12 United States Patent

Cui et al.

US010055251B1

US 10,055,251 B1
Aug. 21, 2018

(10) Patent No.:
45) Date of Patent:

(54) METHODS, SYSTEMS, AND MEDIA FOR
INJECTING CODE INTO EMBEDDED
DEVICES

(75) Inventors: Ang Cui, New York, NY (US);
Salvatore J. Stolfo, Ridgewood, NI
(US)

(73) Assignee: The Trustees of Columbia University
in the City of New York, New York,
NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 229 days.

(21) Appl. No.: 12/765,814

(22) Filed: Apr. 22, 2010

Related U.S. Application Data
(60) Provisional application No. 61/171,643, filed on Apr.

22, 2009.
(51) Int. CL

GOGF 9/48 (2006.01)

GOGF 9/46 (2006.01)

GOGF 8/656 (2018.01)

GOGF 9/445 (2018.01)

GO6F 21/00 (2013.01)

GO6F 21/64 (2013.01)

GOGF 21/51 (2013.01)

GOGF 21/50 (2013.01)

GOGF 21/52 (2013.01)
(52) U.S. CL

CPC oo GOGF 9/461 (2013.01); GO6F 8/656

(2018.02); GOGF 8/67 (2013.01); GOGF 9/48
(2013.01); GO6F 21/00 (2013.01); GO6F
21/50 (2013.01); GO6F 21/51 (2013.01);

GOGF 21/52 (2013.01); GO6F 21/64 (2013.01)

Section: Jixi

1OS CODE

Seciion: .sdata

Section: .sdata

Sechion: .sdaia

(38) Field of Classification Search
CPC . GO6F 8/67; GO6F 78/67;, GO6F 21/00; GO6F
21/50-21/52; GO6F 21/64; GO6F 21/534
USPC e, 717/168
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,052,778 A 4/2000 Hagy et al.
6,253,317 B1* 6/2001 Knapp et al. 712/244
6,874,087 Bl 3/2005 Fetkovich et al.

(Continued)

OTHER PUBLICATTIONS

“Buffer Overflow 2a”—Stack Oct. 26, 2007 <http://www.tenouk.
com/Bufferoverflowc/Bufteroverflow2a.html>.*

(Continued)

Primary Examiner — Jyoti Mehta
(74) Attorney, Agent, or Firm — Byrne Poh LLP

(57) ABSTRACT

Mechanisms for mjecting code into embedded devices are
provided. In some embodiments, once the code 1s mjected
into the embedded device, the mnjected code can analyze and
modily the code of the embedded device (e.g., firmware) to
create the execution environment for the injected code. For
example, the injected code can identily program instruction
locations 1n the code of the embedded device into which
Jump 1nstructions can be placed. The injected code can also
insert at least one jump instruction at an i1dentified program
instruction location 1n the code of the embedded device. In
response to the execution of a jump instruction, the mjected
code can save a context of the code of the embedded device
to memory and loading a payload context into a processor of
the embedded device. The payload context can then be
executed by the processor of the embedded device.

16 Claims, 7 Drawing Sheets

Section: Axt

—n, |

{5 CODE

PEM Code

"1 =338

PEM Pavload Code

Fmpty

Section: .sdata

section: sdatn

il

Sectinn: sdaia

US 10,055,251 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,386,839 Bl1* 6/2008 Golender et al. 717/131
7,596,721 B1* 9/2009 Flake etal. 714/42
8,266,597 B2* 9/2012 Panchamukhi et al. 717/129
2002/0013938 Al 1/2002 Duesterwald et al.
2002/0199172 Al1* 12/2002 Bunnell 717/128
2003/0023856 Al 1/2003 Horne et al.
2003/0115580 Al 6/2003 Arai et al.
2003/0163508 Al* 8/2003 Goodman 709/100
2003/0204374 Al1* 10/2003 Madsen et al. 702/186
2004/0168157 Al* 8/2004 Hundtetal. 717/130
2004/0237068 Al* 11/2004 Rencooooeevviiiieniiinnnn, 717/110
2005/0060522 Al1* 3/2005 Correacoooeevvevnnnn, 712/227
2005/0063242 Al1* 3/2005 Rencoooovvviiiiiinnniinnnnn, 365/222
2005/0108562 Al* 5/2005 Khazan et al. 713/200
2006/0107268 Al* 5/2006 Chrabich 718/100
2006/0161985 Al* 7/2006 Zhaoccoooevvvviviniiinnninnn, 726/24
2006/0174226 Al* 8/2006 Fairetal. 717/127
2006/0277539 Al* 12/2006 Amarasinghe et al. 717/168
2007/0022428 Al* 1/2007 Yamasaki 718/108
2007/0055711 Al 3/2007 Polyakov et al.
2007/0274230 A1 11/2007 Werber et al.
2008/0083030 Al* 4/2008 Durham et al. 726/22
2008/0291017 A1 11/2008 Yermal et al.
2009/0249368 Al* 10/2009 Needamangala et al. 719/328
2010/0011243 Al1* 1/2010 Locastoetal. 714/15
2010/0275173 A1 10/2010 McDonald et al.
2010/0325704 A1 12/2010 Etchegoyen et al.
2011/0219452 Al 9/2011 Porter et al.
2011/0276837 Al 11/2011 Potter et al.
2012/0011219 Al 1/2012 Zhang et al.
2012/0017262 Al 1/2012 Kapoor et al.
2016/0021121 Al 1/2016 Cu et al.

OTHER PUBLICATIONS

Merriam-Webster Online Dictionary ‘regard’, Merriam-Webster,
May 14, 2006, 2 pages, [retrieved from the internet on Jul. 24,
2016], retrieved from URL <www.merriam-webster.com/diction-
ary/regard>.*

Abma, J., “Virata EmWeb R6.0.1 Remote Crash Vulnerability™, Jun.
4, 2010, available at: http://www.exploit-db.com/exploits/12095/.
CERT Advisory CA-2002-07, “Double Free Bug 1n zlib Compres-
sion Library”, Jul. 20, 2002, available at: http://www.cert.org/
advisories/CA-2002-07 . html.

Cul, A., and Stolfo, S.J., “A Quantitative Analysis of the Insecurity
of Embedded Network Devices: Results of a Wide-Area Scan”,

(Gates, C., et al., Eds.), In ACSAC Dec. 6-10, 2010, Austin, Texas,
ACM, pp. 97-106.

National Vulnerability Database, “Vulnerability Summary for CVE-
2008-4419”, Mar. 8, 2011, available at: http://web.nvd.nist.gov/
view/vuln/detail ?vulnld=CVE-2008-4419.

National Vulnerability Database, “Vulnerability Summary for CVE-
2011-41617, Feb. 2, 2012, available at: http://web.nvd.nist.gov/
view/vuln/detail?vulnld=CVE-2011-4161.

National Vulnerability Database, “Vulnerability Summary for CVE-

2011-4785”, Jan. 18, 2012, available at: http://web.nvd.nist.gov/
view/vuln/detail ?vulnld=CVE-2011-4785.

SecurityFocus, “Sec. Vulnerability in ChaiVM EZloader”, Jul. 30,
2002, available at: http://www.securityfocus.com/advisories/4317.
Stolfo, S.J., et al., “Self-Monitoring Monitors”, Technical Report,
CUCS-026-09, Columbia University Computer Science Depart-
ment, Apr. 27, 2009.

