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(57) ABSTRACT

A deep structured semantic module (DSSM) 1s described
herein which uses a model that 1s discriminatively trained
based on click-through data, e.g., such that a conditional
likelihood of clicked documents, given respective queries, 1s
maximized, and a condition likelihood of non-clicked docu-
ments, given the queries, 1s reduced. In operation, after
training 1s complete, the DSSM maps an input item into an
output item expressed 1n a semantic space, using the trained
model. To facilitate training and runtime operation, a dimen-
sionality-reduction module (DRM) can reduce the dimen-
sionality of the mput 1tem that 1s fed to the DSSM. A search
engine may use the above-summarized functionality to
convert a query and a plurality of documents into the
common semantic space, and then determine the similarity
between the query and documents 1n the semantic space. The
search engine may then rank the documents based, at least
in part, on the similarity measures.
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DIMENSIONALLY REDUCTION OF
LINGUISTICS INFORMATION

BACKGROUND

A traditional search engine processes a query by directly
comparing terms in the query with terms 1 documents. In
some cases, however, a query and a document use different
words to express the same concept. A traditional search
engine may produce unsatisfactory search results in these
circumstances. A search engine may augment a query by
finding synonyms of the query terms and adding those
synonyms to the query. But even this tactic may fail to
uncover conceptual similarities between a query and a
document.

To address the above drawbacks, the research community
has proposed search engines which project queries and
documents to a semantic space, and then match the queries
to the documents 1n that space, rather than (or 1n addition to)
comparing the lexical “surface” form of the queries and
documents. For example, a search engine may use the
well-known Latent Semantic Analysis (LSA) technique to
perform the above-described kind of processing. More
recently, the research community has proposed models that
express deeper relationships within iput information, e.g.,
through the use of neural networks having plural hidden
layers. For example, auto-encoders leverage deep learning to
project linguistic 1items 1nto a semantic space. One approach
trains these auto-encoders 1n an unsupervised manner, €.g.,
by generating model parameters that optimize the recon-
struction of documents, that 1s, after those documents have
been converted into a semantic space.

The above-described latent analysis techniques have, in
some cases, improved the quality of search results. Yet there
remains room for further improvement in this field of
research.

SUMMARY

A deep semantic structured module (DSSM) 1s described
herein for projecting an input item to an output i1tem 1n a
semantic space. For example, the input item may correspond
to an 1nput vector that represents one or more words, while
the output 1tem may correspond to a concept vector that
expresses semantic information regarding the word(s). A
training system produces the model using click-through
data. More specifically, in one implementation, the training
system discriminatively trains the model using the click-
through data such that a conditional likelihood of clicked
documents, given respective queries, 1s maximized, and the
conditional likelthood of non-clicked documents, given the
respective queries, 1s reduced.

In one application, a search engine may use the DSSM to
map a query nto a semantic space. The search engine may
then compute the respective similarities between the query
and a plurality of documents, within the same semantic
space. Based on those similarity measures (along with other
optional ranking factors), the search engine can identily a
subset of documents which are most relevant to the query, 11
any. The search engine may ofler satisfactory performance
in view ol the fact that its runtime objective (of discrimi-
nating relevant documents from irrelevant documents) 1s
aligned with the objective function that was used to train the
DSSM’s model.

According to one illustrative feature, the DSSM may be
implemented as a deep neural network (DNN) having plural
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hidden layers. The model corresponds to parameter values
which define how information 1s propagated through the
DNN.

According to another 1illustrative feature, a dimensional-
ity-reduction module (DRM) may transform the mput item
into a lower-dimension item, and then submit the lower-
dimension item to the DSSM. The lower-dimension item
may be expressed 1n a space having a much smaller dimen-
sionality compared to the space associated with the original
input item. In one implementation, the DRM can perform
the transforming operation by expressing the input 1tem as a
plurality of n-grams, and then mapping the identified
n-grams mto a lower-dimension vector within the dimen-
sion-transformed space. According to one benefit, the train-
ing system can perform its training operation 1n a more
cilicient manner by acting on lower-dimension items, as
opposed to operating on the original untransformed 1nput
items (which may have very high dimensionality).

According to another illustrative aspect, the DRM can be
also used as a standalone component, that 1s, without sub-
sequently feeding the lower-dimension items to the DSSM.

The above approach can be manifested 1n various types of
systems, components, methods, computer readable storage
media, data structures, graphical user interface presenta-
tions, articles of manutfacture, and so on.

This Summary 1s provided to introduce a selection of
concepts 1 a simplified form; these concepts are further
described below 1n the Detailed Description. This Summary
1s not mntended to 1dentily key features or essential features
of the claimed subject matter, nor 1s 1t itended to be used
to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an illustrative environment in which a
search engine processes queries submitted by users. The
search engine performs this task using a similarity determai-
nation system, which, in turn, uses a deep structured seman-
tic model.

FIG. 2 shows one implementation of the environment of
FIG. 1.

FIG. 3 shows one implementation of the similarity deter-
mination system of FIG. 1. The similanty determination
system may employ one or more mstances of a projection
module.

FIG. 4 shows one implementation of a projection module,
for use 1n the similanty determination system of FIG. 3.

FIG. 5 shows a portion of a deep neural network provided
by the projection module of FIG. 4, e.g., showing the
manner 1 which values associated with a first layer con-
tribute to values associated with a second layer.

FIG. 6 shows one application of the similarity determi-
nation system of FIG. 3.

FIG. 7 shows one implementation of a dimensionality-
reduction module, which 1s a component of the similarity
determination system of FIG. 3.

FIG. 8 shows another implementation of a dimensional-
ity-reduction module.

FIG. 9 shows one implementation of a training system,
also shown 1n FIG. 1. The training system produces a model
for use by the similarity determination system.

FIG. 10 1s a flowchart that shows one 1llustrative manner
of operation of the training system of FIG. 9.

FIG. 11 1s a flowchart that shows one 1llustrative manner
of operation of the similarity determination system, which 1s
a component that imtially appears in FIG. 1.
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FI1G. 12 1s a flowchart that shows one 1llustrative manner
of operation of a projection module, which 1s a component
that mitially appears 1n FIG. 3.

FIG. 13 1s a flowchart that shows one 1llustrative manner
of operation of a dimensionality-reduction module, which 1s
a component that initially appears in FIG. 3.

FIG. 14 shows illustrative computing functionality that
can be used to implement any aspect of the features shown
in the foregoing drawings.

The same numbers are used throughout the disclosure and
figures to reference like components and features. Series 100
numbers refer to features originally found 1n FIG. 1, series
200 numbers refer to features originally found in FIG. 2,
series 300 numbers refer to features originally found 1n FIG.
3, and so on.

DETAILED DESCRIPTION

This disclosure 1s organized as follows. Section A
describes illustrative functionality for mapping input items
(e.g., input vectors representing one or more words) 1nto a
semantic space, using a model that 1s discriminatively
trained based on click-through data. Section B sets forth
illustrative methods which explain the operation of the
functionality of Section A. Section C describes 1llustrative
computing functionality that can be used to implement any
aspect of the features described in Sections A and B.

