion compensation unit 44, as
described above. In particular, intra-prediction unit 46 may
determine an intra-prediction mode to use to encode a
current block. In some examples, intra-prediction umt 46
may encode a current block using various intra-prediction
modes, e.g., during separate encoding passes, and 1ntra-
prediction umt 46 (or mode select unmit 40, 1n some
examples) may select an appropriate intra-prediction mode
to use from the tested modes.

For example, intra-prediction unit 46 may calculate rate-
distortion values using a rate-distortion analysis for the
various tested intra-prediction modes, and select the intra-
prediction mode having the best rate-distortion characteris-
tics among the tested modes. Rate-distortion analysis gen-
erally determines an amount of distortion (or error) between
an encoded block and an original, unencoded block that was
encoded to produce the encoded block, as well as a bitrate
(that 1s, a number of bits) used to produce the encoded block.
Intra-prediction unit 46 may calculate ratios from the dis-
tortions and rates for the various encoded blocks to deter-
mine which intra-prediction mode exhibits the best rate-
distortion value for the block.

After selecting an intra-prediction mode for a block,
intra-prediction unit 46 may provide information indicative
of the selected intra-prediction mode for the block to entropy
encoding unit 56. Entropy encoding unit 36 may encode the
information indicating the selected intra-prediction mode.
Video encoder 20 may include 1n the transmitted bitstream
configuration data, which may include a plurality of intra-
prediction mode i1ndex tables and a plurality of modified
intra-prediction mode 1ndex tables (also referred to as code-
word mapping tables), definitions of encoding contexts for
various blocks, and indications of a most probable 1ntra-
prediction mode, an intra-prediction mode 1index table, and
a modified mtra-prediction mode index table to use for each
of the contexts.

Video encoder 20 forms a residual video block by sub-
tracting the prediction data from mode select unit 40 from
the original video block being coded. Summer 50 represents
the component or components that perform this subtraction
operation. Transform processing unit 52 applies a transform,
such as a discrete cosine transform (DCT) or a conceptually
similar transform, to the residual block, producing a video
block comprising transform coetlicient values. Wavelet
transforms, integer transforms, sub-band transiorms, dis-
crete sine transiforms (DSTs), or other types of transforms
could be used instead of a DCT. In any case, transform
processing unit 52 applies the transform to the residual
block, producing a block of transform coeflicients. The
transform may convert the residual information from a pixel
domain to a transtorm domain, such as a frequency domain.
Transform processing unit 52 may send the resulting trans-
form coetlicients to quantization unit 54. Quantization unit
54 quantizes the transform coeflicients to further reduce bit
rate. The quantization process may reduce the bit depth
associated with some or all of the coeflicients. The degree of
quantization may be modified by adjusting a quantization
parameter.

Following quantization, entropy encoding unit 36 entropy
codes the quantized transiform coelflicients. For example,
entropy encoding unit 56 may perform context adaptive
variable length coding (CAVLC), context adaptive binary
arithmetic coding (CABAC), syntax-based context-adaptive
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binary arithmetic coding (SBAC), probability interval par-
tittoning entropy (PIPE) coding or another entropy coding
technique. In the case of context-based entropy coding,
context may be based on neighboring blocks. Following the
entropy coding by entropy encoding unit 56, the encoded
bitstream may be transmitted to another device (e.g., video
decoder 30) or archived for later transmission or retrieval.

Inverse quantization unit 38 and inverse transform unit 60
apply 1nverse quantization and inverse transformation,
respectively, to reconstruct the residual block in the pixel
domain. In particular, summer 62 adds the reconstructed
residual block to the motion compensated prediction block
carlier produced by motion compensation unit 44 or intra-
prediction unit 46 to produce a reconstructed video block for
storage 1n reference picture memory 64. The reconstructed
video block may be used by motion estimation unit 42 and
motion compensation unit 44 as a reference block to inter-
code a block 1n a subsequent video frame.

In accordance with the techniques of this disclosure,
video encoder 20 may be configured to perform palette-
based coding. More particularly, palette encoding unit 49
may perform palette mode encoding of a block (e.g., a CU
or a PU) of video data. With respect to the HEVC frame-
work, as an example, the palette-based coding techniques
may be configured to be used as a CU mode. In other
examples, the palette-based coding techniques may be con-
figured to be used as a PU mode 1n the framework of HEVC.
Accordingly, all of the disclosed processes described herein
(throughout this disclosure) in the context of a CU mode
may, additionally or alternatively, apply to a PU mode.
However, these HEVC-based examples should not be con-
sidered a restriction or limitation of the palette-based coding
techniques described herein, as such techniques may be
applied to work independently or as part of other existing or
yet to be developed systems/standards. In these cases, the
unit for palette coding can be square blocks, rectangular
blocks, or even regions of non-rectangular shape.

Palette encoding umt 49, for example, may perform
palette-based encoding when a palette-based encoding mode
1s selected, e.g., for a CU or PU. For example, palette
encoding unit 49 may be configured to generate a palette
having entries indicating pixel values, select pixel values in
a palette to represent pixel values of at least some positions
of a block of video data, and signal information associating
at least some of the positions of the block of video data with
entrics 1 the palette corresponding, respectively, to the
selected pixel values. Although wvarious functions are
described as being performed by palette encoding unit 49,
some or all of such functions may be performed by other
processing units, or a combination of different processing
units.

