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METHOD AND SYSTEM FOR PROCESSING
QUERIES OVER DATASETS STORED USING
HIERARCHICAL DATA STRUCTURES

TECHNICAL FIELD

The field generally relates to a method and system for
processing a query and, 1n particular, to a method and system
for processing a query over datasets stored using hierarchi-
cal data structures.

BACKGROUND

On-line analytical processing (OLAP) refers to a broad
class of analytics techniques that process historical data
using a logical multi-dimensional data model. Over the
years, OLAP has emerged to become important business
intelligence (BI) technology for solving decision support
problems, such as business reporting, financial planming and
budgeting/forecasting, trend analysis and resource manage-
ment. OLAP technologies typically operate on data ware-
houses, which are subject-oriented, integrated, time-varying,
non-volatile, and historical collections of data. Unlike on-
line transaction processing (OLTP) applications that support
repetitive, short, atomic transactions, OLAP applications are
targeted for processing complex and ad-hoc queries over
very large (e.g., multi-Terabyte and more) historical data
stored 1n data warehouses.

OLAP applications can be used by knowledge workers
(e.g., analysts, managers) to extract useful information from
a set of large disparate data sources stored in data ware-
houses. These sources can be semantically or structurally
different from each other and can contain historical data
consolidated over long time periods. OLAP workloads
involve queries that explore relationships within underlying
data, and then exploit the acquired knowledge for different
decision support activities, such as post-mortem analysis/
reporting, prediction, and forecasting. The OLAP queries
can invoke complex operations (e.g., aggregations, group-
ing) over a large number of data items or records. Thus,
unlike the OLTP workloads, where transaction throughput 1s
important, query throughput and response times are more
relevant for OLAP workloads. Thus, an OLAP system
supports a logical model that can represent relationships
between records succinctly, a query system that can explore
and exploit these relationships, and an implementation that
can provide scalable performance.

Many OLAP systems are based on a logical data model
that views data 1n a warehouse as multi-dimensional data
cubes. The multi-dimensional data model grew out of a
two-dimensional array-based data representation popular-
1zed by spreadsheet applications used by business analysts.
A data cube 1s typically organized around a central theme,
¢.g., car sales. This theme 1s usually captured using one or
more numeric measures or facts that are the objects of
analysis (e.g., number of cars sold and the sales amount 1n
dollars). Other examples of numerical measures can include,
for example, budget, revenue, retail inventory, etc. The
measures are associated with a set of independent dimen-
sions that provides a context. For example, dimensions
assoclated with a car sales measure can include, {for
example, car brand, model and type, various car attributes
(e.g., color), geography, and time. Each measure value 1s
associated with a unmique combination of the dimension
values. Thus, a measure value can be viewed as an entry in
a cell of a multi-dimensional cube with a specified number
of dimensions.
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In the multi-dimensional OLAP model, each dimension
can be further characterized using a set of attributes, e.g., a

geography dimension can include country, region, state, and
city. The attributes can be viewed as sub-dimensions and can
themselves be related 1n a hierarchical manner. An attribute
hierarchy can be a series of parent-child relationships that 1s
specified by an order of attributes, e.g., year, month, week,
and date. A dimension can be associated with more than one
hierarchy, e.g., a time dimension can be characterized using
at least two hierarchies, such as year, quarter, month, and
date, and year, quarter, week, and date. The parent-child
relationships represent orders of summarization via aggre-
gation. The measure values associated with a parent are
computed via an aggregation of measures of i1ts children.
Thus, dimensions, along with theiwr hierarchical attributes,
and the corresponding measures, can be used to capture
relationships 1n the data.

In practice, a multi-dimensional OLAP model 1s usually
implemented using one of three approaches: Relational
OLAP (ROLAP), Multi-dimensional OLAP (MOLAP), and
Hybrid OLAP (HOLAP). IBM® Corporation’s TM1® prod-
uct 1s an example of a MOLAP implementation. The
MOLAP approach stores and processes multi-dimensional
OLAP cubes as multi-dimensional arrays. Individual array
locations are referred to as cells. The MOLAP cubes can be
sparse multi-dimensional arrays that are stored using spe-
cialized data structures to optimize data access costs. The
MOLAP approach 1s suitable for scenarios that process
low-dimensional data, have repeated queries that touch the
same data, and require fast query performance. Data stored
in the MOLAP {fashion 1s queried using languages that can
express data access using the multi-dimensional array
model. Examples of the languages include TM1® Rules and
Microsoit® MDX.

OLAP usually involves processing large hierarchical
multi-dimensional data. The OLAP data 1s typically sparse
and represented 1 compact data structures such as trees.
Execution of OLAP queries requires traversing diflerent
paths of the hierarchies, and performing aggregation opera-
tions on the corresponding data values.

Recently, sizes of the OLAP datasets have increased
significantly, and with availability of large memornies, 1t 1s
possible to store large OLAP datasets entirely in memory.
Even for n-memory OLAP data, depending on the amount
of tree traversals, the query time can be significant. If a
query 1s executed sequentially, 1t can reduce an overall
throughput of the system, cannot exploit multi-core capa-
bilities of current systems.

Accordingly, there 1s a need for systems and methods
hich are capable of more eflicient query execution of

W
OL AP datasets.

SUMMARY

In general, exemplary embodiments of the invention
include methods and systems for processing a query and, 1n
particular, to methods and systems for processing a query
over datasets stored using hierarchical data structures.

According to an exemplary embodiment of the present
invention, a system for processing a query, comprises an
input module capable of receiving the query, and an analysis
and execution module capable of analyzing the query and
the dataset to create an execution plan for the query, wherein
the analysis and execution module comprises a partition
module capable of partitioning traversals over the dataset
into sequential and parallel components, and a distribution
module capable of distributing the components across a
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plurality of processing threads that independently traverse
their portion of the dataset and compute local results. The
system further comprises a merging module capable of
merging the local results to compute a final result.

According to an exemplary embodiment of the present
invention, a method for processing a query of a tree-based
dataset, comprises receiving the query, and analyzing the
query and the dataset to create an execution plan for the
query, wherein creating the execution plan comprises parti-
tiomng traversals over the dataset mto sequential and par-
allel components, and distributing the components across a
plurality of processing threads that independently traverse
their portion of the dataset and compute local results. The
method further comprises merging the local results to com-
pute a final result. The recerving, analyzing, partitioning,
distributing and merging steps can be performed by a
computer system comprising a memory and at least one
processor coupled to the memory.

According to an exemplary embodiment of the present
invention, a computer program product for processing a
query of a tree-based dataset comprises a computer readable
storage medium having program instructions embodied
therewith, the program instructions executable by a proces-
sor to cause the processor to perform a method comprising
receiving the query, and analyzing the query and the dataset
to create an execution plan for the query, wherein creating
the execution plan comprises partitioning traversals over the
dataset into sequential and parallel components, and distrib-
uting the components across a plurality of processing
threads that independently traverse their portion of the
dataset and compute local results. The method further com-
prises merging the local results to compute a final result.