As a preliminary matter, some of the figures describe
concepts 1n the context of one or more structural compo-
nents, variously referred to as functionality, modules, fea-
tures, elements, etc. The various components shown 1n the
figures can be implemented 1n any manner by any physical
and tangible mechamsms, for instance, by software running
on computer equipment, hardware (e.g., chip-implemented
logic functionality), etc., and/or any combination thereof. In
one case, the 1llustrated separation of various components 1n
the figures nto distinct units may retlect the use of corre-
sponding distinct physical and tangible components 1n an
actual 1mplementation. Alternatively, or in addition, any
single component 1llustrated 1n the figures may be imple-
mented by plural actual physical components. Alternatively,
or 1n addition, the depiction of any two or more separate
components in the figures may reflect different functions
performed by a single actual physical component. FIG. 14,
to be described 1n turn, provides additional details regarding
one 1illustrative physical implementation of the functions
shown 1n the figures.

Other figures describe the concepts in flowchart form. In
this form, certain operations are described as constituting,
distinct blocks performed in a certain order. Such imple-
mentations are illustrative and non-limiting. Certain blocks
described herein can be grouped together and performed 1n
a single operation, certain blocks can be broken apart nto
plural component blocks, and certain blocks can be per-
formed 1n an order that differs from that which 1s 1llustrated
herein (including a parallel manner of performing the
blocks). The blocks shown 1n the flowcharts can be 1imple-
mented 1n any manner by any physical and tangible mecha-
nisms, for istance, by software runming on computer equip-
ment, hardware (e.g., chip-implemented logic functionality),
etc., and/or any combination thereof.

As to terminology, the phrase “configured to” encom-
passes any way that any kind of physical and tangible
functionality can be constructed to perform an identified
operation. The functionality can be configured to perform an
operation using, for instance, software running on computer
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equipment, hardware (e.g., chip-implemented logic func-
tionality), etc., and/or any combination thereof.

The term “logic” encompasses any physical and tangible
functionality for performing a task. For instance, each
operation illustrated 1n the flowcharts corresponds to a logic
component for performing that operation. An operation can
be performed using, for mstance, soltware running on com-
puter equipment, hardware (e.g., chip-implemented logic
functionality), etc., and/or any combination thereof. When
implemented by computing equipment, a logic component
represents an electrical component that 1s a physical part of
the computing system, however implemented.

The phrase “means for” i the claims, if used, 1s intended
to 1nvoke the provisions of 35 U.S.C. § 112, sixth paragraph.
No other language, other than this specific phrase, 1s
intended to invoke the provisions of that portion of the
statute.

The following explanation may identily one or more
features as “optional.” This type of statement 1s not to be
interpreted as an exhaustive indication of features that may
be considered optional; that 1s, other features can be con-
sidered as optional, although not expressly i1dentified 1n the
text. Finally, the terms “exemplary” or “illustrative” refer to
one implementation among potentially many implementa-
tions.

A. Illustrative Functionality

A.l. Overview

FIG. 1 shows an environment 102 that includes a training,
system 104 for producing a deep structured semantic model
106 (henceforth, simply “model” 106). The training system
104 produces the model based on click-through data main-
tamned 1 a data store 108. More specifically, as will be
explained 1n greater detail below, the training system 104
produces the model 106 such that a conditional likelihood of
clicked documents, given respective queries, 1s maximized,
and the conditional likelihood of non-clicked documents, for
the respective queries, 1s reduced.

Different systems may make use of the model 106 that 1s
produced by the tramning system 104. In the illustrative
environment of FIG. 1, a search engine 110 provides a
search engine interface 112 for receiving a query from a
user, who inputs the query via a user device 114. A similarity
determination system 116 then uses the model 106 to project
the query 1nto a semantic space. More formally stated, the
similarity determination system 116 projects a query input
item that represents the query (e.g., corresponding to an
input vector) into a query output 1tem in the semantic space.
The query output item captures latent semantic content
associated with the query, and may be expressed as a query
concept vector.

The similarity determination system 116 can then match
the query against each of a plurality of documents 1n the
semantic space, to generate a plurality of similarity mea-
sures. More formally stated, the similarity determination
system 116 determines the similarity, in the semantic space,
between the query output i1tem and each document output
item. Each document output item, in turn, 1s produced by
projecting a document (providing in a data store 118) into
the semantic space, 1 the same manner that the query 1s
projected into the semantic space. Each document output
item may be expressed as a document concept vector.

A ranking module 120 may use the similarity measures,
optionally along with any other features, to assign ranking
scores to the documents, given the query. Each ranking score
indicates the assessed relevance of a particular document to
the submitted query. Based on the ranking scores, the
ranking module 120 can then generate a list of documents
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that are deemed most relevant to the user’s query. The list
may 1dentily zero, one or more documents. Finally, the
search engine interface 112 can return the list of documents
to the user device 114 for the user’s 1mspection.

From a very high-level perspective, the model 106 1s
discriminatively trained using an objective function that
aims to boost the relevance of clicked documents, and
decrease the relevance ol non-clicked documents, with
respect to respective queries in the click-through data. This
objective Tunction aligns with the principal objective of the
search engine 110 itself. For this reason, the search engine
110 may be able to leverage the model 106 to provide highly
relevant search results to Users.

In the case of FIG. 1, the user may specily a query in
manual form, e.g., by typing one or more query terms into
an 1nterface page provided by the search engine interface
112. The user may also receive search results 1n a conven-
tional manner, e.g., by receiving a ranked list of hyperlinks
and snippets associated with the identified documents. How-
ever, the search engine 110 can receive a search query 1n any
manner, and provide 1ts search results in any form. For
example, 1n an alternative case, the user device 114 can form
a query by recognizing keywords i a user’s speech. In
another alternative technique, some component of the envi-
ronment 102 can automatically formulate a query that
expresses features associated with a triggering circumstance.
For instance, the user device 114 can formulate a query 1n an
automatic manner based the current location of the user.

Further, in the case of FIG. 1, the similarty determination
system 116 uses the model 106 to compare a query with at
least one document, within a semantic space. But more
generally, the similanity determination system 116 can use
the model 106 to determine the similarity between any two
instances linguistic information, 1n any application context.
For example, in another case, the similarity determination
system 116 can use the model 106 to compare two docu-
ments within the semantic space, or to compare two phrases
within the semantic space, etc. For instance, a user may
identify a first document 1n a corpus as a query document,
and then ask the similarity determination system 116 to
identily one or more other documents that are semantically
similar to the query document, 11 any.

Nevertheless, to simplily the explanation, the scenario
most frequently evoked herein corresponds to the above-
described case in which an end user uses his or her user
device 114 to submit a query to the search engine 110.
Further, to simplity the explanation, the similarity determi-
nation system 116 will henceforth be explained for the
specific case 1n which each mnput 1tem constitutes an 1nput
vector and each output 1tem constitutes a concept vector. A
vector, as that term 1s used herein, broadly corresponds to
any information having two or more components, €.g., a
component for each element in a given vocabulary or set.