According to one or more of the techmiques of this
disclosure, video encoder 20, and specifically palette encod-
ing unit 49, may perform palette-based video coding of
predicted video blocks. As described above, a palette gen-
crated by video encoder 20 may be explicitly encoded,
predicted from previous palette entries, predicted from pre-
vious pixel values, or a combination thereof.

In particular, mode select unit 40 may determine an
encoding mode for a block (e.g., a CU or PU) of video data,
such as inter-prediction, intra-prediction, or palette mode.
Assuming palette mode 1s selected, palette encoding unit 49
may form a palette for the block based on statistics of pixel
values for the block. For each pixel of the block, palette
encoding unit 49 may determine whether the pixel has a
corresponding value 1n the palette, and if so, signal an index
into the palette to the corresponding value for the pixel.
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Palette encoding unit 49 may also signal a run value,
representing a number of pixels having the same value as the
previous pixel.

Alternatively, 11 a sequence of pixels has values equal to
above-neighboring pixels, palette encoding unit 49 may
signal a run value for “copy-from-above” mode, where the
run represents the number of pixels having values equal to
above-neighboring pixels.

If neither the mndex mode nor the copy-from-above mode
adequately represents the value of a current pixel of the
palette-mode coded block, palette encoding unit 49 may use
the techniques of this disclosure to code the pixel as an
escape pixel. That 1s, these technmiques may be performed to
quantize an escape pixel value, where the escape pixel value
represents the actual value of the pixel (e.g., luma and/or
chroma values) being coded. In accordance with the tech-
niques of this disclosure, video encoder 20 may quantize the
value of the pixel to be coded as an escape pixel, e.g., as
discussed above with respect to FIG. 1. That 1s, palette
encoding unit 49 may perform the following quantization
Process:

1. Palette encoding unit 49 derives gP according to

different color component index cldx as follows:

gP=(cldx==0)10p'Y:((cldx==1)70p'Cb:0p'Cr)

2. Palette encoding unit 49 derives a quantization ratio
gPper and a quantization remainder gPrem as follows:

qPper=qP/6

qPrem=gf%06

3. Palette encoding unit 49 derives a right shift parameter

il

invQuantRightShiit and an oflset parameter addOflset
as follows:

invQuantRightShift=6-gPper

addOfIset=1nvQuantRightShift==070:1<<(invQuant-
RightShift-1)

4. Palette encoding unit 49 derives a dequantized escape
pixel deQuantEspValue based on entropy decoded
EspValue as follows:

deQuantEspValue=(EspValue*invQuantScale
[qPrem]+addOffset)>>1nvQuantRightShift

5. Palette encoding unit 49 further modifies
deQuantEspValue to be 1n the depth range as follows:

deQuantEspValue=clip3(0,2bitDepth-1.de-
QuantEspValue)

In this example, “EspValue” represents the quantized
escape value for the pixel having an original value repre-
sented by “pixelValue.”

In this manner, video encoder 20 of FIG. 2 represents an
example of a video encoder configured to determine that a
value for a left shift parameter for an escape-mode coded
pixel of a palette-mode coded block of video data 1s less than
zero, based on the value for the left shift parameter being
less than zero, set a value for a right shift parameter to a
positive value having an absolute value equal to an absolute
value of the left shift parameter, and quantize the escape-
mode coded pixel using the value of the left shift parameter.

FIG. 3 1s a block diagram illustrating an example of video
decoder 30 that may implement techniques for decoding
escape pixels 1n palette-mode coded blocks 1in accordance
with the techmiques of this disclosure. In the example of FIG.
3, video decoder 30 includes an entropy decoding unit 70,
motion compensation unit 72, intra prediction unit 74,
palette decoding unit 75, inverse quantization unit 76,
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inverse transformation unit 78, reference picture memory 82
and summer 80. Video decoder 30 may, 1n some examples,
perform a decoding pass generally reciprocal to the encod-
ing pass described with respect to video encoder 20 (FIG. 2).
Motion compensation unit 72 may generate prediction data
based on motion vectors received from entropy decoding
unit 70, while intra-prediction unit 74 may generate predic-
tion data based on intra-prediction mode 1ndicators received
from entropy decoding unit 70.

During the decoding process, video decoder 30 receives
an encoded video bitstream that represents video blocks of
an encoded video slice and associated syntax elements from
video encoder 20. Entropy decoding unmit 70 of wvideo
decoder 30 entropy decodes the bitstream to generate quan-
tized coetlicients, motion vectors or intra-prediction mode
indicators, and other syntax elements. Entropy decoding unit
70 forwards the motion vectors to and other syntax elements
to motion compensation umt 72. Video decoder 30 may
receive the syntax elements at the video slice level and/or the
video block level.