These and other exemplary embodiments of the invention
will be described or become apparent from the following
detailed description of exemplary embodiments, which 1s to
be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present invention will be
described below 1n more detail, with reference to the accom-
panying drawings, ol which:

FIG. 1 1s a flowchart 1llustrating a high level summary of
a calculation process in TM1®.

FIG. 2 1s a schematic diagram of a method for storing
database-pointers and values for a multi-dimensional array.

FIG. 3 1s a schematic diagram of a method for paralleliza-
tion for a multi-dimensional array.

FIGS. 4 and 5 are schematic diagrams of tree structures
used 1n a method for processing a query in accordance with
an embodiment of the present invention.

FIG. 6 1s a schematic diagram 1llustrating tree structures
in connection with a split for interruption used 1n a method
for processing a query 1n accordance with an embodiment of
the present mnvention.

FIGS. 7 and 8 are schematic diagrams illustrating tree
structures in connection with a split for parallelization used
in a method for processing a query in accordance with an
embodiment of the present invention.

FIG. 9 1s a schematic diagram 1llustrating a set of trees to
merge 1n connection with a method for processing a query
in accordance with an embodiment of the present invention.

FIGS. 10A and 10B are schematic diagrams 1llustrating
merging ol nodes at a {irst two levels and an assignment of
threads in connection with a method for processing a query
in accordance with an embodiment of the present invention.
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FIG. 11 1s a schematic diagram illustrating nodes belong-
ing to sub-trees rooting from nodes to which particular
threads have been assigned 1n connection with a method for
processing a query in accordance with an embodiment of the
present mvention.

FIG. 12 1s a schematic diagram of merged tree structure
in a method for processing a query in accordance with an
embodiment of the present invention.

FIG. 13 1s a schematic diagram of the merged tree
structure of FIG. 12, 1n which load balancing has been
performed 1n a method for processing a query in accordance
with an embodiment of the present invention.

FIG. 14 1s a high level diagram illustrating a parallel
operation dependency in a method for processing a query 1n
accordance with an embodiment of the present invention.

FIG. 15 1s a schematic diagram illustrating that content of
nested operations could be considered as part of a compound
tree 1n a method for processing a query in accordance with
an embodiment of the present invention.

FIG. 16 1s a high level diagram illustrating a synchroni-
zation mechanism in the presence of a nested operation 1n a
method for processing a query in accordance with an
embodiment of the present invention.

FIG. 17 1s a flow diagram of a method for processing a
query, according to an exemplary embodiment of the 1nven-
tion.

FIG. 18 1s high-level diagram showing detail of a system
for processing a query, according to an exemplary embodi-
ment of the ivention.

FIG. 19 illustrates a computer system 1n accordance with
which one or more components/steps of the techniques of
the invention may be implemented, according to an exem-
plary embodiment of the invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary embodiments of the invention will now be
discussed in further detail with regard to systems and
methods for processing a query and, in 1n particular, to
systems and methods that process a query over datasets
stored using hierarchical data structures. This invention may,
however, be embodied 1n many different forms and should
not be construed as limited to the embodiments set forth
herein.

Embodiments of the present mvention include eflicient
scalable methods of parallelizing tree-based hierarchical
OLAP queries over shared memory processors. Embodi-
ments ol the present invention may also result in a broad-
ening of the spectrum of mformation technology (I'T) pro-
fessionals who are capable of creating optimized database
definitions.

As used herein, “IMI®” can refer to an n-memory
MOLAP database server. The architecture 1s optimized to
represent complex data models efliciently in memory while
providing fast data aggregation. Data in TM1® 1s stored in
cubes. It 1s to be understood that TM1® 1s being used as an
example for purposes of explanation and that the embodi-
ments ol the present invention are not necessarily limited to
use with TM1®, and may be used with and/or incorporated
into other database servers or systems.

As used herein, a “cube” can refer to a structure defined
by an ordered set of dimensions, where a dimension 1s a set
of elements. A cube 1s analogous to a table in relational
database systems. Where a relational table 1s defined by two

e
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dimensions, rows and columns, a cube can have 2 or more
dimensions. For example, TM1® allows a cube to be defined
by up to 256 dimensions.

As used herein, a “dimension” 1s made up of a set of
clements. These elements act as indices into a cube. For
example assuming a company wants to create a cube to hold
the price and number of units sold for each of their products,
the cube can include the following dimensions: Store 1D
(e.g., set of stores the company operates), Product 1D (e.g.,
set of products the company sells), Date (e.g., date on which
products are sold), Region (e.g., geographic region in which
stores are located), Measures (e.g., labels that identily
whether a cell 1n the cube contains the price or the units sold
for a given product). Any cell in a cube can be addressed as
a compound index consisting of a tuple containing one
clement from each of the five dimensions. For example,
(S123, P789, June, Massachusetts, Units Sold) 1s the address
of the cell contaiming the number of units of the product
P789 sold in Massachusetts from store S123.

As used herein, “hierarchies” can refer to how elements 1n
a dimension are arranged.

As used herein, a cube’s “expanse” can refer to the n-ary
Cartesian product of a cube’s constituent dimensions, 1.e.,
the set of all possible tuples (cells) that can be associated
with a value. The subset of expanse-space tuples that have
been associated with values comprises the cube’s popula-
tion.

Applications can refer to a slice of a cube by holding one
or more of the elements 1n the tuple constant. Continuing the
example used above, the tuple (*, *, *, Massachusetts, Units
Sold) would address all cells 1n the cube containing the units
sold for all products sold, on any date, in any store in
Massachusetts.

As used herein, a “consolidated element” can refer to an
clement that contains children. The value of a cell indexed
by a consolidated element 1s the summation of the values of
all cells indexed by the child elements. Extending the
example above, the Region dimension may contain a con-
solidated element for New England that i1s defined to be
made up of the children {Maine, New Hampshire, Vermont,
Massachusetts, Rhode Island}. The value of a cell defined by
the tuple (5123, P789, June, New England, Units Sold) 1s the
sum of the cells defined by the tuples (5123, P789, June,
Maine, Units Sold), (8123, P789, June, New Hampshire,
Units Sold), (58123, P789, June, Vermont, Units Sold),
(S123, P789, June, Massachusetts, Units Sold), and (5123,
P789, June, Rhode Island, Umts Sold).

The TMI1® OLAP engine contains a consolidation
engine. Consolidated values are computed on demand and
the results are cached for future use. The TM1® consolida-
tion engine does weighted linear summation. The value of a
parent 1s equal to the sum of 1ts children. Children can be
assigned weights to aflect the consolidated value. If an
application wants diflerent algorithms for computed a cell’s
value, TM1® supports a Rules language that can encode
business logic. Such cells are referred to as calculated
(CALC) cells.