FIG. 2 shows a system 202 which represents one imple-
mentation of the environment 102 shown 1n FIG. 1. Here,
the search engine 110 1s implemented by one or more
servers, optionally together with other computing equipment
(c.g., data stores, routers, load balancers, etc.). The search
engine 110 may be provided at one physical site or distrib-
uted over plural physical sites.

Users operate respective user devices (e.g., user device
204 and user device 206) to interact with the search engine
110. Each user device may represent any computing equip-
ment, such as a personal computer, a laptop computer, a
computer work station, a smartphone or other type of
cellular phone, a media consumption device, a tablet-type
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computing device, a wearable computing device, a set-top
box, a game-playing console, and so on.

Each user device may interact with the search engine 110
via any communication mechanism 208, such as a wide area
network (e.g., the Internet), a local area network, a point-
to-point connection, and so on, or any combination thereof.

In an alternative implementation, one or more aspects of
the search engine 110 can be implemented by each user
device. For example, a user can interact with a local com-
puting device to search a local database. In that context, the
local computing device can implement all aspects of the
search engine 110.

FIG. 3 shows one implementation of the similarity deter-
mination system 116 of FIG. 1. The similanty determination
system 116 1s depicted as including two or more 1nstances of
a projection module, e.g., a first projection module 302 and
a second projection module 304, etc. Fach instance of this
projection functionality maps an mput vector, which repre-
sents linguistic information, into an output concept vector.
The concept vector 1s expressed in a semantic space and
reveals semantic information regarding the linguistic infor-
mation.

More specifically, 1n one case, the similarity determina-
tion system 116 can actually provide two or more separate
instances of projection functionality, to implement the plural
projection modules (302, 304) shown i FIG. 3. For
example, the similarity determination system 116 can pro-
vide two or more physical processing components associ-
ated with different instances of projection functionality.
Alternatively, or 1n addition, the similarity determination
system 116 can provide separate software-implemented
instances ol projection functionality, such as separate
threads, objects, etc. Alternatively, or 1n addition, the simi-
larity determination system 116 can use a single 1nstance of
the projection functionality to process separate instances of
iput items in series, for example, by projecting a set of
documents to the semantic domain, one after the other.

Consider the first projection module 302. That function-
ality includes a dimensionality-reduction module (DRM)
306 and a deep structured semantic module (DSSM) 308.
The DRM 306 accepts an input vector which represents
linguistic information. For example, assume that the linguis-
tic information corresponds to a query that includes one or
more strings (e.g., words). The original mput vector can
represent the linguistic information 1 any manner, such as
a bag-of-words representation. More specifically, 1n that
formulation, the input vector includes an entry for each
possible word in a vocabulary. Fach entry has a value that
identifies the number of times that the corresponding word
appears 1n the linguistic information. For example, for a
query “choosing a dog at the dog shelter,” the entry 1n the
iput vector for “dog” will be assigned a value of 2.

As set forth in Subsection A.3, the DRM 306 can apply
any strategy to transform the input vector into a lower-
dimension 1tem. The lower-dimension i1tem may be
expressed as a vector, and 1s henceforth referred to as a
lower-dimension vector. As the name suggestions, the
lower-dimension vector has fewer dimensions compared to
the original input vector. In other words, the space associ-
ated with the lower-dimension vector 1s smaller than the
space associated with the original mput vector.

The projection module 302 reduces the dimensionality of
cach mput vector for the principal purpose of expediting the
processing performed by the training system 104; otherwise,
the training may become practically intractable in some
cases. The use of the DRM 306 also expedites the runtime
processing ol input vectors, e.g., corresponding to queries
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submitted by users, once the model has been generated 1n the
training phase. In other cases, the traiming system 104 may
perform training on the “raw’ input vectors, without reduc-
tion 1n the dimension of the input vectors. For those cases,
the projection module 302 can omit the DRM 306, 1n which
case the DSSM 308 operates directly on the mnput vectors 1n
both the training phrase and the runtime application phase.

The DSSM 308 projects each lower-dimension vector (or
the original 1input vector) 1nto a concept vector 1 a semantic
space 310. The DSSM 308 uses the model 106 to perform
this task.

The second transtormation module 304 performs the same
operations described above on a second linguistic item. For
example, assume that the second linguistic item corresponds
to a document, or a portion of the document. A DRM 312
then transforms an input vector, which represents the docu-
ment, 1nto a lower-dimension vector. The DSSM 314 then
projects the lower-dimension vector into a concept vector in
the semantic space 310. The DSSM 316 uses a model 106
to perform this task.

In one case, the model 106 (used by the DSSM 308) 1s the
same as the model 106' (used by the DSSM 314). The
training system 104 may produce that single model in a
single training process based on a single corpus of click-
through data. In another case, the tramning system 104
produces the model 106 in a first tramning process, and
produces the model 106' in a second training process. Each
training process can potentially operate on a different corpus
of click-through data. But in the following explanation 1t
will henceforth be assumed that a single model 106 1s used
in all instantiations of the DSSM.

For simplicity, assume that symbol A represents a first
concept vector generated by the first projection module 302.
The symbol B represents a second concept vector generated
by the second projection module 304. A similanity R(A, B)
between A and B 1n the semantic space 310 represents the
extent to which the first linguistic information (e.g., the
query) expresses similar concepts to the second linguistic
information (e.g., the document). The similarity between
two concept vectors 1s inversely proportional to the distance
(d) between them 1n the semantic space 310, such that two
concept vectors that are “close” together will have a rela-
tively high similarity measure.

A similanty determination module 316 determines the
above-described similarity measure R(A, B). The similarity
determination module 316 can use any technique to make
this computation, such as by forming a cosine similarity
measure, as described 1n greater detail below.

A.2. The Deep Structured Semantic Module (DSSM)

FI1G. 4 shows one implementation of the projection mod-
ule 302 introduced with respect to FI1G. 3. To summarize, the
projection module 302 includes a dimensionality-reduction
module (DRM) 306 for mapping an input vector, here
represented by X, 1nto a lower-dimension vector. The input
vector represents linguistic information (such as a query or
a document) as a bag of words, or 1n some other manner of
expression. A deep structured semantic module (DSSM) 308
projects the lower-dimension vector into an output concept
vector within a semantic space. This subsection provides
additional details regarding the DSSM 308. The next sub-
section provides additional details regarding the DRM 306.