When the video slice 1s coded as an 1ntra-coded (1) slice,
intra prediction unit 74 may generate prediction data for a
video block of the current video slice based on a signaled
intra prediction mode and data from previously decoded
blocks of the current frame or picture. When the video frame
1s coded as an inter-coded (1.e., B or P) slice, motion
compensation unit 72 produces predictive blocks for a video
block of the current video slice based on the motion vectors
and other syntax elements received from entropy decoding
unit 70. The predictive blocks may be produced from one of
the reference pictures within one of the reference picture
lists. Video decoder 30 may construct the reference frame
lists, List O and List 1, using default construction techniques
based on reference pictures stored in reference picture
memory 82. Motion compensation unit 72 determines pre-
diction information for a video block of the current video
slice by parsing the motion vectors and other syntax ele-
ments, and uses the prediction information to produce the
predictive blocks for the current video block being decoded.
For example, motion compensation unit 72 uses some of the
received syntax elements to determine a prediction mode
(e.g., intra- or inter-prediction) used to code the video blocks
of the video slice, an inter-prediction slice type (e.g., B slice
or P slice), construction information for one or more of the
reference picture lists for the slice, motion vectors for each
inter-encoded video block of the slice, inter-prediction status
for each inter-coded video block of the slice, and other
information to decode the video blocks 1n the current video
slice.

Motion compensation unit 72 may also perform interpo-
lation based on interpolation filters. Motion compensation
umit 72 may use interpolation filters as used by wvideo
encoder 20 during encoding of the video blocks to calculate
interpolated values for sub-integer pixels of reference
blocks. In this case, motion compensation unit 72 may
determine the interpolation filters used by video encoder 20
from the received syntax elements and use the iterpolation
filters to produce predictive blocks.

Inverse quantization unit 76 inverse quantizes, 1.e., de-
quantizes, the quantized transform coeflicients provided 1n
the bitstream and decoded by entropy decoding unit 70. The
inverse quantization process may include use of a quanti-
zation parameter QP calculated by video decoder 30 for
cach video block 1n the video slice to determine a degree of
quantization and, likewise, a degree of inverse quantization
that should be applied.
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Inverse transform unit 78 applies an inverse transform,
¢.g., an 1nverse DCT, an inverse integer transform, or a
conceptually similar inverse transform process, to the trans-
form coetlicients 1n order to produce residual blocks 1n the
pixel domain.

After motion compensation unit 72 generates the predic-
tive block for the current video block based on the motion
vectors and other syntax elements, video decoder 30 forms
a decoded video block by summing the residual blocks from
inverse transform unit 78 with the corresponding predictive
blocks generated by motion compensation unit 72. Summer
80 represents the component or components that perform
this summation operation. If desired, a deblocking filter may
also be applied to filter the decoded blocks in order to
remove blockiness artifacts. Other loop filters (either 1n the
coding loop or after the coding loop) may also be used to
smooth pixel transitions, or otherwise improve the video
quality. The decoded video blocks 1 a given frame or
picture are then stored in reference picture memory 82,
which stores reference pictures used for subsequent motion
compensation. Reference picture memory 82 also stores
decoded video for later presentation on a display device,
such as display device 32 of FIG. 1.

In accordance with various examples of this disclosure,
video decoder 30 may be configured to perform palette-
based decoding. In particular, video decoder 30 includes
palette decoding unit 75 that may perform palette-based
decoding. For example, palette decoding unit 75 may be
configured to generate a palette having entries indicating
pixel values. Furthermore, in this example, palette decoding
unit 75 may receive information, such as the syntax elements
shown 1n FIG. 3, associating at least some positions of a
block of video data with entries in the palette. In this
example, palette decoding umt 75 may select pixel values 1n
the palette based on the mformation. Additionally, in this
example, palette decoding unit 75 may reconstruct pixel
values of the block based on the selected pixel values.
Although various functions are described as being per-
tformed by palette decoding umt 75, some or all of such
functions may be performed by other processing units, or a
combination of diflerent processing units.

Palette decoding unit 75 may receive palette coding mode
information, and perform the above operations when the
palette coding mode information indicates that the palette
coding mode applies to the block. When the palette coding
mode 1nformation indicates that the palette coding mode
does not apply to the block, or when other mode information
indicates the use of a different mode, palette decoding unit
75 decodes the block of video data using a non-palette based
coding mode, e.g., such as an HEVC inter-predictive or
intra-predictive coding mode, when the palette coding mode
information indicates that the palette coding mode does not
apply to the block. The block of video data may be, for
example, a CU or PU generated according to an HEVC
coding process. Video decoder 30 may decode some blocks
with inter-predictive temporal prediction or intra-predictive
spatial coding modes and decode other blocks with the
palette-based coding mode. The palette-based coding mode
may comprise one of a plurality of different palette-based
coding modes, or there may be a single palette-based coding
mode.

According to one or more of the techniques of this
disclosure, video decoder 30, and specifically palette decod-
ing unit 75, may perform palette-based video decoding of
palette-coded video blocks. As described above, a palette
decoded by video decoder 30 may be explicitly encoded and
signaled, reconstructed by video decoder 30 with respect to
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a received palette-coded block, predicted from previous
palette entries, predicted from previous pixel values, or a
combination thereof.