TM1® calculations are done on demand. Calculations can
also be recursive, 1n that calculating one cell may demand
the calculation of other cells. This process 1s repeated until
all values are resolved, so as to provide fast response to
changes. Calculations are done cell-by-cell or as a view.

As used herein, a “trie” (also referred to as “prefix tree”
or “tree”) or a “trie structure™ (also referred to as “prefix tree
structure” or “tree structure”) can refer to an ordered tree
structure where cube data 1s stored, where a path from root
to leaf represents a cell. Any cell from a notional space of the
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6

cube (“expanse,” see above) that 1s associated with a value
will have a path 1n the trie, with the value stored at the leaf.
All paths 1n the trie have the same length, equal to the
dimensionality of the cube, and consequently, a trie 1s
inherently unbalanced. Aggregations are not stored in the
cube data trie. Rather, they are calculated on demand. A
cube’s dimensions represent directed graphs of elements,
with weights associated with edges. For every aggregated
clement, the absolute leaves along with weight within that
clement are stored so that a full hierarchy need not be
traversed at runtime. In addition to aggregations, TM1® also
supports calculating cell values using Rules language. Like
aggregations, calculated values are computed on demand
and are not stored in the data tree.

As used herein, an “operation” can refer to a part of a
program activity to be parallelized. Program execution could
contain multiple instances of the operation. Several opera-
tions could be executed concurrently.

As a used herein, a “work unit” (of operation) can refer to
a subset of the operation that can be executed independently
of other operation parts, and may be represented as part of
an array, for example, a tree structure, portion of a tree
structure referred to herein as a “sub-tree,” or a portion of a
sub-tree.

As used herein, a “first level transaction’ or “transaction”
can refer to a transaction associated with TM1® application
programming interface (API) call or Turbo Integrator (11)
pProcess.

As used herein, a “transaction thread” can refer to a thread
executing first level transactions. Transaction threads can be
represented by TM1® UserThread instances, created by a
TM1 server for every connection established by a TM1®
client or by TMI1® ChoreThread instances created to
execute 11 processes.

As used herein, an “operation thread” can refer to a thread
designated for parallel processing of work units.

As used herein, an “operation thread pool” can refer to a
set of operation threads re-used for processing of multiple
instances of operation work units executed in parallel.

As used herein, a ‘“nested transaction” can refer to a
transaction branching out first level transaction activity into
multiple parallel execution streams. Nested transactions
correspond to the activity assigned to work units.

The flowchart in FIG. 1 presents a high level summary of
a calculation process 100 1n TM1®. At block 101, when a
cell 1s requested (assuming that 1t 1s not in a view that has
already been calculated), a server will perform the following
process. At block 103, a cell type 1s determined. If the
determination 1s calculation by rule 103, the rule script is
interpreted (block 107), and the first cell required for the
calculation 1s gathered (block 109). The server recurses back
111 to geta value of the cell required for calculation and the
expressmn 1s calculated at block 113. For example, if the
expression at block 107 1s C=A+B, at block 109 cell values
for A and B would be requested. Then, at block 113, the
calculated value for C would be returned.

I1 1t 1s determined that the cell 1s consolidated (block 115),
a server runs through leaves that makeup the cell (block
117), gets cells at block 119 and gets the value for every cell
teeding the consolidation by recursing back 121, which the
result then 1s accumulated (block 123) mnto the consolidation
115.

If 1t 1s determined that the cell 1s a simple cell 125, the
value of the cell 1s obtained from the cube (block 127). The
process continues evaluating rules, getting more cell values
and recursing as needed until done.
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As used herein, a “consolidated view” can refer to a
two-dimensional “subcube” of a cube. A consolidated view
can be defined by putting some dimensions as rows and
columns, and some as titles. The view shows a subset of the
row and column dimensions and a single element of each
title dimension. A server running reasonably large cubes
containing, for example, more than one million cells could
incur significant performance cost when consolidating cells
associated with leat members into rollup values. The con-
solidation operations are invoked when a user requests
rollup values on a cold system, when a given set of rollup
values has not been previously calculated. After rollups are
first computed, they are normally cached in the view storage
or calculation cache (unless server settings prevent caching).
In other scenarios, consolidation operations could be
invoked after cube data was changed. This leads to invali-
dation of rollup values computed earlier and the consolida-
tion values have to be re-computed from scratch.

Consolidation queries in TMI® views are often satisfied
by building an internal structure known as a “Stargate.” As
used herein, a “Stargate” can refer to a snapshot cube,
typically of lower dimensionality than a source cube. View
axes are represented by dimensions in the Stargate cube,
while contextual elements that are invariant 1n all requested
cells are omitted. When such context elements (called
“taitles” or “‘slicers™) represent an aggregation, the compo-
nent data 1s “flattened” in the resulting Stargate cube. A
Stargate 1s constructed by traversing the source cube’s
expanse, or more typically, the source cube’s population,
and aggregating visited cells into the Stargate cube.

Traversing the expanse refers to enumerating all possible
cells, while traversing the population can be a more eflicient
depth first search of the cube data trie. In either case, the
search space 1s constrained by a set of filters. View axes are
requested in terms of a subset. The absolute leaves of an
aggregated element included 1n an axis subset are added to
that subset before it can be used as a filter. These axis subsets
taken together are known as the “axis leaf subset” (ALS),
and comprise the dimensionality of the resulting Stargate
cube.

View titles that are not aggregations can conceptually be
thought of as a filter set of cardinality 1, while the absolute
leaves of an aggregated title form the filter set to be applied
to that title’s containing dimension in the source cube. A
positional cursor 1s maintained 1 both the input cube and
output Stargate cube as the search space 1s traversed. Fach
leat value (simple or calculated) 1s then used to adjust the
corresponding value i1n the Stargate cube, taking into
account that cell’s weight in any title aggregations.

The cost of view calculation using the Stargate algorithm
can be prohibitive, i particular, when the number of non-
null cells 1s large. In such cases, parallelizing the computa-
tion can improve performance.

Referring, for example, to U.S. Pat. No. 5,592,666, which
1s commonly assigned to the assignee of this application, and
1s 1ncorporated by reference herein 1n 1ts entirety, a storage
and retrieval scheme has been developed for values within
a multi-dimensional array using a hierarchy of database
pointers. Referring, for example, to FIG. 2, to store a value,
the elements corresponding to the value are determined.
Assume, for example, that the elements for a first value are
a,, b,, ¢y and X, for a first, second, third and last dimension,
respectively. A storage node 201 corresponding to the
array’s lirst dimension, for example, “Hybrid cars,” as
shown 1n FIG. 2, 1s established within a computer’s data-
base, and space within this storage node 1s allocated for all
of the elements corresponding to this dimension (a,, a,, a;,
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., a,). A database-pointer 203 then 1s stored in a storage
location a, within this storage node corresponding to the
clement for the first value’s first dimension.