The DSSM 308 may be implemented as a deep neural
network (DNN), composed of a plurality of layers 402. FIG.
4 specifically shows that the DSSM 308 includes four layers,
but, more generally, the DSSM 308 can include any number
of layers. Each layer, 1n turn, includes a plural of elements,
referred to as neurons. Each neuron stores a value. Each
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neuron, 1n a given layer, 1s furthermore connected to zero,
one or more neurons in an immediately anterior layer (if
any), and zero, one or more neurons in an immediately
posterior layer (if any). Here, “anterior” and ““posterior”
refer to adjacent layers in relation to a direction of infor-
mation tlow through the DNN, which 1s from bottom to top
in FIG. 4. That 1s, with respect to a given layer, anterior
layers represent lower layers, while posterior layers repre-
sent higher layers.

The layers 402 include a bottommost layer 404 for storing,
values, collectively denoted by z,. More specifically, the
layer 404 represents the mput to the DSSM 308, and
therefore stores the values associated with the lower-dimen-
sion vector provided by the DRM 306. A next layer 406
stores a collection of values z, that are dernived from the
values z, in the first layer. A next layer 408 stores a
collection of values z, that are derived from the values z, 1n
the layer 406. A final output layer 410 stores a collection of
values y that are derived from the values z, 1n the layer 408.

FIG. 4 also represents the various layers (404, 406, 408,
410) as boxes having diflerent respective lengths to indicate
that the diflerent layers have different respective dimension-
alities. Without limitation, in one implementation, the input
vector X fed to the DRM 306 has a dimensionality of 500K,
indicating that there are 500K possible words 1n an 1dentified
vocabulary. The layer 404 has a dimensionality of 30K. For
instance, 11 an n-gram hashing techmque 1s used to produce
the lower-dimension vector, then the dimensionality of layer
404 means that there are 30K accepted n-grams (e.g.,
tri-grams) within the original corpus of 500K words. The
layer 406 and the layer 408 each have a dimensionality of
300 elements. And the layer 410 has a dimensionality of 128
clements. Overall, the projection module maps the input
vector (X), having a dimensionality of 500K, to the output
concept vector (v) 1n the semantic space, having a dimen-
sionality of 128 eclements. To repeat, however, another
implementation of the DSSM 308 can employ any number
of layers, each of which can have any size.

More formally stated, in one implementation, the values
7z, 1n the layer 404 can be expressed as z,=W X, where W,
represents whatever transformation 1s used by the DRM 306
to produce the lower-dimension vector. The values z 1n
layers 406 and 408 may be expressed as z=F(W z._,+b,), for
1=2, . . . N=1. And the values v in the layer 410 may be
expressed as v=f(W,z.._,+b,), where, in the specific
example ot FIG. 4, N=4. The symbol W, denotes the 1-th
weighting matrix produced by the training system 104 (of
FIG. 1), and the symbol b, refers to an optional 1-th bias term,
also produced by the training system 104. The function f(x),
referred to as the activation function, can be formulated 1n
different ways, such as the following tan h function:

] —e (1)
1l +e 2%

Jx) =

FIG. 5 clarifies the use the above equations with respect
to small portion of two layers, namely, a first layer 502 and
a second layer 504. The individual elements 1n each layer
correspond to neurons which store values. The value z,, of
the first neuron 1n the second layer 504 can be computed by
first forming a weighted linear combination of the values 1n
the first input layer 502 that may contribute to this value, as
n V=2, *w,,+Z,,*wW,,+ . . . Z,, *w, . The weighted sum v
can then be plugged into the above-stated tan h function (1n
place of x) to derive the value for z,,. That is, z,,=f(y). The
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individual weighting values used 1n forming the weighted
sum vy collectively form one of the weighting matrices W,
generated by the training system 104, e.g., weighting matrix
506. For simplicity, the contribution of the bias factors 1n
forming the weighted sum has been omitted 1n the above
explanation.

FIG. 6 shows an application of the similarity determina-
tion system 116, and which also serves to summarize the
components set forth with respect to FIGS. 3 and 4. In FIG.
6, a first projection module 602 produces a concept vector
which expresses a query (QQ) 1n a semantic space. A second
projection module 604 produces a concept vector which
expresses a document (D) 1n the same semantic space. A
third projection module 606 produces a concept vector
which expresses a document (D,) in the same semantic
space, and so on.

More specifically, the three (or more) instances of the
projection module can be implemented by separate physical
components or software instances. Or the three (or more)
instances of the projection module can be implemented by a
single physical component or software instance, which
processes linguistic i1tems 1n series, one after the other.
Further, the projection module 604 and the projection mod-
ule 606, etc. can optionally perform their processing opera-
tions on the documents (D,, . . ., D, ) as an ofiline process,
that 1s, 1n advance of the user submitting the query Q.

A first stmilarity determination module 608 determines
the similarity between the query Q and the document D, 1n
the semantic space, while a second similarity determination
module 610 determines the similanty between the query Q)
and the document D 1n the semantic space. As noted above,
cach similarity determination module can compute the simi-
larity between the query Q and a document D as a cosine
similarity measure, as follows:

ygya (2)

Iyollllynll

R(Q, D) = cosine(yg, ¥yp) =

The similarity measures, provided by the similarity deter-
mination modules (608, 610) constitute input features pro-
vided to the ranking module 120. The ranking module can
rank the relevance of the documents based on the similarity
measures alone, e.g., by identifying the document with the
highest similarity measure as the most relevant document,
and the document with the lowest similarity measure as the
least relevant document. Alternatively, the ranking module
120 can rank the documents based on the similarity mea-
sures 1n combination with other features that have a bearing
on the relevance of the documents. For example, the ranking
module 120 may employ a ranking function that 1s trained by
a machine learning technique based on any combination of
descriptive features associated with the queries and docu-
ments.

A.3. The Dimensionality-Reduction Module (DRM)

FIG. 7 shows a dimensionality-reduction module (DRM)
702, which represents one implementation of the dimen-
sionality-reduction modules (306, 312) of FIG. 4. Recall that
one purpose of the DRM 702 1s to reduce the dimensionality
of each mput vector, so as to render training performed by
the traimng system 104 more eflicient, and thus more
commercially feasible, and to expedite runtime processing
of 1nput vectors in the application phase, €.g., 1n executing
searches. Further, as will be described below, the DRM 702

can produce results that are usetul 1n other applications, that
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1s, other than the scenario 1n which DRM 702 serves as an
input stage to a deep structured semantic module (DSSM).

To begin with, a transformation module 704 accepts an
input vector and performs one or more optional preliminary
transformations on the iput vector. For example, assume
that the linguistic information 1n question i1s a query having
the sole keyword “good.” The transformation module 704
can modily the information associated with the mput vector
by adding a beginning token to the start of the word, and
adding an ending token to the end of the word, e.g., to
produce “#good#”. This result 1s generally referred to as a
converted 1tem.

A partition module 706 breaks the converted item into a
plurality of n-grams. Each n-gram contains a sequence of n
consecutive letters 1n the input word. For example, in the
case of FIG. 7, the partition module 706 breaks the con-
verted 1tem “#good#” 1nto the four tri-grams “#go,” “goo,”
“00d,” and “od#”’. A mapping module 708 then maps the
identified n-grams to entries 1n the lower-dimension vector.
For example, the mapping module 708 can produce a
lower-dimension vector having 30K entries, corresponding
to all the possible permutations of three-letter sequences that
may be used in the 500K vocabulary associated with the
input space. All entries 1n the 30K -element vector will have
a count of zero, except the entries for “#go,” “goo,” “ood,”
and “od#”, which will each have a count of 1.