In particular, entropy decoding unit 150 may decode
information indicating that a block (e.g., a PU or CU) of
video data 1s coded using palette mode. Entropy decoding
umt 150 may further decode information representative of
how each pixel of the block 1s coded using palette mode. For
example, entropy decoding unit 150 may decode an index
value and a run value as an {index, run} pair. The index
value represents an entry of the palette for the block, where
the entry specifies a pixel value, and the run value indicates
a number of pixels 1n addition to the current pixel that have
the same value.

If the mdex value 1s equal to the size of the palette,
entropy decoding unit 150 may determine that the current
pixel 1s an escape pixel. Thus, entropy decoding unit 150
may entropy decode a value representative of the escape
pixel. In particular, entropy decoding unit 150 may decode
a quantized escape pixel value for the escape pixel. Entropy
decoding unit 150 may then pass the quantized escape pixel
value to palette decoding unit 75.

In accordance with the techniques of this disclosure,
palette decoding unit 75 may dequantize the quantized
escape pixel value. To dequantize the quantized escape pixel
value, palette decoding unit 75 may perform the following
Process:

1. Palette decoding unit 75 derives a quantization param-

eter gP according to different color component index
cldx as follows:

gP=(cldx==0)70p'Y:((cldx==1)?0p'Cb:QOp'Cr)

2. Palette decoding unit 75 derives a quantization ratio
gPper and a quantization remainder gPrem as follows:

qgPper=qP/6

qPrem=gF%06

3. Palette decoding unit 75 derives a right shift parameter
invQuantRightShift and an offset parameter addOflset
as Tollows:

invQuantRightShift=6-gPper
addOfIset=1nvQuantRight Shift==070:1<<(invQuant-
RightShift-1)

4A. I invQuantRightShift 1s larger than O, palette decod-
ing unit 75 performs the following procedure:

deQuantEspValue=(EspValue®mmvQuantScale
'qPrem]+addOfiset)>>1nvQuantRightShift

4B. Otherwise (invQuantRightShift<=0), palette decod-
ing unit 75 performs the following procedure:

invQuantLeftShift=invQuantRightShift

deQuantEspValue=EspValue* mvQuantScale[gPrem]
<<invQuantLeftShift

5. Palette decoding unit 75 further modifies
deQuantEspValue to be 1n the depth range as follows:

deQuantEsp Value=clip3(0,2%°r#_1 de-
QuantEspValue)

The mvQuantScale[.] lookup table may be implemented
as an array having entries {40, 45, 51, 57, 64, 72}, or another
lookup table of, e.g., 6 entries, and may be used when
Adaptive Quantization Scaling 1s enabled. For example,
when Adaptive Quantization Scaling i1s enabled, video
decoder 30 may adjust nvQuantRightShiit and/or



US 10,057,587 B2

23

invQuantLeftShift to normalize the scaling factor introduced
by Adaptive Quantization Scaling.

In this manner, video decoder 30 of FIG. 3 represents an
example of a video decoder configured to determine that a
value for a night shift parameter for an escape-mode coded
pixel of a palette-mode coded block of the video data 1s less
than zero, based on the original value for the right shift
parameter being less than zero, set a value for a left shift
parameter to a positive value having an absolute value equal
to an absolute value of the original value, and inverse
quantize the escape-mode coded pixel using the value of the
left shift parameter.

FIG. 4 1s a flowchart 1llustrating an example method for
encoding a block of video data in accordance with the
techniques of this disclosure. The method of FIG. 4 may be

performed by video encoder 20 and the components thereof
(e.g., illustrated 1n FIG. 2).
In this example, mode select unit 40 mnitially receives a

block of video data (100). The block may be, for example,

a prediction unit (PU) or a coding unit (CU). Mode select
unit 40 then determines a coding mode for the block (102).
For example, mode select umit 40 may test various coding
modes and compare the modes using a rate-distortion opti-
mization (RDO) process. Furthermore, mode select unit 40
may also compare various block sizes and block partitioning,
schemes using the RDO process.

Mode select unit 40 may select an intra- or inter-predic-
tion mode, 1n which case motion estimation unit 42 and
motion compensation unit 44 or intra prediction unit 46 may
predict pixels of the block using intra-prediction or inter-
prediction (104), respectively, forming a predicted block.
Video encoder 20 may then form and process residual values
of the block (106). For example, residual generation umt 50
may subtract the original block from the predicted block on
a pixel-by-pixel basis, forming a residual block. Transform
processing unit 32 may then transform the residual block
using a transform such as, for example, a DCT, forming a
transform block. Quantization unit 54 may then quantize
transform coeflicients of the transform block, and provide
the quantized transtorm coellicients to entropy encoding unit
56. Mode select unit 40 also provides information represen-
tative of the prediction mode (e.g., intra/inter, a selected
intra mode 11 intra-prediction 1s used, or motion parameters
il mter-prediction 1s used) to entropy encoding unit 56. Thus,
entropy encoding unit 56 entropy encodes the prediction
information and the residual values (i.e., the quantized
transiform coeflicients) (108).