A second storage node 205 then 1s established within the
computer’s database corresponding to database-pointer 203
and to the array’s second dimension, for example, “Color.”
Space within this storage node 1s allocated for all of the
clements corresponding to the second dimension (b,, b,
b,, . . ., b ). Database-pointer 203 1s caused to point to
storage node 205 corresponding to the second dimension. A
database-pointer 207 1s stored within storage node 205 at a
storage location b, corresponding to the element for the first
value’s second dimension.

A third storage node 209 then 1s established within the
computer’s database corresponding to database-pointer 207
and also to the array’s third dimension, designated, for
example, “Region.” Space within this third storage node 1s
allocated for all of the elements within the array’s third
dimension, for example, “Region” (¢, ¢,, ¢35, . . . , C,).
Database-pointer 207 1s caused to point to storage node 209.
A database-pointer 211 1s stored within storage node 209 at
a storage location ¢, corresponding to the element for the
first value’s third dimension.

These steps are repeated for each of the array’s dimen-
s1ons until a storage node 213, corresponding to the array’s
last dimension (e.g., “Sales”), 1s established. The first value
1s stored in a storage location X, corresponding to the
clement for the value’s last dimension.

When a second value 1s stored within the multidimen-
sional array, similar steps are effected. I the element cor-
responding to the second value’s first dimension 1s the same
as that for the first value, no new database pointer is stored
in storage node 201. On the other hand, i1f the element
corresponding to the second value’s first dimension 1s dii-
ferent from that for the first value, e.g., 1s a,, then a second
database-pointer 215 1s stored within storage node 201 at a
storage location a, corresponding to this element.

A new storage node 217 then i1s established within the
computer’s database, 1n a manner similar to that described
above, corresponding to database-pointer 215 and also to the
array’s second dimension. Space within storage node 217 1s
allocated for all of the elements of the second dimension (b,,
b,, by, .. ., b, ). Database-pointer 215 1s caused to point to
storage node 217. A database-pomter 219 1s stored within
storage node 217 at a storage location b, corresponding to
the element for the second value’s second dimension. These
steps are repeated, as for the first value, until the second
value 1s stored 1n a storage node 221 at a storage location x5,
corresponding, respectively, to the array’s last dimension
and the second value’s element for this dimension.

If the element corresponding to the first dimension is the
same for the first value and the second value, a database-
pomnter 223 corresponding to the element for the second
value’s second dimension 1s stored 1n storage node 203. This
storage node 1s the same storage node 1n which database-
pointer 207 1s stored which corresponds to the element for
the first value’s second dimension. Assuming the elements
for the first and second values’ second dimension are
different, the hierarchical tree of database-pointers for these
values splits at storage node 205, rather than storage node
201.

In accordance with this scheme, therefore, in order to
insert into, or withdraw from, the multidimensional array a
particular value, the element 1dentifiers corresponding to the
value are determined. For the insertion step, database-
pointers, and finally the value, are placed within storage
nodes corresponding to the array’s various dimensions. The
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value 1s withdrawn from memory by tracing the hierarchy of
database-pointers defined by the value’s element 1dentifiers.

Embodiments of the present mvention provide systems
and methods for partitioning traversals over a data tree mnto
sequential and parallel components. In accordance with an
embodiment of the present invention, a heuristic balances an
amount of available work that can be distributed across
multiple threads and an amount of sequential computation.
Parallel work 1s distributed such that individual threads

traverse distinct portions of a data space. A tree partitioning,
heuristic partitions a tree such that the amount of work per

thread (or a number of distinct portions per thread) are more
than a certain threshold. The threads independently traverse
allocated portions of the data tree, and compute local results.
These results are then merged to get a final result.

In accordance with embodiments of the present invention,
users can specily a number of threads used in the query or
the system can choose the number of threads to be used for
parallelization. The parallel work can be statically assigned
to the threads or threads can share work using work-stealing,
techniques.

Referring, for example, to FIG. 3, a process wide pool of
work units 1s maintained in order to dispatch work units
between operation threads (e.g., Thread 0 and Thread 1), and
to drive load balancing between concurrent operations.

FIG. 3 shows a simple example of a data tree for a cube
“Hybrid cars” with three dimensions: Color, Region, and
Sales. Data structures based on trees could be processed 1n
parallel by 1dentitying subtrees to be handled independently
by worker threads. FIG. 3 branches these subtrees at the
Color dimension. Methods 1n accordance with embodiments
ol the present invention described herein associate subtrees
with units of work that could be executed independently of
cach other. A work unit pool collects and keeps track of
current work units for a given server instance and distributes
work units across operation threads.

A Work Unit Pool 1s organized as a Work-Unit-Pool-Map:

Transaction ID=>{Queued Work units; Running Work

Units; Work Units for Serialized execution}

According to an embodiment of the present invention, the
ID of the main thread 1s used 1n order to reflect the
transaction ID. This map allows balancing the number of
operation threads used for a given transaction.

The number of allowed running work units associated
with a given transaction 1s calculated using equation 1 as:

AllowedNumberOfRunningUnits = (1)

NumberOfOperationThreads ]
_|_
NumberOfParallelizedTransactions

Ceiling (

(Main — Transaction — Treads — [s — Busy?)

where NumberOifParallelized Transactions=size (Work-
Unit-Pool-Map) and MainTransactionTreadsIsBusy flag can
be 0 or 1, and 1s set to false (1.e., 0), when the work unit
handled by the main transaction thread 1s finished and this
thread also enters a loop looking for work units.

When the actual number of running work units exceeds an
allowed number, the exceeding subset of the work units
needs to be interrupted for a rebalancing distribution of
operation threads across transactions. The remaining work
of the mterrupted units 1s put on a queued work unit list.

When the actual number of running work units plus the
number of queued work units 1s lower than the allowed
number, some work units could be split to engage more

10

15

20

25

30

35

40

45

50

55

60

65

10

operation threads, which are reading from the work unit
pool. The number of additional work units that can be
created 1s given by equation 2:

NumberOfRemaining UnitSlots = AllowedNumberOfRunning Units— (2)

CurrentNumberOfRunningUnits — CurrentNumberOfQueuedUnits

Operation threads access a Work Unit Pool to retrieve a
umt to be processed. A system 1n accordance with an
embodiment of the present invention loops over transactions
in a Work-Unit-Pool-Map starting from the last serviced
transaction. The first transaction that has queued work units
and does not exceed an allowed-number-of-running-work-
units gets serviced.