U.S. CERT—Vulnerability Note VU#238678, “The zlib Compres-
sion Library 1s Vulnerable to a Denial-of-Service Condition™, Oct.
5, 2005, available at: http://www.kb.cert.org/vuls/1d/238678.

U.S. CERT—Vulnerablllty Note VU#680620, “Zlib Inflate() Rou-
tine Vulnerable to Buffer Overflow”, Apr. 5, 2007, available at:
http://www.kb.cert.org/vuls/1d/680620.

U.S. Appl. No. 61/599,377, filed Feb. 15, 2012.

U.S. Appl. No. 61/602,601, filed Feb. 22, 2012.

Arce, 1., “The Rise of the Gadgets™, In IEEE Security and Privacy,
vol. 1, No. 5, Sep.-Oct. 2003, pp. 78-81.

Chang, H., and Atallah, M.J., “Protecting Software Code by
Guards™, In Proceedings of the Digital Rights Management Work-
shop, Philadelphia, PA, US, Nov. 5, 2001, pp. 160-175.

Cul, A. and Voris, J., “Print Me If You Dare: Firmware Modification
Attacks and the Rise of Printer Malware”, In Proceedings of the
28th Chaos Communication Congress, Berlin, DE, Dec. 27-30,
2011.

Cul, A., et al., “Brave New World: Pervasive Insecurity of Embed-
ded Network Devices”, In Proceedings of the 14th International
Symposium on Recent Advances in Intrusion Detection (RAID
’09), Saint-Malo, FR, Sep. 23-25, 2009, pp. 378-380.

Ghourabi, A., et al., “Honeypot Router for Routing Protocols
Protection”, In Proceedings of the 4th International Conference on
Risks and Security of Internet and Systems (CR1SIS *09), Toulouse,
FR, Oct. 19-22, 2009, pp. 127-130.

HP Support Communication—Security Bulletin, “HPSBPI02728

SSRT 100692 rev.6—Certain HP Printers and HP Digital Senders,
Remote Firmware Update Enabled by Default”, Technical Report,
Nov. 30, 2011, available at: http://h20000.www?2 hp.com/bizsup-
port/ TechSupport/Document.jsp?objectIlD=c03102449.

HP, “HP Security Solutions FAQ”, Technical Report, May 2006.
Krugel, C., et al., “Detecting Kernel-Level Rootkits Through Binary
Analysis”, Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC ’04), Tucson, AZ, US, Dec.
6-10, 2004, pp. 91-100.

L1, Y., et al., “Sbap: Software-Based Attestation for Peripherals”, In
Proceeding of the 3rd International Conference on Trust and Trust-
worthy Computing (TRUST ’10), Berlin, DE, Jun. 21-23, 2010, pp.
16-29.

Riley, R., et al., “Guest-Transparent Prevention of Kernel Rootkits
with VMM-Based Memory Shadowing™, In Proceedings of the 11th
International Symposium on Recent Advances in Intrusion Detec-
tion (RAID ’08), Cambridge, MA, USA, Sep. 15-17, 2008, pp. 1-20.
Rinard, M., “Manipulating Program Functionality to Eliminate
Security Vulnerabilities”, In Advances in Information Security, vol.
54, 2011, pp. 109-115.

Seshadri, A., et al., “SWATT: SoftWare-Based AT Testation for
Embedded Devices”, In Proceedings of the IEEE Symposium on
Security and Privacy (S&P *04), Oakland, CA, US, May 9-12, 2004,
pp. 272-282.

Spansion, “S25FL064P: 64 Mbit CMOS 3.0 Volt Flash Memory
with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus”,
Technical Report, Nov. 18, 2011, pp. 1-67, available at: http://www.
spansion.com/Support/Datasheets/S25FL064P_00.pdf.

Wang, 7., et al., “Countering Persistent Kernel Rootkits Through
Systematic Hook Discovery”, In Proceedings of the 11th Interna-
tional Symposium on Recent Advances in Intrusion Detection
(RAID ’08), Cambridge, MA, US, Sep. 15-17, 2008, pp. 21-38.
“Binwalk,” last updated Jul. 25, 2014, pp. 1-2, available at: https://
github.com/devttysO/binwalk/wiki.

“Network Bluepill—stealth router-based botnet has been DDoSing
dronebl for the last couple of weeks™, Dronebl.org, Mar. 22, 2009,
pp. 1-13, available at: http://www.dronebl.org/blog/8.

“New Worm can Infect Home Modem/Routers,” In APCMAG.com,
2009, pp. 1-8, available at: hittp://apcmag.com/Content.
aspx?1d=3687.

Aviv, A.J., et al., “Security Evaluation of ES&S Voting Machines
and Electlon Management System,” In Proceedings of the USENIX/
ACCURATE Electronic Voting Workshop, Jul. 28-29, 2008, pp.
1-13.

Bellissimo, A., et al., “Secure Software Updates: Disappointments
and New Challenges,” In Proceedings of the Ist USENIX Hot
Topics 1n Security (HotSec), Jul. 31-Aug. 4, 2006, Vancouver, BC,
CA, pp. 1-7.

Chen, K., “Reversing and Exploiting an Apple Firmware Update,”
In Proceedings of Black Hat USA, Las Vegas, NV, USA, Jul. 25-30,
2009, pp. 1-190.

Costin, A., “Hacking MFPs: Part 2—Postscript: Um, You’ve Been
Hacked,” In Proceedings of the 28th Chaos Communication Con-
gress, Dec. 27, 2011, pp. 1-44.

US 10,055,251 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

Cul, A. and Stolfo, S.J., “Software Symbiotes, Self-Monitoring-
Monitors and Autotomic Binary Structure Randomization™, Feb. 21,
2012, pp. 1-8.

Cul, A. et al, “When Firmware Modifications Attack: A Case Study
of Embedded Exploitation” In the Proceedings of the 20th Annual
Network and Distributed System Secuirty Symposium (NDSS *13),
San Diego, CA, US, Feb. 24-27, 2013, pp. 1-13.

Cul, A., and Stolfo, S.J., “Symbiotes and Defensive Mutualism:
Moving Target Defense”, In Advances in Information Security:

Moving Target Defense, vol. 54, Aug. 26, 2011, pp. 99-108.
Cul, A., et al., “Killing the Myth of Cisco I0OS Diversity: Towards

Reliable, Large-scale Exploitation of Cisco IOS,” In Proceedings of
Blackhat Briefings USA, Aug. 3, 2011, pp. 1-57.

Cul, A., et al., “Killing the Myth of Cisco IOS Diversity: Recent
Advances 1n Reliable Shellcode Design,” In Proceedings of the 5th
USENIX Conference on Offensive Technologies, Aug. 8-12, 2011,
San Francisco, CA, USA, pp. 3.

DynamoRIO, “Dynamic Instrumentation Tool Platform,” Technical
Report, updated Sep. 10, 2014, pp. 1-3, available at: http://
dynamorio.org/.

Erlingsson, U., et al., “Xfi: Software guards for system address
spaces,” In Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, Seattle, WA, USA, Nov. 6-8,
2006, pp. 75-88.

Halperin, D., et al., “Pacemakers and Implantable Cardiac Defibril-
lators: Software Radio Attacks and Zero-Power Defenses.,” In
Proceedings of the 29th Annual IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May 18-21, 2008, pp. 129-142.
Hanna, S., et al., “Take Two Software Updates and See Me 1n the
Morning: The Case for Software Security Evaluations of Medical
Devices,” In Proceedings of the 2nd USENIX Conference on Health
Security and Privacy, Aug. 9, 2011, pp. 6-10.