Alternatively, mode select unit 40 may select palette mode
to code the block, 1n which case palette encoding unit 49
analyzes pixel statistics for the block (110). For example,
palette encoding unit 49 may determine frequently used
pixel values. Palette encoding unit 49 then forms a palette
for the block based on the statistics (112). Although not
shown 1n FIG. 4, entropy encoding unit 56 may entropy
encode data for the palette. For example, the palette may be
predictively coded relative to a previously used palette, e.g.,
as discussed above with respect to Tables 1 and 2.

Palette encoding unit 49 may then scan pixels of the block
(114) to determine how to code the pixels. For example,
palette encoding unit 49 may determine whether a current
pixel value 1s included in the palette. I the pixel value 1s
included 1n the palette, palette encoding unit 49 may provide
an index from the palette that corresponds to the pixel value
to entropy encoding unit 56, which may entropy encode the
index value (116). Moreover, palette encoding unit 49 may
determine a number of pixels 1n a row following the previ-
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ous pixel that have the same value, and provide a “run” value
to entropy encoding unit 56, which may entropy encode the
run value (118).

Alternatively, if the current pixel does not have a value 1n
the palette, palette encoding unit 49 may determine whether
the value for the pixel 1s the same as an above-neighboring
pixel value. In some examples, this determination may be
made prior to determining whether the pixel value corre-
sponds to a value 1n the palette. In any case, 1f the current
pixel has a value that 1s equal to an above-neighboring pixel
value, palette encoding unit 49 may provide a run value
describing a number of pixels that have values equal to their
above-neighboring pixels to entropy encoding unit 56,
which may entropy encode the run value (120).

If the current pixel does not correspond to a value 1n the
palette and does not have a value equal to an above-
neighboring pixel, palette encoding unit 49 may encode the
pixel as an escape pixel. In particular, palette encoding unit
49 may provide an index value equal to the size of the palette
to entropy encoding unit 56, which may entropy code the
index value as the size of the palette (122). An index value
equal to the size of the palette may signal that the current
pixel 1s being encoded as an escape pixel. Palette encoding
unit 49 may further provide the value of the escape pixel to
entropy encoding unit 56.

In accordance with the techniques of this disclosure,
palette encoding unit 49 may quantize the pixel value (124).
(Quantization of the pixel value may generally include a
bitwise shift operation. In particular, as explained above, 1
palette encoding unit 49 determines during quantization that
a left shift parameter i1s less than or equal to zero, palette
encoding unit 49 may instead perform a bitwise right-shiit
using a right shift parameter having an absolute value equal
to the absolute value of the left shift parameter, but also
having a positive value. Palette encoding unit 49 may then
provide the quantized escape pixel value to entropy encod-
ing unit 56, which may entropy encode the quantized pixel
value (126).

Video encoder 20 may perform this process (e.g., one of
the sequence of steps 116 and 118, step 120, or the sequence
of steps 122-126) for each pixel of the palette mode coded
block.

In this manner, the method of FIG. 4 represents an
example of a method of encoding video data including
determining that a value for a left shift parameter for an
escape-mode coded pixel of a palette-mode coded block of
video data 1s less than zero, based on the value for the left
shift parameter being less than zero, setting a value for a
right shift parameter to a positive value having an absolute
value equal to an absolute value of the left shiit parameter,
and quantizing the escape-mode coded pixel using the value
of the left shift parameter.

FIG. 5 1s a flowchart 1llustrating an example method for
decoding a block of video data in accordance with the
techniques of this disclosure. The method of FIG. 5 may be
performed by video decoder 30 and the components thereof
(e.g., 1llustrated 1n FIG. 3).

Initially, entropy decoding umit 70 may decode data
indicating a coding mode for a block of video data (150).
Entropy decoding unit 70 may use this data to determine a
coding mode for the block (152), e.g., one of intra-predic-
tion, inter-prediction, or palette mode.

In the case that the coding mode i1s intra-prediction or
inter-prediction, entropy decoding unit 70 may decode pre-
diction information (e.g., an intra-mode or motion param-
cters) and provide the prediction information to an appro-
priate one of motion compensation unit 72 or intra
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prediction unit 74 to perform intra-prediction or inter-pre-
diction (154). For example, intra prediction unit 74 may use
an intra-prediction mode to construct a prediction block
from neighboring pixels to the block. As another example,
motion compensation unit 72 may use the motion param-
cters to retrieve (and potentially process, e.g., filter) a
reference block from a previously decoded picture of refer-
ence picture memory 82.

In addition, video decoder 30 may decode and process
residual values of the block (156). For example, mverse
quantization unit 76 may mverse quantize quantized trans-
form coethlicients, and inverse transform unit 78 may inverse
transform the transform coeflicients, to reconstruct a
residual block. Summer 80 may then combine residual
values of the residual block and predicted values of the
predicted block (138) to reconstruct the original block.

Alternatively, entropy decoding unit 70 may determine
that the coding mode for the block 1s palette mode. In this
case, entropy decoding unit 70 may entropy decode data for
a palette of the block, while palette decoding unit 75 may
decode the palette for the block (160) using the entropy
decoded data. As discussed above with respect to Tables 1
and 2, the palette may be predictively coded relative to a
previous palette. Thus, entropy decoding unit 70 may pro-
vide entropy decoded data for the palette to palette decoding,
unit 75, which may reconstruct the palette for the block
using the decoded data.