Operation threads execute the following cycle:

Loop (until Exit-Event)

{
Get queued Work Unit
If (work unit found)
Execute work unit
else
Wait for New-Work-Unit-Event or Exit-Event
f

In accordance with an embodiment of the present mnven-
tion, operation threads are kept in an Operation Thread Pool
of process scope. A maximum size ol an Operation Thread
Pool 1s defined 1n the configuration file. Initially the Opera-
tion Thread Pool 1s empty, and grows on demand up to the
allowed maximum.

When a Work Unit Pool recerves a new work unit to be
queued, 1t notifies the Operation Thread Pool. The Operation
Thread Pool searches for the first non-busy operation thread
and sends 1t a New Work Unit Event. It all operation threads
are busy and the maximum number of operation threads 1s
not reached, a new operation thread 1s created.

Retferring to FIG. 4, which 1s a tree structure used 1n a
method for processing a query in accordance with an
embodiment of the present invention, a constant-depth tree
400 contaiming data at the leal nodes 1s traversed. An
example of the constant-depth tree 400 may be, for example,
a TM1® Stacked Trie data structure.

With respect to node traversal, in accordance with an
embodiment of the present invention, this kind of a tree can
be divided imto sub-trees defined by their left-most and
right-most branches, also referred to herein as mimimum and
maximum branches. The sub-trees limited by minimum and
maximum branches are associated with the work units
enabling parallelization of the tree traversal.

Reterring to FIG. 4, for purposes of explanation, the
nodes 1n the tree are assumed to be associated with numbers,
which are referred to herein as coordinates. Coordinates are
umque and sorted under a given parent node. The coordi-

nates are used to define the sub-trees. Coordinates 1n a
TMI1I® Stacked Trie structure are 1Ds of TM1® elements.

The shaded part of the tree 400 can be described by
coordinates (1,1,1)-(1,2,2) of the left-most and right-most
branches 401, 402 and 403, and 401, 404 and 405. A sub-tree
can also be 1dentified by filtering criteria, which would look
similar to the coordinate based sub-tree specification, with
the exception that the filtering criteria could refer to coor-
dinates not present in the tree, yet still separating the
sub-tree from the rest of the tree. Examples of the criteria
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resulting 1n the same sub-tree would be: [(1,1,0)-(1,2,3)] or
[(0,0,0)-(1,2,max)]. For example, the first elements in these
notations [(1,1,0)-(1,2,3)] or [(0,0,0)-(1,2,max)]. [(1 . .. )-
(1...)] mean that an ID of the element of the first(root) level
of the tree should be exactly 1. [(0...)-(1...)] means that
an ID of the element of the first(root) level of the tree should
be =0 and <1. Given this level contains only a single element
with ID=1, both conditions render the same result. The same
logic applies for the second level of this notation [(1,1,0)-
(1,2,3)] or [(0,0,0)-(1,2,max)]. The conditions are a bait
different, but for this tree, they render the same result nodes
satistying this condition.

The filtering criteria will include the trailing parts based
on 0 to max boundaries. In accordance with an embodiment
of the present invention, these portions of the sub-tree
filtering criteria can be omitted. For example, [(0,0,0)-(1,2,
max)] could be replaced with the shorter form [(0,0)-(1,2)]
and [(1,1,0)-(1,2,max)] could be replaced with the shorter
form [(1,1)-(1,2)]. According to an embodiment, the leading
part that 1s shared by the branch vectors, 1.e., the apex part
of the sub-tree, can be specified once, so [(1,1)-(1,2)] can be
turther shortened as [1, (1)-(2)]. This notation can be used
when logging work unit related events.

Referring to the tree 500 1n FIG. 5, dynamic work load
balancing uses predefined intervals 1n the work unit execu-
tion to analyze 11 the work unit 1s to be split 1n order to be
distributed between operation threads or to balance opera-
tion threads across concurrent operations.

In accordance with an embodiment of the present inven-
tion, a split analysis check point occurs after a given interval
of tree traversal in the context of a currently visited leaf
node. The itervals are defined based on time passed or
number of leal nodes visited since a previous event.

Referring to FIG. S, the check point occurs when visiting,

the shaded nodes 501, 502, 503, with coordinates (1,1,10),
while traversing the sub-tree: [1, (1)-(2)].

In accordance with an embodiment of the present inven-
tion, the following logic 1s used in order to determine 1 a
split 1s required. IT an AllowedNumberOfRunningUnits (see
Eqg. 1 above) 1s exceeded by an actual number of running-

units for a given transaction, then a current work unit 1s
Split-For-Interruption. If an AllowedNumberOfRunnin-
gUnits 1s higher than an actual number of running and
queued units for a given transaction, then a current work unit
1s Split-For-Parallelization.

Split for Interruption

According to an embodiment, Split for interruption makes

the following transformations:

Limits current work unit with the coordinates of the
current leatf node.

Creates new work unit reusing the right-most filtering
criteria (ol maximums) of the original work unit and
using left-most criteria based on the coordinates of the
current leal node incremented by 1 at the lowest level.

For example, referring to FI1G. 6, the split occurring at the

leatnode (1,1,10) of the work unit [1, (1)-(2)] corresponding
to tree 600 will result 1n the creation of the following 2 work
units corresponding to the trees 610, 620:

[1, (1)-2)]=>[1, 1, (0-10)]+[1, (1, 11)-(2,max)]

or using full notation of these work units:

[(1, 1, 0)-(1, 2, max)|=>[(1, 1, 0)-(1, 1, 10)]+[(1, 1, 11)-(1,
2, max)

The current work unit corresponding to tree 600 1s eflec-

tively positioned at the last point of the traversal, which
means 1t will be finished shortly after the split check point.

10

15

20

25

30

35

40

45

50

55

60

65

12

The extracted part of the work unit corresponding to the
trees 610, 620 will be queued for further distribution among
operation threads.

Split for Parallelization According to an embodiment,
Split for parallelization breaks an unvisited portion of a tree
to distribute it across several work units. Referring to FIG.
7, the Split for parallelization method breaks the tree 700 at
the first level containing nodes that have not yet been visited
to result 1 trees 710 and 720. For example, a current pass
of the tree traversal 1s at (1,1,10) as indicated by the shaded
portion 1n tree 700, and the split occurs at the second level
which contains yet to be visited node 701 (1,2).

In accordance with an embodiment, if the tree traversal
position does not leave unvisited nodes on a particular level
(e.g., the second level), the split occurs on one level down
if that level contains unvisited nodes. For example, referring
to FIG. 8, a current pass of the tree traversal 1s at (1,2,0) as
indicated by the shaded portion 1n tree 800, and the split
occurs at the third level which contains yet to be visited node
801 (1,2, 2) to result in trees 810 and 820.

According to an embodiment, the number of subtrees
created as a result of the split 1s determined as a minimum
of the number of nodes letft unvisited at the split level and the
number of operation threads available for the transaction
(see Eq. 2 above) plus one operation thread to account for
the current unait.