There are relatively rare cases in which two different
words may map to the same n-gram vector. However, as
these cases are very rare, the DRM 702 can efllectively
ignore them without having a noticeable effect on the
performance of the DRM 702. Or the DRM 702 can provide
special processing to addresses these rare cases, €.g., by
artificially inducing distinguishing vectors for words which
collide 1n the dimension-reduced space.

FIG. 8 shows a dimensionality-reduction module (DRM)
802 having the same components described above, that 1s, a
transformation module 804, a partition module 806, and a
mapping module 808. These modules perform the same
functions that were described above with reference to FIG.
7. In the case of FIG. 8, however, the transformation module
804 performs any type of additional transformation on the
input vector. For example, the transformation module 804
can first convert the mput word “cat” to 1ts phonetic repre-
sentation, e.g., “kat”. The transformation module 803 may
then add beginning and ending tokens to the phonetic
representation 1 the manner stated above, to produce
“Hkat#”.

As a point of clarification, FIGS. 7 and 8 represent cases
in which each 1nput vectors represent a single string. But an
input vector may include two or more strings. In that case,
the mapping modules (708, 808) can produce counts that
represent the total number of n-grams of particular kinds that
appear within the two or more strings. For example, the
phrase “good God” would include a count of 2 for the
tri-grams “#go” and “od#” after ignoring the case. The
transformation modules (704, 804) can optionally join the
two or more strings together before sending them to the

partition modules (706, 806), ¢.g., to create the single string
“000dGod”.

Returning briefly to FI1G. 3, the DRMs (306, 312) serve as
input stages to the DSSMs (308, 314). In an alternative case,
the DRMs (306, 312) can feed their lower-dimension vectors
directly 1nto the similarity determination module 316, with-
out the use of the DSSMs (308, 314). For example, the first
DRM 306 can form a dimension-transiformed representation
of a query, while the second DRM 312 can form a dimen-
sion-transformed representation of a word or phrase 1n a
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document. The similarity determination module 316 can
then compare these two lower-dimension vectors to deter-
mine the similarity between them. This mode of operation 1s
potentially useful to help generalize the representations of
instances of linguistic information, making them more likely
to agree despite the presence of small differences between
the surface representations of the linguistic items.

Finally, note that the DRMs (306, 312) 1n FIG. 3 can use
any technique to reduce the dimensionality input vectors that
are fed to them, rather than, or in addition to, the n-gram
hashing technique described above. For example, 1n another
case, the training system 104 can produce a reduced-dimen-
sion matrix R having a prescribed distribution of values (but
note that such training 1s outside the context of the training,
of the model 106). In one merely representative case, the
matrix R can have entries having values of 1 and -1 with
equal probabilities, and values of 0 with a probability of
1-1A/d, where d refers to the dimensionality of the space in
which mput information 1s expressed. A DRM can then
multiply the input vector x with the matrix R, as in z,=Rx,
to produce a lower-dimension vector. One drawback of this
technique 1s that 1t does not, without modification, allow for
the processing ol newly-encountered words that are unac-
counted for 1n the original vocabulary. The n-gram hashing
technique, on the other hand, can successtully address this
situation because 1t can successiully interpret the n-grams 1n
the new word.

The weighting matrix W, shown in FIG. 3 generically
represents whatever information 1s used to by the DRMs
(306, 312) to perform their transformation tasks.

A.4. The Tramning System

FIG. 9 shows one implementation of the training system
104 of FIG. 1. The training system 104 processes a corpus
of click-through data (provided in a data store 108), to
generate the model 106. The model 106 represents the
collection of weighting matrixes (W) and bias factors (b))
shown 1 FIG. 3. Collectively, the parameter values associ-
ated with the model 106 are referred to using the symbol A.

The click-through data generally describes queries sub-
mitted by actual users over some span of time, together with
an indication of documents that the users clicked on and the
documents that the users failed to click on after submitting
those queries. Here, the term “click” 1s intended to have
broad connotation. It may describe the case in which a user
literally clicks on an entry within search results, or some
other presentation of options, using a mouse device. But the
term click also encompasses the cases 1n which a user selects
a document 1n any other manner, such as by using a gesture
on a touchscreen, a free-space gesture that 1s detected using
a video camera, a keyboard action, etc. In other cases, the
term click describes the case 1n which a user exhibits interest
in a document, without expressly selecting the document,
such as by hovering over an entry associated with the
document, or gazing at the document (which can be detected
by eye gaze recognition technology), and so on. In other
cases, some other entity, other than a single user, 1s the agent
which performs the selecting, such as a crowd of users, an
automated software agent (e.g., a BOT), etc. Likewise, the
terms “query” and “document” have broad meaning, each
encompassing any linguistic information that includes one
Or more strings.

However formed, the click-through data encompasses a
plurality of instances of training data, each constituting a
training example. Each example includes a query (Q), a
document (D™) that the user selected in response to the
query, and at least one document (D7) that the user did not
select 1n response to the query. In one case, a data collection
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module can mine this information from archives of a search
engine. In that situation, a non-clicked document (D7) of a
training instance may correspond to an actual document that
was oflered to a user 1n response to a query, but which the
user declined to select. In other cases, the collection module
can randomly select any document from a corpus of docu-
ments, so long as the user did not actually select that
document 1n response to the query. But 1n this latter case,
there 1s no requirement that this document D™ was actually
presented to the user. In any case, FIG. 9 shows that a
training example 1includes four non-clicked documents
{D,, D,7, D,7, D57}, but a training example can include
any number of such documents.

The training system 104 operates by using an iterative
solving mechanism 902 to iteratively achieve an objective
defined an objective function 904, by iteratively changing
the parameter values of the model A. When the iterative
processing 1s finished, the final parameter values constitute
the trained model A. The objective function 904, 1n turn,
mathematically expresses an aim which the model A seeks
to achieve, when fully trained. In the present case, the
objective function stipulates that the conditional likelihood
of the clicked documents, given respective queries, 1s to be
maximized, and the conditional likelihood of non-clicked
documents, given the queries, 1s to be reduced. In other
words, the objective function attempts to make the assessed
relevance of clicked documents as high as possible, while
simultaneously attempting to make the assessed relevance of

non-clicked documents as low as possible.