Entropy decoding unit 70 may also decode data for pixels
of the block (164). For example, the decoded data may
correspond to an index value that 1s less than the size of the
palette. In this case, entropy decoding unit 70 may also
decode a run value (166) and provide the index and the run
value to palette decoding unit 75. Palette decoding unit 75
may set the value of the pixel and each of the pixels in the
run equal to the pixel value of the palette that corresponds
to the index value (168).

As another example, the decoded data may be a run value
without an mdex value. Such a run value without an index
value may indicate a number of pixels coded using copy
from above mode. In this case, entropy decoding unit 70
may provide the run value to palette decoding unit 75, which
may set values for each of the pixels in the run equal to the
values of respective above-neighboring pixel values (170).

As another example, the decoded data may be an index
value that 1s equal to the size of the palette. In this case,
entropy decoding unit 70 may determine that the current
pixel 1s encoded as an escape pixel. Thus, entropy decoding,
unit 70 may entropy decode a quantized value for the escape
pixel (172), and provide the quantized value to palette
decoding umt 75. Palette decoding unit 75, in turn, may
de-quantize the quantized value (174). In particular, palette
decoding unit 75 may de-quantize the quantized value using
the techniques of this disclosure, e.g., as explained 1n greater
detail above and with respect to FIG. 6 below.

Video decoder 30 may perform this process (e.g., one of
the sequence of steps 166 and 168, step 170, or the sequence
of steps 172 and 174) for each pixel of the palette mode
coded block, thereby decoding the palette mode coded
block.

In this manner, the method of FIG. 5 represents an
example of a method including determining that a value for
a right shift parameter for an escape-mode coded pixel of a
palette-mode coded block of video data 1s less than zero,
based on the original value for the rnight shift parameter
being less than zero, setting a value for a left shift parameter
to a positive value having an absolute value equal to an

10

15

20

25

30

35

40

45

50

55

60

65

26

absolute value of the original value, and 1nverse quantizing
the escape-mode coded pixel using the value of the lett shift
parameter.

FIG. 6 1s a flowchart 1llustrating an example technique by
which palette decoding unit 75 may dequantize a quantized
escape pixel value of a palette-mode encoded block of video
data, 1n accordance with the techmques of this disclosure. In
general, the method of FIG. 6 may correspond to element
174 of FIG. 5. That 1s, FIG. 6 represents one example of a
method of dequantizing a quantized escape pixel value of a
palette-mode encoded block of video data. The steps shown
in FIG. 6 need not necessarily be performed in the order
shown, and certain steps may be performed in parallel.

In this example, mitially, palette decoding unit 735 derives
a quantization parameter (QP) for a palette-mode encoded
block of video data (200). For example, palette decoding
unit 75 may determine the QP using the following formula:

OP=(cldx==0)10p"Y:((cldx==1)10p'Cb:Op'Cr)

In this example formula, cIdx represents a context index for
the block of video data. The value of cldx may be set based
on whether the block 1s a luma block, a blue hue chromi-
nance block, or a red hue chrominance block.

Palette decoding unit 75 may then determine a QP ratio
value and a QP remainder value (202). For example, palette
decoding umit 75 may determine the QP ratio (gPper) value
and the QP remainder (qPrem) value according to the
following formulas:

qgPper=qP/6

qPrem=gf%06

Palette decoding unit 75 may then derive a right shift
parameter value (204). For example, palette decoding umit
75 may derive the right shift parameter (invQuantRight-
Shift) value according to the following formula:

invQuantRightShift=6-gPper

Furthermore, palette decoding umt 75 may derive an
oflset parameter value (206). Palette decoding unit 75 may
derive the offset parameter (addOflset) value according to
the following formula:

addOfIset=1nvQuantRight Shift==070:1<<(invQuant-
RightShift-1)

Palette decoding unit 7S may then determine whether the
right shift parameter value 1s less than or equal to zero (208).
If not (1.e., 1f the right shift parameter value 1s greater than
zero) (“NO” branch of 208), palette decoding unit 75 may
calculate the de-quantized value for the escape pixel from a
quantized value for the escape pixel using the right shait
parameter value and the oflset parameter value (210). For
example, palette decoding unit 75 may calculate the de-
quantized value (deQuantEspValue) according to the fol-
lowing formula:

deQuantEspValue=(EspValue®mvQuantScale
[gPrem |+addOffset)>>1nvQuantRightShift,

where EspValue represents the quantized wvalue, and
invQuantScale represents a lookup table, such as {40, 45,
51, 57, 64, 72}.

On the other hand, if the right shift parameter is less than
or equal to zero (“YES” branch of 208), palette decoding
unit 75 may calculate a left shift parameter value as being a
positive value equal to the absolute value of the right shift
parameter value (212). Palette decoding unit 75 may then
calculate the de-quantized value from a quantized value
using the left shift parameter value (214). For example,
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palette decoding umt 75 may calculate the de-quantized
value (deQQuantEspValue) according to the following for-
mula:

deQuantEspValue=EspValue*invQuantScale[gPrem]
<<invQuantLeftShiit

Palette decoding unit 75 may then round the de-quantized
value (216). For example, palette decoding unit 75 may
round the de-quantize value using the following example
clipping operation:

deQuantEsp Value=clip3(0,27497%_1 de-
QuantEspValue),

where clip3 1s a function as defined i I'TU-T H.2635. In
particular, H.265 defines clip3(x, vy, z) as follows:

[ X,z <X

yii >y
| Z; otherwise

clip3(x, vy, 7) =+

In other examples, other rounding operations may be used to
ensure that the value of the de-quantized escape pixel 1s
within a corresponding depth range.