Hewlett-Packard, “HP Web JetAdmin: Solution Brief,” May 2014,
pp. 1-4, available at: http://h20195.www2. hp.com/V2/GetPDF.
aspx/4AAS5-2718ENW pdf.

Hewlett-Packard, “SSRT 100692 rev.1—Certain HP Printers and HP
Digital Senders, Remote Firmware Update Enabled by Default,”
Nov. 30, 2011, pp. 1-3, available at: http://seclists.org/bugtraq/2011/
Dec/3, 2011.

Hewlett-Packard, “SSRT 100692 rev.2—Certain HP Printers and HP
Digital Senders, Remote Firmware Update Enabled by Default,”
Dec. 29, 2011, pp. 1-8, available at: http://seclists.org/bugtraq/2011/
Dec/175, 2011.

Hewlett-Packard, “SSRT 100692 rev.3—Certain HP Printers and HP
Digital Senders, Remote Firmware Update Enabled by Default,”
Jan. 9, 2012, pp. 1-5, available at: http://seclists.org/bugtraq/2012/
Jan/49, 2012.

HP, “Hewlett-Packard LaserJet 4200/4300 Series Printers—Firm-
ware Update/Download Release/Installation Notes,” last accessed
Oct. 9, 2014, pp. 1-10, available at: http://ftp.hp.com/pub/printers/
software/1j42001breadmefw.txt.

Hunt, G. and Brubacher, D., “Detours: Binary Interception of Win32
Functions™, In Proceedings of the 3rd USENIX Windows NT
Symposium (WINSYM ’99), Seattle, WA, USA, Jul. 12-13, 1999,
pp. 135-144.

International Data Corp., “Worldwide Hardcopy Peripherals Market
Recorded Double-Digit Year-Over-Year Growth in the Second
Quarter of 2010,” Sep. 1, 2010, pp. 1-3, available at: http://www.
idc.com/about/viewpressrelease.jspcontainerld=prtsS22476810
§ionld=null&elementld=null&pageType=SYNOPSIS.
International Patent Application No. PCT/US2013/026529, filed
Feb. 15, 2013.
International Search Report and Written Opinion dated Dec. 28,
2013 1n International Patent Application No. PCT/US2013/026529.
Jack, B., “Jackpotting Automated Teller Machines Redux,” in
Proceedings of Black Hat USA, Jul. 28-29, 2010, Las Vegas, NV,
USA, video available at: https://www.youtube.com/
watch?v=FkteGF{vwl]O.

Kaiten.c, “IRC DDOS Bot,” last accessed Jun. 10, 2010, pp. 1-17,
available at: http://packetstormsecurity.nl/irc/kaiten.c.

L1, et al., “VIPER: Venifying the Integrity of PERipherals’ Firm-
ware,” In Proceedings of the 18th ACM Conference on Computer
and Communications Security, Oct. 17-21, 2011, Chicago, IL, USA,
pp. 3-16.

Ligati, J., et al., “Enforcing Security Policies with Run-time Pro-
gram Monitors,” Princeton University, 2005, pp. 1-74.

Linder, F., “Cisco IOS Router Exploitation,” In Blackhat USA, Las
Vegas, NV, USA, Jul. 26, 2009, pp. 1-10.

Linder, F., “Cisco Vulnerabilities,” In Black Hat Federal, Tyson’s
Corner, VA, USA, Oct. 1-2, 2003, pp. 1-48.

McLaughlin, S., et al., “Embedded Firmware Diversity for Smart
Electric Meters,” In Proceedings of the 5th USENIX Workshop on

Hot Topics 1n Secuity, Washington, D.C., USA, Aug. 20, 2010, pp.
1-6.

Meier, S., “The End of your Internet: Malware for Home Routers,”
Aug. 4, 2008, pp. 1-6, available at: http://data.nicenamecrew.com/
papers/malwareforrouters/paper.txt.

Microsofit Corporation, “Kernel Patch Protection: Frequently Asked
Questions,” Jan. 22, 2007, pp. 1-3, available at: http://msdn.
microsoit.com/en-us/library/windows/hardware/Dn6 1395 5(v=vs.
85).aspx.

Miller, C., “Battery Firmware Hacking,” In Proceedings of Black
Hat USA, Jul. 12, 2011, Las Vegas, NV, USA, pp. 1-38.

Muniz, S., “Killing the myth of Cisco IOS rootkits: DIK,” In
Proceedings of EUSecWest, May 2008, pp. 1-37.

Newman, T., et al., “SCADA and PLC Vulnerabilities in Correc-
tional Facilities,” White Paper, Jul. 30, 2011, pp. 1-14.

Prabhu, P, et al., “Smashing the stack with hydra: The many heads
of advanced shellcode polymorphism,” In Proceedings of Defcon
17, Las Vegas, NV, USA, Jul. 30, 2009, pp. 1-20.

Prevelakis, V. and Spinellis, D., “The Athens Affair”, In IEEE
Spectrum, vol. 44, No. 7, Jul. 2007, pp. 26-33.

Pt, “Ooops I hacked My PBX: Why Auditing Proprietary Protocols
Matters,” In Proceedings of the 28th Chaos Communication Con-
gress, Berlin, DE, Dec. 29, 2011, pp. 1-63.

Roecher, D.J., and Thumann, M., “NAC Attack: Hacking the Cisco
NAC Framework,” In Proceedings of BlackHat USA, Mar. 9, 2007,
pp. 1-29.

Skywing, “Subverting PatchGuard Version 2,” In Uninformed, vol.
6, Dec. 20006, pp. 1-60.

Sutton, M., “Corporate Espionage for Dummies: The Hidden Threat
of Embedded Web Servers,” In Proceedings of Black Hat USA, Las
Vegas, NV, USA, Aug. 3-4, 2011, pp. 1-98.

Vasisht, V.R., and Lee, H.H.S., “Shark: Architectural Support for
Autonomic Protection Against Stealth by Rootkit Exploits,” In
Proceedings of the 4l1lst IEEE International Symposium on
Microarchitecture, Nov. 8-12, 2008, pp. 106-116.

VxWorks, “socklib,” last accessed Apr. 30, 2012, pp. 1-19, available
at: http://www-kryo.desy.de/documents/vxWorks/V5.5/vxworks/
ref/sockLib.html.

Written Opinion dated Dec. 28, 2013 1n International Patent Appli-
cation No. PCT/US2013/026529.

A. Cul, “FRAK: Firmware Reverse Analysis Konsole,” In Proceed-
ings of Black Hat USA, Jul. 21-26, 2012, Las Vegas, NV, USA, pp.
1-33.

FX of Phenoelit, “Attacking networked embedded systems,” In
Black Hat Windows Security, Feb. 24-27, 2003, Seattle, WA, USA,
pp. 1-56.

Extended European Search Report dated May 20, 2016 in European
Patent Application No. 13793379.2, 8 pages.

O’Sullivan et al., “Retrofitting Security in COTS Software with
Binary Rewiring”, in Future Challenges in Security and Privacy for
Academia and Industry, Jan. 2011, pp. 154-172, 12 pages.

U.S. Appl. No. 61/765,646, filed Feb. 15, 2013, 58 pages.

Cui, A., and Stolfo, S.J., “Defending Embedded Systems with
Software Symbiotes”, In Proceedings of the 14th International
Symposium on Recent Advances in Intrusion Detection (RAID ’11),
Menlo Park, CA, US, Sep. 20-21, 2011, pp. 358-377.