To mathematically derive the objective function, first note
that the probability P(DIQ) of a clicked document (D™) in a
training example, given a query Q, can first be expressed as
a softmax function as follows:

exp(yRA(Q, D")) (3)

P(D™ = .
(DO 2.p7ep EXPRA(Q, D))

The term R ,(Q, D7) represents the similarity between the
query Q and the clicked document D™ in the semantic space,
for a given current selection of parameters associated with a
model A. The term D represents the set of five documents in
the training instance, including D™ and the four non-clicked
documents, although, as stated above, a training example
can include any number of non-clicked documents. The term
R ,(Q, D" represents the similarity between the query Q and
one of the documents (D') in the training example, in the
semantic space. The symbol 1 represents an empirically-
derived smoothing factor (e.g., which can be generated by
analyzing a held-out dataset of training examples). For this
individual tramning example, the objection function will
express an attempt to make R(Q, D) as high as possible, and
each R(Q, D7) as low as possible, to overall make P (D*1Q)
as high as possible, and each P(D71Q) as low as possible.

Overall, when considering all of the training instances in
the corpus of click-through data, the objective function
involves attempting to maximize the conditional likelihood
of the clicked documents given the corresponding queries,
or equivalently, minimize the following loss equation:

LA =-log | | PO 0. (4)

(©.D7)
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In other words, the objective 1s to derive a set of parameter
values that minimizes the above equation, with respect to all
of the examples 1n the empirical click-through data, or some
subset thereol.

In one approach, the iterative solving mechanism 902
uses a gradient-based numerical optimization algorithm to
solve the above problem, such as a gradient descent tech-
nique. The iterative solving mechanism 902, for instance,
can apply the following update rule to perform the optimi-
zation:

AL(A) (3)

A=A —
t t—1 — & IA

A=Ay

Here, A, and A, , are the models at the t” and t-1"
iteration, respectively, and €, 1s a learning rate parameter.
From a high-level perspective, the iterative solving mecha-
nism 902 makes a large change 1n the model A whenever the
model A 1s changing by a relatively large amount from
iteration to 1iteration, and makes a smaller change in the
model A whenever the model A 1s changing by a slower
amount.

More specifically, assume that there are M traiming
examples in the click-through data. The m” training
example 1s (Q,_, D_7), corresponding to a particular pairing
of a submitted query (Q, ) and a document (D _7) that has
been clicked 1n response to that query. The loss function for

that individual traiming instance is:
L(A)=-log P(D,"1Q,,) (6).

The derivative of the loss function as a whole can there-
fore be expressed as:

(7)

OLA) _ < OLn(A)
dA A

m=1

The term

0 Ly, (A)
aA

can be derived as follows. To simplify the notation, the
subscript m will be omitted 1n the following. First, the loss

function derived above can be expressed as follows:
L(A)=log(1+Zexp(—pA,)) (8),

where A =R(Q,D")-R(Q., D,”). The gradient of the loss
function with respect to the N” weight matrix W ,, is:

@L(A)_Zwa&j
oWy - TOWy

where:

(2)

dA;  IR(Q.D") OR(Q,D;) (10)
IWy Wy OWy

and

~exp(—yA ;) (11)

14 Zﬁ exp(—gb&j;).
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Now, let z, , and z, ;, refer to the activation in the hidden
layer 1 for query Q and document D, respectively. And lety,
and v, refer to the output activation for the output layer 410
for query Q and document D, respectively. Further, to
simplity the following notation, let a, b, and ¢ correspond to
yQTyD, 1/|lyoll, and 1/]ly ||, respectively. Finally, assume that
the activation function used by the model corresponds to the
tan h function described above in Equation (1). With those
definitions, each term 1n the right-hand side of Equation (10)
can be calculated for the pair (Q, D) using the following
formula:

IRQ,D) O (12)

T
YYD _s@D)T | s@.D).T
d WN -1.¢ YD

= = Z GA .
AWy llvolllypll ~— 22 ™V N-LD

where:

6yQ(Q*D)=(1—yQ)m(1+yQ)m(bcyﬂ—acb3yQ) (13)

and

6yﬂ(Q’D)Z(1 —yplo(l+yp)o(bcys-a 553}”5-) (14).

In the above equations, the operation o 1s an element-wise
multiplication (1.e., a Hadamard product).
The values {8} for each successive hidden layer, moving

down through the DNN 1n the direction of FIG. 3, can be
computed through back projection as follows:

Z,

(15)

and

I

(16).

Correspondingly, the gradient of the loss function with
respect to an intermediate weight matrix W, 1=2, . . ., N-1,
can be computed as:

(17)

BL(A) IA;
W = 2L

J

OA;
where ——

oW,

1s equal to:

+ 7 + T T
(61',,42@’5) )Zz'—l +§,va LD )Zf—l,{ﬁ )_(3,1_:‘@(@% )Zz'—l,

kd

QT+6f,Dj_ o _)Zz'—l,Dj_T) (18).

In a next “forward” phase of the training, the iterative
solving mechanism 902 uses the thus-calculated weighting
matrices to reprocess the various iput vectors X, €.g., using
the equations described in Subsection A.2. This operation
updates the values associated with the neurons 1n the various
layers 402 of the DNN. In a next “backward” phrase of the
training, the iterative solving mechanism 902 then uses the
above equations to re-compute the weighting matrices. The
iterative solving mechanism 902 repeats the above-de-
scribed training process until the DNN accurately models
the behavior expressed 1n the click-through data, within a
desired degree of tolerance. The bias factors b, can be
derived using the same approach described above.

The training system 104 can perform the above-described
processing using parallel processing resources 906. The
parallel processing resources 906 can be implemented 1n any
manner, €.g., using hardware units, software units, or a
combination thereof. For example, the training system 104

-
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can use an architecture similar to that shown 1n FIG. 3. Each
separate processing unit, however implemented, can include
a dimensionality-reduction module (DRM) for calculating a
lower-dimension vector associated with a document D, a
deep structured semantic module (DSSM) for generating an
output concept vector y,, 1n the semantic space, a similarity
determination module for generating the similarity measure
R(Q, D), and a softmax module for generating P(DIQ).
Another processing unit can generate a representation y , of
the query QQ 1n the semantic space.

B. Illustrative Processes

FIGS. 10-13 explain the various components of FIG. 1 in
flowchart form. Since the principles underlying the opera-
tion of these components have already been described in
Section A, certain operations will be addressed 1n summary
fashion 1n this section.