In this manner, the method of FIG. 6 represents an
example of a method including determining that a value for
a right shift parameter for an escape-mode coded pixel of a
palette-mode coded block of video data 1s less than zero,
based on the original value for the right shift parameter
being less than zero, setting a value for a left shift parameter
to a positive value having an absolute value equal to an
absolute value of the original value, and inverse quantizing
the escape-mode coded pixel using the value of the left shift
parameter.

It 1s to be recognized that depending on the example,
certain acts or events of any of the techniques described
herein can be performed 1n a different sequence, may be
added, merged, or left out altogether (e.g., not all described
acts or events are necessary for the practice of the tech-
niques). Moreover, 1n certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded
processing, interrupt processing, or multiple processors,
rather than sequentially.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which 1s non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techmiques described in this disclosure. A computer
program product may include a computer-readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,.,
EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash
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memory, or any other medium that can be used to store
desired program code 1n the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection 1s properly termed a computer-readable medium.
For example, 11 instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transitory media, but
are 1nstead directed to non-transitory, tangible storage
media. Disk and disc, as used herein, includes compact disc
(CD), laser disc, optical disc, digital versatile disc (DVD),
floppy disk and Blu-ray disc, where disks usually reproduce
data magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable gate arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other
structure suitable for implementation of the techmiques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated 1n a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented 1n
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
described 1n this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined 1n a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, 1 conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What 1s claimed 1s:
1. A method of decoding video data, the method com-
prising:

obtaining, by a video decoder, an escape-mode coded
pixel of a palette-mode coded block of video data, the
palette-mode coded block comprising palette index
values mapping pixel values for the palette-mode coded
block to respective entries of a color palette, the escape-
mode coded pixel corresponding to a pixel value that 1s
not in the color palette; and

inverse quantizing, by the video decoder, the escape-
mode coded pixel using a value of a left shift parameter,
wherein 1verse quantizing comprises calculating a
value for the escape-mode coded pixel (de-
QuantEspValue) according to a formula comprising;

deQuantEspValue=EspValue*invQuantScale[qPrem]
<<invQuantLeftShift,
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wherein EspValue represents a coded quantized escape
value coded for the escape-mode coded pixel,
invQuantScale represents an array of inverse quantiza-
tion scale values, gPrem represents a quantization
parameter remainder value, mvQuantLeltShift repre-
sents the value of the left shift parameter, and <<
represents the bitwise lelt shift operator.

2. The method of claim 1, further comprising determining,
the value for the left shift parameter based on a value of a
quantization parameter (qP) for the block.

3. The method of claim 2, further comprising determining,
the value of qP based on a color component index (cIdx) of
a color component including the escape-mode coded pixel.

4. The method of claim 2, wherein determining the value
for the left shift parameter comprises:

calculating a quantization ratio (qPper) according to the

formula qPper=qP/6, wherein gP represents the value
of the gP; and

calculating the value for the left shift parameter using

qPper.

5. The method of claim 1, whereimn the array of mverse
quantization scale values represented by mvQuantScale
comprises {40, 45, 51, 57, 64, 72}.

6. The method of claim 1, further comprising:

decoding the color palette for the palette-mode coded

block:

decoding at least one of the pixel values of the block using,

the color palette; and

reconstructing the block using the escape-mode coded

pixel and the decoded at least one of the pixel values.

7. A device for decoding video data, the device compris-
ng:

a memory configured to store video data; and

a video decoder configured to:

obtain an escape-mode coded pixel of a palette-mode
coded block of the video data, the palette-mode
coded block comprising palette index values map-
ping pixel values for the palette-mode coded block to
respective entries of a color palette, the escape-mode
coded pixel corresponding to a pixel value that 1s not
in the color palette; and

iverse quantize the escape-mode coded pixel using the
value of a left shift parameter, wherein to inverse
quantize the escape-mode coded pixel, the video
decoder 1s configured to calculate a value for the
escape-mode coded pixel (deQuantEspValue)
according to a formula comprising;

deQuantEsp Value=EspValue*mvQuantScale[qPrem]
<<invQuantLeftShift,

wherein EspValue represents a coded quantized escape
value coded for the escape-mode coded pixel,
invQuantScale represents an array of mverse quan-
tization scale values, gPrem represents a quantiza-
tion parameter remainder value, mvQuantLeftShift
represents the value of the left shift parameter, and
<< represents the bitwise left shift operator.

8. The device of claim 7, wherein the video decoder 1s
turther configured to determine the value for the left shait
parameter based on a value of a quantization parameter (qP)
for the block.