Cul, A., et al., “From Prey to Hunter: Transforming L.egacy Embed-
ded Devices into Exploitation Sensor Grids”, In Proceedings of the

US 10,055,251 B1
Page 4

(56) References Cited
OTHER PUBLICATIONS

27th Annual Computer Security Applications Conference
(ACSAC ’11), Orlando, FL, US, Dec. 5-9, 2011, pp. 393-402.
International Preliminary Report on Patentability and Written Opin-
ion dated May 21, 2015 in International Application No. PCT/
US2013/026529, 8 pages.

Wang, K. and Stolfo, S.J., “Anomalous Payload-Based Network
Intrusion Detection”, In Proceedings of the 7th International Sym-
posium on Recent Advances in Intrusion Detection (RAID *04),
Sophia Antipolis, FR, Sep. 15-17, 2004, pp. 203-222.

Notice of Allowance dated Jan. 22, 2016 1 U.S. Appl. No.
14/379,166, pp. 1-43.

Office Action dated Feb. 2, 2016 in U.S. Appl. No. 14/379,166, pp.
1-3.

* cited by examiner

| K |

N WHLSAS o I WALSAS

US 10,055,251 B1

ONLLYHOgVTIOD - ONLLYYO4V'T10D

@@N” | " W@Mi

R4

pil BTN

MAOALAN
SNOLLV UINTININOD

oo ™ S

s /o

Sheet 1 of 7

IWALSAS
HALAIINOD
WAMDVLLY

QIALNOU “HA)

Aug. 21, 2018

L IWALSAS

- ANALA GAdA AN |

MYOMMLAN ONLIVIHOOVTTION

011 701
001

U.S. Patent

¢ Ol

US 10,055,251 B1

Sheet 2 of 7

Aug. 21, 2018

U.S. Patent

0T |

097 |

4S7 Lo

017 |

AJAZG AGAAgINT dHL

A0 HEOD THLAO NOLLADAXH JHEL ONINNLINOD ONV IDIATG 3039V

HHLEL A0 3000 FHL 40 IXAINOD FHL ONIBOLSIY IXTINOI OVOTAVY
AL ONIAVS "UHLEMEAINT 39 01 ST LI NJAHA "ONY (CLLIVHHAINT

EXALNOD AVOIAV] R L DONLLIJAX A UNY A HALRU
GAGUAH NG AH L 4O HOSNA0U4 ¥V OINT IXAINOD GVOTIAYd ¥V ONIOVO'E

AAOWWAIN
OL AMARG dAAAHEE IR THL AO 4400 HHTL AOQ LXHIROD) V IINIAYS

GYOVIAYd (RALOANT

MNOLLVOO T NOLLOHLSNTE KV DO/dd
GHIALINAQE NV IV NOLL DN IESNT AWALC ANO ISVHTT LIV DNLLYASAL

DV A NV SNOLED VLN
AL HOTHM OINT EDIATA QHAGHEINT THL 40 CIIVAKALE “H7)
HAOD NI SNOLIVOOT NOLLOMILSNT WVEDOUI ONIAALINAA

L3 ﬁ@.‘_%__mﬁ ANAAY VALAVaY dIOA Y LING ONIONFUFAINOD
VUAINIE VIINVOEIM VNGO VINIOd SSTDV ANV UILA0Y VD)
AAAG GAGTA9 WA NY OLN] GO0 NOLLOADAXH GVOTAVd ONIGUAEING

007

US 10,055,251 B1

Sheet 3 of 7

Aug. 21, 2018

U.S. Patent

et

 BRpS IUON0YS

o) WHd

VRDS' YOS

BIEPS” [UOI0AS

apo)) projARd INAd

HC10) 501

1K) U008

GIePS. U000

-
m

RIEPS’ [UOIIN0G

Ay

400 501

IX} U098

US 10,055,251 B1

Sheet 4 of 7

Aug. 21, 2018

U.S. Patent

projied WA

 H

(WINAdD)
JSBURIA JUIYIBIA

pappIquI dNIseILg

R0

4

Vi "OLd

YOO} QUIjUj UONUT]

JIRMULIL] 2ALIEN

/ﬁ

US 10,055,251 Bl

Sheet 5 of 7

Aug. 21, 2018

U.S. Patent

L vonoung poyool

av "Old

HONOUN.J PaNoo

LOLIDUN,| PAOOH |

UGN DOHOUH

BOIUNE DOHOOH

HOLDUR] POYNOOH |

HOHoUR g PaNOOH “”

207

US 10,055,251 B1

Sheet 6 of 7

Aug. 21, 2018

U.S. Patent

S Ol

108)

" woponAsSu] XN

peojAed NAd

AP0y eunjoduwieg]

Apog yuoouny

HOUH =Ulu]

YUOOUn %s._ 8

US 10,055,251 B1

Sy
gty

¢
Sy GANEY x4, O peublisund = psiBeysnes),
O} (1 O 1ORU00 piaik Agroipousd

jusifies {61 sel, huse
ALY U0 LONBMuGs WHGLSd $40 me 43200 ¥ % (30803 3

Sheet 7 of 7

eLubos Ascumiy ubingigl UeDs {LUNSYOSUS DIBINNIED) uasn BULIsUI0S op Yy
Y {orul JeHum P{imex IDISUIBINNOMIO » X ({HEISUISINIGUD = K0S

i) spum

Aug. 21, 2018

'K ot peubisun

;

doyswspposyn |, i paulisun agsibes
} BEISQUISEMoNYD , 1kt poubisun misibsy
{8018 WS IDBOIAR HIAI S SAULRLND DIOA UONRCOTBARS | 1 paubisun 12181501 IPBOIAB N T SAURUND DIOA

U.S. Patent

US 10,055,251 Bl

1

METHODS, SYSTEMS, AND MEDIA FOR
INJECTING CODE INTO EMBEDDED
DEVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional

Patent Application No. 61/171,643, filed Apr. 22, 2009,
which 1s hereby incorporated by reference herein in its

entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The invention was made with government support under
Grant No. N00014-09-10757 awarded by Oflice of Naval
Research (ONR). The government has certain rights in the
invention.

TECHNICAL FIELD

The disclosed subject matter relates to methods, systems,
and media for iserting code into embedded devices.

BACKGROUND

Attackers routinely exploit vulnerabilities 1n computer
systems to inject malicious code. For example, attackers can
gain access to an internal network with the use of spyware
or rootkits. Such software can be easily installed on com-
puter systems from physical or digital media (e.g., email,
downloads, etc.) and can provide these attackers with
administrator or “root” access on a machine along with the
capability of gathering sensitive data. In particular, attackers
can snoop or eavesdrop on a computer or a network,
download and exfiltrate data, steal assets and information,
destroy critical assets and information, and/or modily infor-
mation. Rootkits have the ability to conceal themselves and
clude detection, especially when the rootkit 1s previously
unknown, as 1s the case with zero-day attacks.

These attackers also have the capability to attack net-
worked embedded devices, such as routers, access points,
modems, network webcams, network printers, conferencing
units, voice over Internet protocol (VOIP) adapters, and
virtual private network (VPN) devices. A network of com-
puters that has been infected with malicious code, where
cach infected computer can be controlled by an attacker
often without knowledge of the infected computer’s owner
1s generally referred to as a botnet and these networked
embedded devices can be used in botnets. For example,
networked embedded devices can be compromised using
out-of-the-box default passwords and used in botnets,
where, 1n many instances, embedded devices are the core
communication components of a networked system.