Supporting Nested Transactions—TIree Merge Paral-
lelization

In accordance with an embodiment, merging trees are
parallelized. FIG. 9 illustrates trees 900, 910 and 920 to be
merged. Referring to FIG. 10A, 1n a first phase, referred to
as a single thread breadth first merge, nodes 1 a single
thread execution are merged at two levels to form a tree
1000. More specifically, nodes 901 and 902 of tree 900,
nodes 911, 912 and 913 of tree 910, and nodes 921, 922 and
923 of tree 920 are merged to form tree 1000. While merging
at two levels 1s described, i1t 1s to be understood that the
embodiments of the present invention are not necessarily
limited to merging at two levels, and merging may be
performed at more than two levels.

Retferring to FIG. 10B, 1n a second phase, referred to as
a parallelized merge on sub-tree roots, leaves 1001, 1002
and 1003 of the tree 1000 are assigned to different threads,
Thread 1 (11), Thread 2 (1T2) and Thread 3 (T3). As can be
understood from FIG. 11, every thread scans through the
trees being merged, but only looks at the nodes belonging to
the sub-tree rooting from the node the thread 1s assigned to.
For example, referring to FIGS. 10 and 11, the nodes 1102,
1103, 1114, 1124 and 1125 belong to the sub-tree rooting
from node 1001 to which Thread 1 1s assigned. The nodes
1115 and 1116 belong to the sub-tree rooting from node 1002
to which Thread 2 1s assigned. The node 1126 belongs to the
sub-tree rooting from node 1003 to which Thread 3 1s
assigned. In accordance with an embodiment, modifications
of the resulting tree structure made by individual threads are
localized to the assigned sub-tree, avoiding thread interfer-
ence.

The resulting merged tree 1200 1s illustrated in FIG. 12,
which includes nodes 1201, 1202 and 1203 belonging to
Thread 1, nodes 1204 and 1205 belonging to Thread 2 and
node 1206 belonging to Thread 3.

In a third phase, load balancing utilizing recursive split-
ting within a sub-tree 1s performed. When some of the
operation threads finish their sub-trees and become available
to take on more work, the breadth first merge with subse-
quent parallelized 1n-depth population could be recursively
repeated. For example, referring to FIG. 13, when Thread 2
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and Thread 3 are finished with the sub-trees to which they
are assigned ((1,5) and (1,8)), Thread 1 will force population

of the third level first and then will, for example, give the
sub-trees (1,1,10) and (1,1,12) to the other threads (e.g.,
Thread 2 or Thread 3) to handle. 5

Nested Parallel Operations

In accordance with an embodiment of the present inven-
tion, execution of a work unit from one parallel operation
could run mto another operation that could potentially be
parallelized too. When the second operation enters the
parallelization mode, this 1s referred to as a nested parallel
operation.

An example of this scenario 1s parallelized construction of
a Stargate over a cube with rules, where rules drive the
cube’s leaf level cell values. Computation of the rule driven
values can access values of cells from different cube con- 1°
texts. When a rule calculation requests values of a consoli-
dated cell, TM1® can start computation of another Stargate
or enter a single cell consolidation mechanism. Both of these
operations could switch to the parallel execution mode.

As an example, consider a cube with the following rule 2©

based measure:

[% Sales]=N: [Sales]/[Sales, AllProduct],

representing a percentage of sales of a given product
within overall sales of all products.

The following crosstab could be considered as one of the 2>
scenar1os leading to nested parallel operations:

10

% Sales
30
Sedan Truck SUV
USA
Canada
UK

where [Sedan], [Truck], [SUV] are the members of the Product dimension. 3>

First, execution of a query populating the crosstab will run
into the operation of a Stargate construction, which will be
computed based on the cube leaf cell values associated with
[% Sales]. Assume a query parallelization strategy where the 40
Stargate construction will be immediately split into multiple
work units to be run 1n concurrently.

A given [% Sales] member 1s rule based at the cube leat
level. The rule computation will start when Stargate con-
struction requests leaf cell values associated with [% Sales]. 45
(Given the expression defimition *“[Sales]/[Sales, AllProd-
uct]” the Stargate construction will first request the [Sales]
numbers 1n a given context, which can be done, for example,
through simple TM1® cube data tree access. However, a
[Sales, AllProduct] reference computation will request a 50
consolidation cell, as 1t will be associated with the [ AllProd-
uct] consolidated member. The value of the consolidation
cell would be another operation that could be parallelized.

At a high level, the parallel operation dependency 1s
shown 1n FIG. 14. Referring to FIG. 14, Operation 1 1s split 55
into three work units: WU1, WU2, WU3. Execution of WU1
and WU3 runs into a nested parallel operation at a certain
point of the overall work assigned to the work units. In FIG.
14, every 1nstance of a parallel operation requires synchro-
nization of the work unit activities at the end (depicted with 60
a flag shaped block). The synchronization comes with cost
to be considered to drive a load balancing strategy in the
system ol nested operation.

The operation nesting could be of arbitrary depth. When
driven by, for example, TM1® rule definition, the nesting 65
depth will grow with the complexity of recursive dependen-
cies of the rule definition.

14

As can be understood from FIG. 14, operations and work
unmits at a given point in time form a tree ol activities
involved in execution of the root operation Opl. The tree 1s
dynamic, expanding and collapsing as execution progresses.
When mapping the tree to parallel operations associated
with tree traversal, 1t 1s possible to see nested operation
activities as part of global tree traversal, as shown 1 FIG.

15.

Referring to FIG. 15, the nodes 1501, 1502 and 1503
marked with 1 represent the tree of the root operation
associated with tree traversal. The activity associated with
the leal node of the root tree 1s assumed to run a set of
execution steps that i1s represented as a sequence of the
execution nstructions illustrated as black boxes 1504, 1505,
1506, 1507 and 1508, and nested operations associated with
the tree traversal. The content of nested operations 2, 3 and
4 (designated as 1520, 1530 and 1540) could be considered
as part of a compound tree.

FIG. 16 illustrates a synchronization mechanism in the
presence of the nested operation. As in the case of the root
operation, nested operation Op2 starts with a single main
work unit (Main.Op2. WU) executed 1n non-parallel mode of
the operation Op2 (eflectively being part of parallelization
of the Opl1 at this point). Once operation Op2 1dentifies need
for split-for-parallelization, Op2.WU2 1s extracted from
MainOp2. WU, and Op2 enters the parallelization mode.

As the number of 1nstances of nested operations could get
rather large, proper heuristics of entering parallelization
mode only for reasonably large operations becomes more
important to eliminate the overhead of the parallelization
infrastructure on small operations.