Starting with FIG. 10, this figure shows a procedure 1002
by which the training system 104 produces the model 106.
In block 1004, the training system 104 receives click-
through data, e.g., from a search log archive provided by the
search engine 110, or from some other source. In block
1006, the training system 104 optionally transforms queries
and documents 1n the click-through data into a dimension-
reduced form using one or more dimensionality-reduction
modules (DRMs). This yields lower-dimension items. In
block 1008, the traming system 104 generates the model 106
using the lower-dimension items (or the ornginal input
items). In one approach, the training system 104 performs
this training such that the conditional likelihood of clicked
documents, given respective queries, 1s maximized, and the
conditional likelthood of non-clicked documents, given the
queries, 1s reduced. In block 1010, the training system 10
stores the model 106. For instance, block 1010 may consti-

tute installing the model 106 1n the search engine 110.
FIG. 11 shows a procedure 1102 which describes the

operation of the search engine 110 of FIG. 1. In block 1104,
the similarity determination system 116 receives a first input
item (e.g., a first input vector) which represents first linguis-
tic information, e.g., a query. In block 1106, the similarity
determination system 116 projects the first input 1tem 1nto a
first output item (e.g., a first concept vector) expressed 1n a
semantic space, using the model 106 trained as per the
procedure of FIG. 10. In block 1108, the similanty deter-
mination system 116 receives a second output item (e.g., a
second concept vector) that 1s also expressed 1n the semantic
space. For mstance, the similarity determination system 116
may have previously produced the second output item by
projecting a second input item, representing a document,
into the semantic space. In block 1110, the similarity deter-
mination system 116 determines a similarity measure which
reflects a similarity between the first output item and the
second output item, 1n the semantic space. The feedback
loop indicates that the similarity determination system 116
can perform the above-described operation for one or more
additional documents, to generate one or more additional
similarity measures. More specifically, these per-document
operations can be performed in series, as shown, or in
parallel, or combination thereof. In block 1112, the ranking
module 120 ranks the documents based on the similarity
measures, to produce search results. In block 1114, the
search engine 110 outputs search results that are provided 1n
block 1112.

FIG. 12 shows a procedure 1202 that represents one
manner of operation of the projection module 302 of FIG. 4.
In block 1204, the dimensionality-reduction module (DRM)
306 receives an mput item (e.g., an mput vector) that
represents linguistic information, such as a query or part of
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a document, etc. In block 1206, the DRM 306 transforms the
input 1tem into a lower-dimension item, e.g., by performing
n-gram hashing, random projection, or some other technique
to produce a lower-dimension vector. In block 1208, the
deep-structured semantic module (DSSM) 308 projects,
using the model 106, the lower-dimension 1tem to an output
item expressed 1 a semantic space. In block 1210, the
DSSM 308 outputs the output 1tem, €.g., by sending 1t to the
similarity determination module 316 of FIG. 3.

FIG. 13 shows a procedure 1302 which explains one
manner ol operation of the DRM 306 of FIG. 4, which can
be implemented using the functionality of FIG. 7 or 8, or
some other functionality. In block 1304, the DRM 306
receives an input item that represents linguistic information,
such as a query or part of a document. In block 1306, the
DRM 306 optionally converts the mput item into a con-
verted 1tem, such as by adding beginning and ending tokens
to the word(s) associated with the mput item, and/or con-
verting the word(s) into their phonetic form. In block 1308,
the DRM 306 expresses the information associated with the
converted 1tem as a plurality of n-grams. In block 1310, the
DRM 306 maps the identified n-grams to counts in a
lower-dimension 1tem. Overall, the procedure 1302 shown
in FIG. 13 can be performed with or without subsequently
processing the lower-dimension 1tem using the DSSM 308.

C. Representative Computing Functionality

FIG. 14 shows computing functionality 1402 that can be
used to implement any aspect of the functionality of Sec-
tions A and B. For instance, the type of computing func-
tionality 1402 shown 1n FIG. 14 can be used to implement
the training system 104, and/or any component of the search
engine 110 (such as the similanty determination system
116), and/or the user device 114, etc. In all cases, the
computing functionality 1402 represents one or more physi-
cal and tangible processing mechanisms.

The computing functionality 1402 can include one or
more processing devices 1404, such as one or more central
processing units (CPUs), and/or one or more graphical
processing units (GPUs), and so on.

The computing tunctionality 1402 can also include any
storage resources 1406 for storing any kind of information,
such as code, settings, data, etc. Without limitation, for
instance, the storage resources 1406 may include any of
RAM of any type(s), ROM of any type(s), flash devices,
hard disks, optical disks, and so on. More generally, any
storage resource can use any technology for storing infor-
mation. Further, any storage resource may provide volatile
or non-volatile retention of information. Further, any storage
resource may represent a fixed or removal component of the
computing functionality 1402. The computing functionality
1402 may perform any of the functions described above
when the processing devices 1404 carry out instructions
stored 1 any storage resource or combination of storage
resources.

As to terminology, any of the storage resources 1406, or
any combination of the storage resources 1406, may be
regarded as a computer readable medium. In many cases, a
computer readable medium represents some form of physi-
cal and tangible entity. The term computer readable medium
also encompasses propagated signals, e.g., transmitted or
received via physical conduit and/or air or other wireless
medium, etc. However, the specific terms “computer read-
able storage medium” and “computer readable medium
device” expressly exclude propagated signals per se, while
including all other forms of computer readable media.

The computing functionality 1402 also includes one or
more drive mechanisms 1408 for interacting with any stor-
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age resource, such as a hard disk drive mechanmism, an
optical disk drive mechanism, and so on.

The computing functionality 1402 also includes an input/
output module 1410 for receiving various inputs (via input
devices 1412), and for providing various outputs (via output
devices 1414). Illustrative mput devices include a keyboard
device, a mouse mput device, a touchscreen 1nput device, a
digitizing pad, one or more video cameras, one or more
depth cameras, a free space gesture recognition mechanism,
one or more microphones, a voice recognition mechanism,
any movement detection mechanisms (e.g., accelerometers,
gyroscopes, etc.), and so on. One particular output mecha-
nism may include a presentation device 1416 and an asso-
ciated graphical user intertace (GUI) 1418. Other output
devices include a printer, a model-generating mechanism, a
tactile output mechanism, an archival mechanism (for stor-
ing output mformation), and so on. The computing func-
tionality 1402 can also include one or more network inter-
taces 1420 for exchanging data with other devices via one or
more communication conduits 1422. One or more commu-
nication buses 1424 communicatively couple the above-
described components together.

The communication conduit(s) 1422 can be implemented
in any manner, e.g., by a local area network, a wide area
network (e.g., the Internet), point-to-point connections, etc.,
or any combination thereof. The communication conduit(s)
1422 can include any combination of hardwired links,
wireless links, routers, gateway functionality, name servers,
etc., governed by any protocol or combination of protocols.

Alternatively, or in addition, any of the functions
described 1n the preceding sections can be performed, at
least 1n part, by one or more hardware logic components. For
example, without limitation, the computing functionality
1402 can be mmplemented using one or more of: Field-
programmable Gate Arrays (FPGAs); Application-specific
Integrated Circuits (ASICs); Application-specific Standard
Products (ASSPs); System-on-a-chip systems (SOCs);
Complex Programmable Logic Devices (CPLDs), efc.

In closing, the functionality described herein can employ
various mechanisms to ensure the privacy of user data
maintained by the functionality, 1f any. For example, the
functionality can allow a user to expressly opt in to (and then
expressly opt out of) the provisions of the functionality. The
functionality can also provide suitable security mechanisms
to ensure the privacy of the user data (such as data-sanitizing
mechanisms, encryption mechanisms, password-protection
mechanisms, etc.).