In response to these threats, many computers are protected
by antivirus soiftware and firewalls. However, these preven-
tative measures are not always adequate. In particular,
traditional antivirus software does not work on embedded
devices and, generally speaking, these embedded devices are
not built with security in mind. Moreover, the code or
firmware on these embedded devices 1s often proprietary and
undisclosed to third parties. Accordingly, updating and
moditying device firmware for diflerent embedded devices
1s a diflicult task.

There 1s therefore a need in the art for approaches for
injecting code mto embedded devices. Accordingly, 1t 1s

10

15

20

25

30

35

40

45

50

55

2

desirable to provide methods, systems, and media that
overcome these and other deficiencies of the prior art. For

example, methods, systems, and media are provided that
protect embedded devices against exploitation by injecting
and moditying the code of the embedded device without
altering the behavior of the embedded device and without
prior knowledge of function entry points or other memory
information in the embedded device.

SUMMARY

In accordance with various embodiments, mechanisms for
injecting code mto embedded devices are provided.

In some embodiments, mechanisms are provided for
injecting code written in high level programming languages
into embedded devices, such as routers, access points,
modems, webcams, printers, conferencing units, VOIP
adapters, VPN devices, and/or any other suitable device.
Once the code 1s 1njected into the embedded device, the
injected code analyzes and modifies the code of the embed-
ded device (e.g., firmware) to create the execution environ-
ment for the injected code. For example, the njected code
determines and selects function entry points, return mstruc-
tions, program 1instruction locations, and/or other locations
in the code and reallocates the needed system resources
(e.g., processing and/or memory resources) such that the
injected code can execute 1n a time-shared fashion concur-
rently with the code of the embedded device. That 1s, the
code of the embedded device can be modified to allow
repeated execution of the injected code without otherwise
altering the behavior of the embedded device.

It should be noted that these mechamisms modity the code
of the embedded device without reliance upon the source
code. For example, the code of the embedded device 1is
injected and modified without prior knowledge of function
entry points or other memory information in the embedded
device. It should also be noted that these mechanisms
modily the code of the embedded device without altering the
behavior of the embedded device.

These mechanisms can be used 1n a variety of applica-
tions. For example, these mechanisms provide the opportu-
nity to upgrade and enhance deployed or existing devices
(each having different firmware) with security features to
protect those devices from attacks designed for nefarious
purposes. In another example, these mechanisms can be
used to retrofit a variety ol embedded devices with detection
and/or security applications (e.g., antivirus applications,
intrusion detection systems, etc.). In a more particular
example, a rootkit detector can be injected into a router,
where the detector continuously verifies the integrity of the
running code of the router. Using a code whitelisting strat-
egy, the detector injected 1nto the router can detect rootkat
hooks and foreign code mjection in real time.

Methods, systems, and media for imjecting code into
embedded devices are provided. In some embodiments,
methods for injecting code into embedded devices are
provided, the methods comprising: embedding payload
execution code mto an embedded device; 1dentifying pro-
gram 1nstructions in code of the embedded device into which

60 jump instructions can be placed; mserting at least one jump

65

instruction at an identified program instruction; allocating
memory for storing an execution context of an injected
payload; saving a context of the code of the embedded
device to memory; loading and executing a payload context
into a processor of the embedded device; determining when
execution of the payload context is to be interrupted; and 1n
response to determining that the execution of the payload

US 10,055,251 Bl

3

context 1s to be interrupted, saving the payload context,
restoring the context of the code of the embedded device,
and continuing execution of the code of the embedded
device.

In some embodiments, a system for injecting code into
embedded devices 1s provided, the system comprising: a
processor that: embeds payload execution code mnto an
embedded device; 1dentifies program instructions in code of
the embedded device into which jump instructions can be
placed; mserts at least one jump instruction at an 1dentified
program 1nstruction; allocates memory for storing an execu-
tion context of an 1njected payload; saves a context of the
code of the embedded device to memory; loads and executes
a payload context into a processor of the embedded device;
determines when execution of the payload context 1s to be
interrupted; and 1n response to determining that the execu-
tion of the payload context 1s to be interrupted, saves the
payload context, restores the context of the code of the
embedded device, and continues execution of the code of the
embedded device.

In some embodiments, non-transitory computer-readable
medium containing computer-executable instructions that,
when executed by a processor, cause the processor to
perform a method for 1njecting code into embedded devices,
1s provided. The method comprises: embedding payload
execution code nto an embedded device; identifying pro-
gram 1nstructions in code of the embedded device into which
Tump 1nstructions can be placed; 1nserting at least one jump
istruction at an identified program instruction; allocating
memory for storing an execution context of an injected
payload; saving a context of the code of the embedded
device to memory; loading and executing a payload context
into a processor of the embedded device; determining when
execution of the payload context 1s to be interrupted; and 1n
response to determining that the execution of the payload
context 1s to be interrupted, saving the payload context,
restoring the context of the code of the embedded device,
and continuing execution of the code of the embedded
device.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FIG. 1 1s a diagram of a system suitable for implementing,
an application that injects codes into embedded devices 1n
accordance with some embodiments of the disclosed subject
matter.

FIG. 2 1s a diagram showing an illustrative example of a
process for mjecting code mto embedded devices 1 accor-
dance with some embodiments of the disclosed subject
matter.

FIG. 3 1s a diagram showing an illustrative example of a
memory layout for allocating injected payload execution
code 1nto a small segment of unused memory 1n accordance
with some embodiments of the disclosed subject matter.

FIGS. 4A and 4B 1s a diagram showing an illustrative
example of the iterception of one or more arbitrary func-
tions 1n the code of an embedded device 1n accordance with
some embodiments of the disclosed subject matter.

FIG. 5 15 a flow diagram showing an 1llustrative example
of the execution of a function modified by the imnjected code,
where the payload execution code 1s loaded and executed
prior to the execution of the native function 1n accordance
with some embodiments of the disclosed subject matter.

FIG. 6 1s a diagram showing an illustrative example of the
payload execution code 1n accordance with some embodi-
ments of the disclosed subject matter.

5

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

In accordance with various embodiments, mechanisms for
injecting code into embedded devices are provided.

In some embodiments, mechanisms are provided for
injecting code written 1n high level programming languages
into embedded devices, such as routers, access points,
modems, webcams, printers, conferencing units, VOIP
adapters, VPN devices, and/or any other suitable device.
Once the code 1s 1njected into the embedded device, the
injected code analyzes and modifies the code of the embed-
ded device (e.g., firmware) to create the execution environ-
ment for the injected code. For example, the injected code
determines and selects function entry points, return mstruc-
tions, program instruction locations, and/or other locations
in the code and reallocates the needed system resources
(e.g., processing and/or memory resources) such that the
injected code can execute 1n a time-shared fashion concur-
rently with the code of the embedded device. That 1s, the
code of the embedded device can be modified to allow
repeated execution of the injected code without otherwise
altering the behavior of the embedded device.

It should be noted that these mechamisms modity the code
of the embedded device without reliance upon the source
code. For example, the code of the embedded device is
injected and modified without prior knowledge of function
entry points or other memory information in the embedded
device. It should also be noted that these mechanisms
modily the code of the embedded device without altering the
behavior of the embedded device.