Referring to FIG. 17, a flow diagram of a method for
processing a query, according to an embodiment of the
present invention, 1s shown. The method 1700 comprises
receiving the query (block 1701) and analyzing the query
and the dataset to create an execution plan for the query
(block 1703). In accordance with an embodiment, the data-
set 1s a tree-based dataset having a tree structure. Creating
the execution plan includes partitioning traversals over the
dataset 1nto sequential and parallel components (block
1705), and distributing the components across a plurality of
processing threads that independently traverse their portion
of the dataset and compute local results (block 1707). The
local results are merged to compute a final result (block
1709). The merging includes merging nodes of a plurality of
sub-trees to create a merged sub-trees, wherein the merging
of the nodes of the plurality of sub-trees 1nitially occurs at
less than a total number of levels 1n the sub-trees. Leaves of
the merged sub-tree can be assigned to diflerent processing
threads, and some of the leaves of the merged sub-tree can
be reassigned from a first processing thread to a second
processing thread when the second processing thread
becomes available to take on more work.

To determine 1f a partition 1s required, 1t 1s determined 11
an AllowedNumberOfRunningUnits (see Eq. 1 above) is
exceeded by an actual number of runmng-units for a given
transaction. If so, a current work unit 1s Split-For-Interrup-
tion. If an AllowedNumberOfRunningUnits 1s higher than
an actual number of running and queued units for a given
transaction, then a current work unit 1s Split-For-Paralleliza-
tion.

In the case of Split-For-Interruption, the partitioning
comprises limiting a current work unit with coordinates of a
current leal node to create a first work unit, and creating a
second work unit by using a right-most branch of the current
work unit and using a left-most branch based on coordinates
of the current leal node incremented by one at a lowest level.
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In the case of Split-For-Parallelization, the partitioning
comprises splitting an unvisited portion of a work unit to
distribute the work unit across a plurality of work unaits,
wherein 1f a traversal position of the work unit does not
leave an unvisited node on a first level, the splitting occurs
on a next level down that contains an unvisited node.

A number of the plurality of work units can be determined
based on at least a number of nodes left unvisited at a level
where the splitting occurs and/or a number of available
processing threads.

Referring to FIG. 18, which 1s a high-level diagram of a
system 1800 for processing a query, according to an embodi-
ment of the present invention, the system includes an input
module 1801 capable of receiving the query, and an analysis
and execution module 1803 capable of analyzing the query
and the dataset to create an execution plan for the query. The
analysis and execution module comprises a partition module
1805 capable of partitioning traversals over the dataset into
sequential and parallel components, and a distribution mod-
ule 1807 capable of distributing the components across a
plurality of processing threads that independently traverse
their portion of the dataset and compute local results. The
system 1800 further includes a merging module 1809
capable of merging the local results to compute a final result.

In order to determine 1f the partitioming 1s required, the
analysis and execution module 1803 1s further capable of
comparing, prior to the partitioning, an allowed number of
running work units to an actual number of running work
units for the query. In the case of a Split-For-Interruption,
the partition module 1805 1s further capable of limiting a
current work unit with coordinates of a current leaf node to
create a first work unit, and creating a second work unit by
using a right-most branch of the current work umt and using,
a left-most branch based on coordmates of the current leal
node incremented by one at a lowest level. In the case of a
Split-For-Parallelization, the partition module 1805 1s fur-
ther capable of splitting an unvisited portion of a work unit
to distribute the work unit across a plurality of work units.
If a traversal position of the work unit does not leave an
unvisited node on a first level, the splitting occurs on a next
level down that contains an unvisited node.

The partition module 1805 1s also capable of determining,
a number of the plurality of work units based on a number
of nodes left unvisited at a level where the splitting occurs
and/or a number of available processing threads.

The merging module 1809 1s further capable of merging
nodes of a plurality of sub-trees to create a merged sub-tree,
wherein the merging of the nodes of the plurality of sub-
trees mitially occurs at less than a total number of levels in
the sub-trees. The merging module 1809 1s also capable of
assigning leaves of the merged sub-tree to diflerent process-
ing threads, and reassigning some of the leaves of the
merged sub-tree from a first processing thread to a second
processing thread when the second processing thread
becomes available to take on more work.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
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semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
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flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
mstructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified i the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

One or more embodiments can make use ol software
running on a general-purpose computer or workstation. With
reference to FIG. 19, 1n a computing node 1910 there 1s a
computer system/server 1912, which i1s operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
well-known computing systems, environments, and/or con-
figurations that may be suitable for use with computer
system/server 1912 include, but are not limited to, personal
computer systems, server computer systems, thin clients,
thick clients, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puter systems, mainirame computer systems, and distributed
cloud computing environments that include any of the above
systems or devices, and the like.

Computer system/server 1912 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
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system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 1912 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located 1n both local and remote computer system storage
media including memory storage devices.

As shown i FIG. 19, computer system/server 1912 1n
computing node 1910 1s shown 1n the form of a general-
purpose computing device. The components of computer
system/server 1912 may include, but are not limited to, one
Or more processors or processing units 1916, a system
memory 1928, and a bus 1918 that couples various system
components 1mcluding system memory 1928 to processor
1916.

The bus 1918 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA
(EISA) bus, Video FElectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

The computer system/server 1912 typically includes a
variety of computer system readable media. Such media
may be any available media that 1s accessible by computer
system/server 1912, and 1t includes both volatile and non-
volatile media, removable and non-removable media.

The system memory 1928 can include computer system
readable media 1n the form of volatile memory, such as
random access memory (RAM) 1930 and/or cache memory
1932. The computer system/server 1912 may further include
other removable/non-removable, volatile/nonvolatile com-
puter system storage media. By way of example only,
storage system 1934 can be provided for reading from and
writing to a non-removable, non-volatile magnetic media
(not shown and typically called a “hard drive”). Although
not shown, a magnetic disk drive for reading from and
writing to a removable, non-volatile magnetic disk (e.g., a
“floppy disk™), and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a
CD-ROM, DVD-ROM or other optical media can be pro-
vided. In such instances, each can be connected to the bus
1918 by one or more data media interfaces. As depicted and
described herein, the memory 1928 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention. A program/utility 1940, hav-
ing a set (at least one) of program modules 1942, may be
stored 1n memory 1928 by way of example, and not limi-
tation, as well as an operating system, one or more appli-
cation programs, other program modules, and program data.
Each of the operating system, one or more application
programs, other program modules, and program data or
some combination thereol, may include an implementation
ol a networking environment. Program modules 1942 gen-
crally carry out the functions and/or methodologies of
embodiments of the mvention as described herein.

Computer system/server 1912 may also communicate
with one or more external devices 1914 such as a keyboard,
a pointing device, a display 1924, etc., one or more devices
that enable a user to interact with computer system/server
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1912, and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server 1912 to communicate
with one or more other computing devices. Such commu-
nication can occur via Input/Output (I/O) mtertaces 1922.
Still yet, computer system/server 1912 can communicate 3
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 1920. As
depicted, network adapter 1920 communicates with the
other components ol computer system/server 1912 via bus 10
1918. It should be understood that although not shown, other
hardware and/or software components could be used in
conjunction with computer system/server 1912. Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID 15
systems, tape drives, and data archival storage systems, efc.