Further, the description may have described various con-
cepts in the context of illustrative challenges or problems.
This manner of explanation does not constitute a represen-
tation that others have appreciated and/or articulated the
challenges or problems in the manner specified herein.
Further, the claimed subject matter 1s not limited to 1mple-
mentations that solve any or all of the noted challenges/
problems.

More generally, although the subject matter has been
described 1n language specific to structural features and/or
methodological acts, 1t 1s to be understood that the subject
matter defined 1n the appended claims 1s not necessarily
limited to the specific features or acts described above.
Rather, the specific features and acts described above are
disclosed as example forms of implementing the claims.

What 1s claimed 1s:

1. A method performed by a computing device, the
method comprising:

obtaining a query comprising one or more words from a

vocabulary having a first dimension;
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transforming the one or more words of the query into a
phonetic representation of the one or more words;
processing the phonetic representation to obtain a lower-
dimension representation comprising a plurality of
n-grams in an n-gram space having a second dimension

that 1s smaller than the first dimension;

performing a natural language processing operation on the

lower-dimension representation, the natural language
processing operation comprising determining simailar-
ity measures reflecting similarity of the one or more
words of the query to a plurality of documents;

based at least on the similarity measures, selecting a

subset of the documents that are relevant to the query;
and

outputting the selected subset of documents in response to

the query.

2. The method of claim 1, further comprising:

recerving the query from a user device over a network;

and

in response to the query, sending search results identiiying

the selected subset of documents to the user device over
the network.

3. The method of claim 1, further comprising:

transforming the documents 1nto other phonetic represen-

tations; and

processing the other phonetic representations to obtain

other lower-dimension representations of the docu-
ments,

the natural language processing operation comprising;:

mapping the lower-dimension representation of the
query and the other lower-dimension representations
of the documents mto a semantic space; and

determining the similarity measures based at least on
relative distances between the lower-dimension rep-
resentation of the query and other lower-dimension
representations of the documents 1n the semantic
space.

4. The method of claim 3, wherein the one or more words
are obtained as a bag-of-words representation of the query.

5. The method of claim 3, further comprising:

training a semantic model to map the lower-dimension

representation of the query and the other lower-dimen-
s1on representations of the documents into the semantic
space using click-through data reflecting user selec-
tions of various documents after submitting various
queries.

6. The method of claim 1, wherein the processing com-
prises adding tokens to the phonetic representation, indi-
vidual n-grams of the lower-dimension representation com-
prising individual tokens.

7. A system comprising:

a processing device; and

a computer readable storage medium storing instructions

which, when executed by the processing device, cause
the processing device to:

obtain a query comprising one or more words from a

vocabulary having a first dimension;

transform the one or more words of the query into a

phonetic representation of the query;

process the phonetic representation of the query to obtain

a lower-dimension representation of the query, the
lower-dimension representation comprising a plurality
of n-grams 1n an n-gram space having a second dimen-
sion that 1s smaller than the first dimension:

use the lower-dimension representation to determine simi-

larity measures reflecting similarity of the query to a
plurality of documents;
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based at least on the similarity measures, select a subset
of the documents that are relevant to the query; and

output the selected subset of documents in response to the
query.

8. The system of claim 7, wherein the 1nstructions, when
executed by the processing device, cause the processing
device to:

obtain click-through data reflecting user selections of

various documents after submitting various queries;
transform the various documents and the various queries
into various phonetic representations;

process the various phonetic representations of the vari-

ous documents and the various queries to obtain vari-
ous lower-dimension representations comprising vari-
ous n-grams 1n the n-gram space; and

train a semantic model using the click-through data to

map the various lower-dimension representations into a
semantic space.

9. The system of claim 8, wherein the 1nstructions, when
executed by the processing device, cause the processing
device to:

transform the documents into other phonetic representa-

tions of the documents; and

process the other phonetic representations of the docu-

ments to obtain other lower-dimension representations
of the documents,

map the lower-dimension representation of the query and

the other lower-dimension representations of the docu-
ments 1nto the semantic space using the semantic
model; and

determine the similarity measures based at least on rela-

tive distances between the lower-dimension represen-
tation of the query and other lower-dimension repre-
sentations of the documents 1n the semantic space.

10. The system of claim 9, wherein the instructions, when
executed by the processing device, cause the processing
device to:

receive the query from a user device over a network; and

in response to the query, send search results identifying

the selected subset of documents to the user device over
the network.

11. The system of claim 10, wherein the instructions,
when executed by the processing device, cause the process-
ing device to:

train the semantic model by iteratively adjusting model

parameters of the semantic model to achieve an objec-
tive defined in an objective function.

12. The system of claim 11, wherein the objective func-
tion increases a conditional likelihood of clicked documents
grven respective queries.

13. The system of claim 12, wherein the objective func-
tion reduces a conditional likelihood of non-clicked docu-
ments given the respective queries.

14. A computer readable storage medium storing com-
puter readable 1nstructions which, when executed by one or
more processing devices, cause the one or more processing,
devices to perform acts comprising:

obtaining a query comprising one or more words from a

vocabulary having a first dimension;
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transforming the query into a phonetic representation of

query,

processing the phonetic representation to obtain a lower-

dimension representation of the query, the lower-di-
mension representation comprising a plurality of
n-grams in an n-gram space having a second dimension
that 1s smaller than the first dimension;

using the lower-dimension representation of the query to

determine similarity measures reflecting similarity of
the query to a plurality of documents;

based at least on the similarity measures, selecting a

subset of the documents that are relevant to the query;
and

outputting the selected subset of documents 1n response to

the query.

15. The computer readable storage medium of claim 14,
the acts further comprising:

transforming the documents 1nto other phonetic represen-

tations of the documents:

processing the other phonetic representations to obtain

other lower-dimension representations of the docu-
ments 1 the n-gram space; and

using the other phonetic representations of the documents

with the lower-dimension representation of the query to
determine the similarity measures.

16. The computer readable storage medium of claim 15,
the acts further comprising:

comparing the lower-dimension representation of the

query directly to the other lower-dimension represen-
tations of the documents to determine the similarity
measures.

17. The computer readable storage medium of claim 15,
the acts further comprising:

adding a token to the beginming of the phonetic represen-

tation of the query to obtain the lower-dimension
representation of the query; and

adding the token to the beginning of the other phonetic

representations of the documents to obtain the other
lower-dimension representations of the documents.

18. The computer readable storage medium of claim 17,
the acts further comprising:

adding the token to the end of the phonetic representation

of the query to obtain the lower-dimension representa-
tion of the query; and

adding the token to the end of the other phonetic repre-

sentations of the documents to obtain the other lower-
dimension representations of the documents.

19. The computer readable storage medium of claim 18,
the similarity measures being determined using the phonetic
representation of the query having the token added to the
beginning and the end of the phonetic representation, and the
other phonetic representations of the documents having the
token added to the beginning and the end of the other
phonetic representations.

20. The computer readable storage medium of claim 19,
the token being a character other than a letter.
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