9. The device of claim 8, wherein the video decoder 1s
turther configured to determine the value of the gP based on
a color component mdex (cldx) of a color component
including the escape-mode coded pixel.
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10. The device of claim 8, wherein to determine the value
for the left shift parameter, the video decoder i1s configured
to:

calculate a quantization ratio (gPper) according to the

formula qPper=gP/6, wherein gqP represents the value
of the gP; and

calculate the value for the left shuft parameter using gPper.

11. The device of claim 7, wherein the array of inverse

quantization scale values represented by mvQuantScale
comprises {40, 45, 51, 57, 64, 72}.
12. The device of claim 7, wherein the video decoder 1s
turther configured to:
decode the palette for the palette-mode coded block;
decode at least one of the pixel values of the block using
the color palette; and
reconstruct the block using the escape-mode coded pixel
and the decoded at least one of the pixel values.
13. The device of claim 7, wherein the device comprises
at least one of:
an integrated circuit;
a MICroprocessor; or
a wireless communication device.
14. A device for decoding video data, the device com-
prising:
means for obtaining an escape-mode coded pixel of a
palette-mode coded block of video data, the palette-
mode coded block comprising palette index values
mapping pixel values for the palette-mode coded block
to respective entries of a color palette, the escape-mode
coded pixel corresponding to a pixel value that 1s not 1n
the color palette; and
means for mverse quantizing the escape-mode coded
pixel using the value of the left shift parameter, wherein
the means for mverse quantizing comprise means for
calculating a value for the escape-mode coded pixel
(deQuantEspValue) according to a formula comprising:

deQuantEspValue=EspValue* mvQuantScale[qPrem]
<<invQuantLeftShift,

wherein EspValue represents a coded quantized escape
value coded 1for the escape-mode coded pixel,
invQuantScale represents an array of mverse quantiza-
tion scale values, gPrem represents a quantization
parameter remainder value, mvQuantLeftShiit repre-
sents the value of the left shift parameter, and <<
represents the bitwise leit shift operator.

15. The device of claim 14, further comprising means for
determining the value for the left shiit parameter based on a
value of a quantization parameter (qP) for the block.

16. The device of claim 15, further comprising means for
determining the value of the qP based on a color component
index (cldx) of a color component including the escape-
mode coded pixel.

17. The device of claim 15, wherein the means {for
determining the value for the leit shift parameter comprises:

means for calculating a quantization ratio (qPper) accord-

ing to the formula qPper=gP/6, wherein P represents
the value of the gqP; and

means for calculating the value for the left shift parameter

using qPper.

18. The device of claim 14, wherein the array of inverse
quantization scale values represented by invQuantScale
comprises {40, 45, 51, 57, 64, 72}.

19. The device of claim 14, further comprising:

means for decoding the color palette for the palette-mode

coded block:
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means for decoding at least one of the pixel values of the

block using the color palette; and

means for reconstructing the block using the escape-mode

coded pixel and the decoded at least one of the pixel
values.

20. A non-transitory computer-readable storage medium
having stored thereon instructions that, when executed,
cause a processor of a device for decoding video data to:

obtain an escape-mode coded pixel of a palette-mode

coded block of the video data, the palette-mode coded
block comprising palette index values mapping pixel
values for the palette-mode coded block to respective
entries of a color palette, the escape-mode coded pixel
corresponding to a pixel value that 1s not 1n the color
palette; and

inverse quantize the escape-mode coded pixel using the

value of the left shift parameter wherein the instruc-
tions that cause the processor to inverse quantize com-
prise 1structions that cause the processor to calculate
a value {for the escape-mode coded pixel (de-
QuantEspValue) according to a formula comprising:

deQuantEspValue=EspValue*invQuantScale[qPrem]
<<invQuantLeftShift,

wherein EspValue represents a coded quantized escape
value coded for the escape-mode coded pixel,
invQuantScale represents an array of inverse quantiza-
tion scale values, qPrem represents a quantization
parameter remainder value, imnvQuantLeftShiit repre-
sents the value of the left shift parameter, and <<
represents the bitwise left shift operator.
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21. The non-transitory computer-readable storage
medium of claim 20, further comprising instructions that
cause the processor to determine the value for the left shait
parameter based on a value of a quantization parameter (qP)

for the block.

22. The non-transitory computer-readable storage
medium of claim 21, further comprising instructions that
cause the processor to determine the value of the gP based
on a color component index (cldx) of a color component
including the escape-mode coded pixel.

23. The non-transitory computer-readable storage
medium of claim 21, wherein the instructions that cause the
processor to determine the value for the left shift parameter
comprise 1nstructions that cause the processor to:

calculate a quantization ratio (qPper) according to the

formula gPper=qP/6, wherein gP represents the value
of the gP; and

calculate the value for the left shift parameter using gPper.

24. The non-transitory computer-readable storage
medium of claim 20, wherein the array of mverse quanti-
zation scale values represented by invQuantScale comprises
140, 45, 51, 57, 64, 72}.

25. The non-transitory computer-readable storage
medium of claim 20, further comprising instructions that
cause the processor to:

decode the color palette for the palette-mode coded block;

decode at least one of the pixel values of the block using

the color palette; and

reconstruct the block using the escape-mode coded pixel

and the decoded at least one of the pixel values.
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