These mechanisms can be used 1n a variety of applica-
tions. For example, these mechanisms provide the opportu-
nity to upgrade and enhance deployed or existing devices
(each having different firmware) with security features to
protect those devices from attacks designed for nefarious
purposes. In another example, these mechanisms can be
used to retrofit a variety of embedded devices with detection
and/or security applications (e.g., antivirus applications,
intrusion detection systems, etc.). In a more particular
example, a rootkit detector can be injected into a router,
where the detector continuously verifies the mtegrity of the
running code of the router. Using a code whitelisting strat-
egy, the detector 1njected into the router can detect rootkit
hooks and foreign code ijection in real time.

Turning to FIG. 1, an example of a system 100 in which
the payload injection mechanisms can be implemented. As
illustrated, system 100 includes multiple collaborating com-
puter systems 102, 104, and 106, a communication network
108, a networked embedded device 110, communication
links 112, and an attacker computer system 114.

Collaborating systems 102, 104, and 106 can be systems
owned, operated, and/or used by universities, businesses,
governments, non-profit organizations, families, individuals,
and/or any other suitable person and/or entity. Collaborating
systems 102, 104, and 106 can include any number of user
computers, servers, firewalls, routers, switches, gateways,
wireless networks, wired networks, intrusion detection sys-
tems, and any other suitable devices. For example, collabo-
rating systems 102, 104, and/or 106 can be connected to a
networked embedded device 110. As used herein, embedded
device 110 can be any number of routers, switches, gate-
ways, webcams, gaming systems, mput devices, 1imaging
devices, conferencing units, communications devices, VPN
devices, VOIP adapters, printers, and/or any other suitable
devices. In a more particular example, embedded device 110
can be a Microprocessor without Interlocked Pipeline Stages

US 10,055,251 Bl

S

(MIPS2)-based embedded device or a POWERPC®-based
embedded device, such as a CISCO® Systems router or a
LINKSYS® router.

It should be noted that any number of embedded devices
110 can be present 1n system 100, but only one 1s shown 1n
FIG. 1 to avoid overcomplicating the drawing.

It should also be noted that each embedded device 110 can
include code, such as firmware, that runs on the embedded
device 110. For example, a router contains programs and/or
data structures that control the operation and behavior of the
router. In some embodiments, the code on the embedded
device 110 1s proprietary such that function entry points,
memory locations, etc. in the embedded device 110 are
unknown. It should further be noted that the code on one
embedded device can be different from the code on another
embedded device based on, for example, manufacturer of
the embedded device, type of embedded device, efc.

In addition, collaborating systems 102, 104, and 106 can
include one or more processors, such as a general-purpose
computer, a special-purpose computer, a digital processing
device, a server, a workstation, and/or various other suitable
devices. Collaborating systems 102, 104, and 106 can run
programs, such as operating systems (OS), soltware appli-
cations, a library of functions and/or procedures, back-
ground daemon processes, and/or various other suitable
programs. In some embodiments, collaborating systems 102,
104, and 106 can support one or more virtual machines. Any
number (including only one) of collaborating systems 102,
104, and 106 can be present 1n system 100, and collaborating
systems 102, 104, and 106 can be 1dentical or different.

Communication network 108 can be any suitable network
for facilitating communication among computers, servers,
etc. For example, communication network 108 can include
private computer networks, public computer networks (such
as the Internet), telephone communication systems, cable
television systems, satellite communication systems, wire-
less communication systems, any other suitable networks or
systems, and/or any combination of such networks and/or
systems.

It should be noted that, 1n some embodiments, an attacker
using attacker computer system 114 can obtain internal
network access. For example, using spyware or rootkits,
attackers can gain access to communications network 108.
Such software can easily be installed on computer systems
from physical or digital media (e.g., email, downloads, etc.)
that provides an attacker with administrator or “root” access
on a machine along with the capability of gathering sensitive
data. The attacker using attacker computer system 114 can
also snoop or eavesdrop on one or more systems 102, 104,
and 106 or communications network 108, download and
exfiltrate data, steal assets and information, destroy critical
assets and imnformation, and/or modily information. Rootkits
have the ability to conceal themselves and elude detection,
especially when the rootkit 1s previously unknown, as 1s the
case with zero-day attacks.

It should also be noted that the owner of embedded device
110 or systems 102, 104, and/or 106 1s generally not aware
of what operations embedded device 110 1s performing. That
1s, embedded device 110 can be acting under the control of
another computer (e.g., attacking computer system 116) or
autonomously based upon a previous computer attack which
infected embedded device 110 with a virus, worm, trojan,
spyware, malware, probe, efc.

More particularly, for example, each of the one or more
collaborating or client computers 102, 104, and 106, embed-
ded device 110, and attacking computer system 114, can be
any ol a general purpose device such as a computer or a

10

15

20

25

30

35

40

45

50

55

60

65

6

special purpose device such as a client, a server, etc. Any of
these general or special purpose devices can include any
suitable components such as a processor (which can be a
microprocessor, digital signal processor, a controller, etc.),
memory, communication interfaces, display controllers,
iput devices, etc. For example, collaborating system 102
can be implemented as a personal computer, a personal data
assistant (PDA), a portable email device, a multimedia
terminal, a mobile telephone, a set-top box, a television, etc.

In some embodiments, any suitable computer readable
media can be used for storing instructions for performing the
processes described herein. For example, 1n some embodi-
ments, computer readable media can be transitory or non-
transitory. For example, non-transitory computer readable
media can 1include media such as magnetic media (such as
hard disks, floppy disks, etc.), optical media (such as com-
pact discs, digital video discs, Blu-ray discs, etc.), semicon-
ductor media (such as flash memory, electrically program-
mable read only memory (EPROM), electrically erasable
programmable read only memory (EEPROM), etc.), any
suitable media that 1s not fleeting or devoid of any sem-
blance of permanence during transmission, and/or any suit-
able tangible media. As another example, transitory com-
puter readable media can include signals on networks, in
wires, conductors, optical fibers, circuits, any suitable media
that 1s fleeting and devoid of any semblance of permanence
during transmission, and/or any suitable intangible media.

Referring back to FIG. 1, communication links 112 can be
any suitable mechanism for connecting collaborating sys-
tems 102, 104, 106, embedded device or devices 110, and
attacking computer system 114 to communication network
108. Links 112 can be any swtable wired or wireless
communication link, such as a T1 or T3 connection, a cable
modem connection, a digital subscriber line connection, a
Wi-F1 or 802.11(a), (b), (g), or (n) connection, a dial-up
connection, and/or any other suitable communication link.
Alternatively, communication links 112 can be omitted from
system 100 when approprate, in which case systems 102,
104, and/or 106 and embedded device 110 can be connected
directly to communication network 108.

As described above, payload injection mechanisms that
inject code mnto embedded devices, such as embedded
device 110 of FIG. 1, can be provided. FIG. 2 illustrates an
example of a process 200 for 1injecting payload code 1nto an
embedded device in accordance with some embodiments of
the disclosed subject matter. As shown, process 200 begins
by 1njecting or embedding payload execution code mto an
embedded device. As described above, an embedded device
can be any number of routers, switches, gateways, webcams,
gaming systems, mput devices, imaging devices, conferenc-
ing units, communications devices, VPN devices, VOIP
adapters, printers, and/or any other suitable devices. More
particularly, the embedded device can be a MIPS®-based
embedded device or a POWERPC®-based embedded
device, such as a CISCO® Systems router or a LINKSYS®
router.

In some embodiments, the payload execution code can be
embedded 1n the embedded device at run time. For example,
this can be done dynamically through the exercise of an
exploitable vulnerability in the code base of the device.
Alternatively, the payload execution code can modily the
firmware of the embedded device prior to boot time. For
example, this can be done by patching the Internetwork
Operating System (10S) software 1nstalled on a router.

As shown 1 FIG. 3, the payload execution code injected
into the embedded device 1s allocated a small portion of
unused memory on the embedded device (e.g., unused

US 10,055,251 Bl

7

portion of memory 315 in FIG. 3). For example, 1n some
embodiments, the payload execution code 1s stored 1n a
portion of memory that i1s less than about four kilobytes.
Within this small portion of unused memory, the payload
execution code embeds both the payload execution environ-
ment and the target code within memory portion 330. The
remaining portion of unused memory can be used for storing,
execution contexts ol the ijected payload as described
herein.

It should be noted that these mechanisms modity the code
of the embedded device without reliance upon the source
code (e.g., without prior knowledge of function entry points,
return instructions, program instruction locations, or other
memory information in the embedded device). Referring
back to FIG. 2, upon embedding the payload execution code
into the embedded device, particular program 1nstruction
locations 1n the code are i1dentified at 220. For example, the
process can 1dentily function entry points (FEPs), function
or library routine return instruction locations, any other
suitable program instruction or memory location, and/or any
suitable combination thereof. More particularly, a static
analysis on the embedded device’s code 1s conducted to
identily function entry points and/or any suitable program
instruction locations suitable for hooking 1n. A subset of one
or more program 1instruction locations 1s then selected. At
230, at least one jump 1nstruction 1s inserted at an identified
program 1instruction location.

For example, as shown 1n FIGS. 4A and 4B, a particular
tfunction 404 (e.g., a native operating system function) of the
native firmware or code 402 of the embedded device 1s
intercepted by a Parasitic Embedded Machine Manager
(PEMM) 408 using jump instruction or hook 406, which
may be imjected into the embedded device as part of the
payload execution code. As shown in both FIGS. 4A and 4B,
the payload injection mechanisms modily the code of the
device to embed the payload execution code (e.g., PEM
payload 410) and hook 1nto a subset of 1dentified functions
(e.g., functions A through I). In some embodiments, after the
PEMM and payload execution code are injected into the
code of the embedded device, functions, such as native
operating system functions, can be arbitrarily intercepted. In
response, these injected hooks or jump instructions 406
invoke the payload execution code 410 prior to running the
intended native function of the embedded device.

It should be noted that, in some embodiments, a single
machine nstruction 1s modified per program instruction
(e.g., a function entry point, a function or library routine
return instruction, etc.) and does not otherwise change the
behavior of the code of the embedded device. That 1s, these
mechanisms modity the code of the embedded device with-
out aflecting 1ts original behavior.

Accordingly, the payload execution component 1s respon-
sible for maintaining a stable execution environment for the
injected payload and executing a number of instructions of
the payload each time it 1s 1nvoked. More particularly, the
payload execution component 1s responsible for maintaining
a persistent state of the mjected payload execution across
repeated invocations of the function entry points, function or
library routine return instructions, or any other suitable
program instruction, and regulates the payload’s processor
usage per ivocation.

Referring back to FIG. 2, process 200 allocates a small
portion ol memory within the memory region to store an
execution context of the injected payload at 240. As shown
in FI1G. 3, an unused portion of memory 315 can be allocated
for the execution context. It should be noted that the
execution context can be similar to any stack oriented

10

15

20

25

30

35

40

45

50

55

60

65

8

process execution system. The execution context for the
payload can include values, such as, for example, payload
stack pointer, payload instruction pointer, payload register
values, etc. In some embodiments, these mechanisms pro-
vide a specialized, low memory payload virtual machine that
1s time multiplexed with the code (e.g., firmware) of the
embedded device and mmvoked each time the hooked func-
tion entry points or program instructions are executed by the
native code.

Each time the payload execution code 1s invoked in
response to the jump instruction inserted at 230, a context
switch 1s performed. The context switch can include saving,
the context of the code of the embedded device into memory
(at 250) and then loading and executing a payload execution
context 1nto the processor of the embedded device (at 260).
More particularly, the payload instruction pointer value 1s
used, where the execution of the payload execution code
begins from where 1t last left off by jumping to the address
indicated by the payload instruction pointer value.

It should be noted that the payload execution code 1s
generally written such that it periodically returns to an
execution context, but not frequently such that a substantial
delay 1n the execution of the firmware of the embedded
device. That 1s, the injected payload can operate without an
appreciable decrease in the performance of the embedded
device.

At 270, process 200 determines when the execution of the
payload 1s to be interrupted. For example, the number of
jumps that have occurred can be counted and the execution
of the payload can be interrupted after a given number of
jumps have occurred. When 1t 1s determined that the payload
1s to be interrupted, the stage of the payload context 1s saved
and the previously saved context of the previously running
code 1s restored, thereby continuing the execution of the
code of the embedded device from the point at which it was
suspended.

Similarly to process 200 shown 1n FIG. 2, FIG. 5§ shows
an 1llustrative flow diagram of the execution environment
that allows the payload execution code to execute repeatedly
in a time-multiplexed fashion without aflecting the embed-
ded device’s original behavior. As shown, in response to
calling a function (_functionA) that has been modified with
payload execution code at 501, the hook using at least one
Jump 1nstruction mvokes the payload execution code before
running the itended native function (_functionA Body) at
502. The jump 1nstruction then points to the Payload Execu-
tion Machine Manager (PEMM) at 503, where the PEMM
was 1njected into the embedded device as part of the payload
execution code. In some embodiments, the PEMM manages
an 1solated execution context of the payload (sometimes
referred to herein as the “PEM Payload”).

As described above 1n connection with FIG. 2, the PEMM
manages the context switch at 504. The context of the code
of the embedded device into memory 1s saved and a payload
execution context 1s executed in the embedded device. For
example, the PEMM can retrieve a payload 1nstruction
pointer value or any other suitable value to determine a
particular point for executing the payload execution code. To
provide minimal delay to the performance of the embedded
device, the PEMM determines when the execution of the
payload 1s to be interrupted at 505. In one example, the
PEMM can determine the number of jumps that have
occurred, the amount of time that has elapsed, or any other
suitable criterion. In response to determining that the pay-
load 1s to be terrupted, the PEMM performs another
context switch at 506. For example, the PEMM can save the
stage of the payload context and restore the previously saved

US 10,055,251 Bl

9

context of the previously running code. At this point, the
execution of the code of the embedded device 1s continued
from the point at which i1t was suspended. Upon completion
of that particular function (_functionA), the code points to
the next function at 507.

It should be noted that the payload execution code
executes 1n parallel to the code of the embedded device (e.g.,
firmware), the payload execution code 1s invisible to the
code of the embedded device, and the payload execution
code controls processor and memory allocations between the
code of the embedded device and itsell.

An example of the payload execution code 1n accordance
with some embodiments 1s shown 1n FIG. 6. As shown, the
payload execution code scans through a segment of memory
and performs a computation on the memory segment before
periodically yielding control of the processor back to the
native code (e.g., native operating system). For example, the
payload execution code can calculate a checksum over
protected operating system memory regions (e.g., code
sections, data sections, etc.).

In a more particular example, upon {first istallation of a
payload execution code (e.g., an injected router monitor and
integrity function), the memory of the embedded device 1s
scanned and a hash of that memory 1s produced and stored
in a white list maintained by the integrity checking software.
In subsequently performed checks, the same memory 1is
scanned and the hash 1s recalculated and compared to the
initial hash first computed upon the first injection of code.
Accordingly, the integrity checksum 1s periodically or con-
tinuously recomputed at prescribed or desired intervals and
checked against the white list to detect any modification to
the code. Any malicious code 1njections result 1n a different
hash value, which 1s detected by the 1njected code.

In another example, as CISCO® I0OS images are known
and widely deployed to many routers that form the backbone
of the Internet, checksums for all IOS i1mages can be
pre-calculated in an offline fashion and supplied with the
code 1njection mechanisms. Any change to the code section,
which should not be modified by any legitimate code, can be
an accurate indicator of exploitation of the router or other
embedded device that 1s detected 1n real time.

Accordingly, methods, systems, and media are provided
for injecting code mnto embedded devices.

Although the mmvention has been described and illustrated
in the foregoing illustrative embodiments, 1t 1s understood
that the present disclosure has been made only by way of
example, and that numerous changes 1n the details of 1mple-
mentation of the mvention can be made without departing,
from the spirit and scope of the invention. Features of the
disclosed embodiments can be combined and rearranged 1n
various ways.

What 1s claimed 1s:

1. A method for imjecting information mto embedded
devices, the method comprising:

identifying empty memory within a firmware memory

region ol an embedded device, wherein the embedded
device includes code stored in the firmware memory
region;

embedding payload execution code into a first portion of

the empty memory of the embedded device;
identifying program instructions in the code stored in the
firmware memory region of the embedded device into
which jump 1nstructions can be placed by performing a
static analysis on the code stored in the firmware
memory region of the embedded device to 1dentily a
plurality of function entry points, wherein the static
analysis 1s performed prior to inserting at least one

10

15

20

25

30

35

40

45

50

55

60

65

10

jump 1nstruction into the code stored in the firmware
memory region of the embedded device;

inserting the at least one jump 1nstruction at an identified

function entry point from the plurality of function entry
points 1n the code stored in the firmware memory
region of the embedded device, wherein the at least one
jump instruction 1s part of the payload execution code;
allocating a second portion of the empty memory and
storing an execution context of an injected payload nto
the second portion of the empty memory, wherein the
injected payload 1s part of the payload execution code
embedded 1n the first portion of the empty memory;
saving a context of the code stored in the firmware
memory region of the embedded device to the second
portion of the empty memory 1n response to detecting
an execution of the at least one jump 1nstruction;
loading the execution context of the injected payload nto
a processor of the embedded device;
causing the 1njected payload to be executed by the pro-
cessor based on the execution context of the injected
payload;

determining when execution of the mjected payload 1s to

be interrupted; and

in response to determining that the execution of the

injected payload 1s to be interrupted, saving the execu-
tion context of the injected payload, restoring the
context of the code stored in the firmware memory
region of the embedded device, and continuing execu-
tion of the code stored in the firmware memory region
of the embedded device.

2. The method of claim 1, wherein the payload execution
code 1s embedded into the embedded device at run time by
exploiting a vulnerability 1n the embedded device.

3. The method of claim 1, wherein the payload execution
code 1s embedded 1nto the embedded device at boot time by
patching the code stored in the firmware memory region of
the embedded device.

4. The method of claim 1, wherein the execution context
of the mjected payload includes at least one of a payload
stack pointer, a payload instruction pointer, and a payload
register value.

5. The method of claim 4, further comprising using the
payload instruction pointer to access the payload execution
code at a particular address for execution.

6. The method of claim 1, wherein determining when the
execution of the injected payload 1s to be interrupted further
comprises determining at least one of: a number of jump
instructions that have been executed and an amount of time
that has elapsed prior to execution of the code stored in the
firmware memory region of the embedded device.

7. The method of claim 1, wherein the execution of the
injected payload performs a first checksum on portions of
the firmware memory region of the embedded device.

8. The method of claim 7, wherein the execution of the
injected payload verifies integrity of the code stored 1n the
firmware memory region of the embedded device by per-
forming a second checksum on the portions of the firmware
memory region of the embedded device and comparing the
second checksum with the first checksum.

9. A non-transitory computer-readable medium containing,

computer-executable instructions that, when executed by a
processor, cause the processor to perform a method for
injecting information mnto embedded devices, the method
comprising;

US 10,055,251 Bl

11

identifying empty memory within a firmware memory
region of an embedded device, wherein the embedded
device includes code stored in the firmware memory
region;

embedding payload execution code 1nto a first portion of
the empty memory of the embedded device;

identifying program instructions in the code stored in the

firmware memory of the embedded device into which

jump 1nstructions can be placed by performing a static
analysis on the code stored in the firmware memory
region of the embedded device to identify a plurality of
function entry points, wherein the static analysis is
performed prior to inserting at least one jump 1nstruc-
tion 1nto the code stored in the firmware memory of the
embedded device:

inserting the at least one jump instruction at an 1dentified
function entry point from the plurality of function entry
points 1n the code stored 1n the firmware memory of the
embedded device, wherein the at least one jump
instruction 1s part of the payload execution code;

allocating a second portion of the empty memory and
storing an execution context of an injected payload into
the second portion of the empty memory, wherein the
injected payload 1s part of the payload execution code
embedded 1n the first portion of the empty memory;

saving a context of the code stored in the firmware
memory of the embedded device to the second portion
of the empty memory in response to detecting an
execution of the at least one jump 1nstruction;

loading the execution context of the injected payload 1nto
an embedded device processor of the embedded device;

causing the injected payload to be executed by the embed-
ded device processor based on the execution context of
the 1njected payload;

determining when execution of the injected payload 1s to
be interrupted; and

in response to determining that the execution of the
injected payload 1s to be interrupted, saving the execu-
tion context of the injected payload, restoring the

5

10

15

20

25

30

35

12

context of the code stored 1n the firmware memory of
the embedded device, and continuing execution of the
code stored in the firmware memory of the embedded
device.

10. The non-transitory computer-readable medium of
claim 9, wherein the payload execution code 1s embedded
into the embedded device at run time by exploiting a
vulnerability 1n the embedded device.

11. The non-transitory computer-readable medium of
claim 9, wherein the payload execution code 1s embedded
into the embedded device at boot time by patching the code
stored 1n the firmware memory of the embedded device.

12. The non-transitory computer-readable medium of
claiam 9, wherein the execution context of the injected
payload includes at least one of a payload stack pointer, a
payload istruction pointer, and a payload register value.

13. The non-transitory computer-readable medium of
claim 12, further comprising using the payload instruction
pointer to access the payload execution code at a particular
address for execution.

14. The non-transitory computer-readable medium of
claim 9, wherein determining when the execution of the
injected payload 1s to be interrupted further comprises
determining at least one of: a number of jump instructions
that have been executed and an amount of time that has
clapsed prior to execution of the code stored 1n the firmware
memory of the embedded device.

15. The non-transitory computer-readable medium of
claiam 9, wherein the execution of the injected payload
performs a first checksum on portions of the firmware
memory region of the embedded device.

16. The non-transitory computer-readable medium of
claam 15, wherein the execution of the injected payload
verifles integrity of the code stored 1in the firmware memory
region of the embedded device by performing a second
checksum on the portions of the firmware memory region of
the embedded device and comparing the second checksum
with the first checksum.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