Although 1llustrative embodiments of the present mnven-

tion have been described herein with reference to the accom-
panying drawings, 1t 1s to be understood that the invention

1s not limited to those precise embodiments, and that various 20
other changes and modifications may be made by one skilled

in the art without departing from the scope or spirit of the
invention.

We claim:

1. A system for processing a query of a tree-based dataset, 25

comprising:
a memory and at least one processor coupled to the
memory, wherein the at least one processor 1s config-
ured to:
receive the query; 30
analyze the query and the dataset to create an execution
plan for the query, wherein, in analyzing the query and
the dataset to create the execution plan, the at least one
processor 1s further configured to:
partition traversals over the dataset into sequential and 35
parallel components;

distribute the sequential and the parallel components
across a plurality of processing threads that indepen-
dently traverse their portion of the dataset and com-
pute local results; and 40

compare, prior to partitioning the traversals, an allowed
number of running work units to an actual number of
running work units for the query;

wherein the allowed number of running work units 1s a
function of a ceiling of a number of operation threads 45
used for a given transaction with respect to a number
of parallelized transactions; and

wherein, 1 partitioming the traversals over the dataset,
the at least one processor 1s configured to:

split a current work unit for parallelization 1n response 50
to the allowed number of running work units exceed-
ing the actual number of running work units and
queried work units for the query;

split a current work unit for interruption 1n response to
the allowed number of running work units being 55
exceeded by the actual number of running work units
for the query; and

merge the local results to compute a final result, wherein,
in merging the local results to compute the final result,
the at least one processor 1s configured to merge nodes 60
of a plurality of sub-trees to create a merged sub-tree;
wherein, 1 splitting the current work unit for paral-

lelization, the at least one processor i1s further con-
figured to:
split an unvisited portion of the current work unit to 65
distribute the current work unit across a plurality
of work units; and

20

determine a number of the plurality of work units
based on a mimmum of a number of nodes left
unvisited at a level where the splitting occurs and
a number of available processing threads plus one
operation thread to account for the current work
unit.

2. The system according to claim 1, wherein, 1n splitting,
the current work unmit for interruption, the at least one
processor 1s further configured to:

limit a current work umit with coordinates of a current leat

node to create a first work unit; and

create a second work unit by using a right-most branch of

the current work unit and using a left-most branch
based on coordinates of the current leal node incre-
mented by one at a lowest level.

3. The system according to claim 1, wherein 1f a traversal
position of the current work unit does not leave an unvisited
node on a first level, the splitting occurs on a next level down
that contains an unvisited node.

4. The system according to claim 1, wherein the merging
of the nodes of the plurality of sub-trees 1nitially occurs at
less than a total number of levels 1n the sub-trees.

5. The system according to claim 1, wherein the at least
one processor 1s further configured to assign leaves of the
merged sub-tree to different processing threads.

6. The system according to claim 5, wherein the at least
one processor 1s further configured to reassign some of the
leaves of the merged sub-tree from a first processing thread
to a second processing thread when the second processing
thread becomes available to take on more work.

7. Amethod for processing a query of a tree-based dataset,
the method comprising:

recerving the query;

analyzing the query and the dataset to create an execution

plan for the query, wherein analyzing the query and the
dataset to create the execution plan comprises:
partitioning traversals over the dataset into sequential
and parallel components; and
distributing the components across a plurality of pro-
cessing threads that independently traverse their por-
tion of the dataset and compute local results; and
merging the local results to compute a final result,
wherein merging the local results to compute the final
result comprises merging nodes of a plurality of sub-
trees to create a merged sub-tree;
wherein the analyzing further comprises comparing, prior
to the partitioning, an allowed number of running work
units to an actual number of running work umts for the
query.,

wherein the allowed number of running work units 1s a

function of a ceiling of a number of operation threads
used for a given transaction with respect to a number of
parallelized transactions;

wherein partitioning the traversals over the dataset com-

prises:

splitting a current work unit for parallelization 1n response

to the allowed number of running work units exceeding
the actual number of running work units and queried
work units for the query; and

splitting a current work unit for interruption 1n response to

the allowed number of running work units being
exceeded by the actual number of running work units
for the query;

wherein splitting the current work unit for parallelization

comprises splitting an unvisited portion of the current
work unit to distribute the current work unit across a
plurality of work units; and
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wherein a number of the plurality of work units 1s
determined based on a minimum of a number of nodes
left unvisited at a level where the splitting occurs and
a number of available processing threads plus one
operation thread to account for the current work unit;
and

wherein the steps of the method are performed by a
computer system comprising a memory and at least one
processor coupled to the memory.

8. The method according to claim 7, wherein splitting the

current work umt for interruption comprises:

limiting a current work unit with coordinates of a current
leat node to create a first work unit; and

creating a second work unit by using a right-most branch

of the current work unit and using a left-most branch
based on coordinates of the current leal node incre-
mented by one at a lowest level.

9. The method according to claim 7, wherein if a traversal
position of the current work unit does not leave an unvisited
node on a first level, the splitting occurs on a next level down
that contains an unvisited node.

10. The method according to claim 7, wherein the merg-
ing of the nodes of the plurality of sub-trees mnitially occurs
at less than a total number of levels 1n the sub-trees.

11. The method according to claim 7, further comprising
assigning leaves of the merged sub-tree to different process-
ing threads.

12. The method according to claim 11, further comprising
reassigning some of the leaves of the merged sub-tree from
a first processing thread to a second processing thread when
the second processing thread becomes available to take on
more work.

13. A computer program product for processing a query of
a tree-based dataset, the computer program product com-
prising a computer readable storage medium having pro-
gram 1nstructions embodied therewith, the program instruc-
tions executable by a processor to cause the processor to
perform a method comprising:

receiving the query;

analyzing the query and the dataset to create an execution

plan for the query, wherein analyzing the query and the

dataset to create the execution plan comprises:

partitioning traversals over the dataset into sequential
and parallel components; and

distributing the components across a plurality of pro-
cessing threads that independently traverse their por-
tion of the dataset and compute local results; and
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merging the local results to compute a final result,
wherein merging the local results to compute the final
result comprises merging nodes of a plurality of sub-
trees to create a merged sub-tree;

wherein the analyzing further comprises comparing, prior
to the partitioming, an allowed number of running work
units to an actual number of running work units for the

query,
wherein the allowed number of running work units 1s a
function of a ceiling of a number of operation threads
used for a given transaction with respect to a number of
parallelized transactions;
wherein partitioning the traversals over the dataset com-
Prises:
splitting a current work unit for parallelization 1n response
to the allowed number of running work units exceeding
the actual number of running work units and queried
work units for the query; and
splitting a current work unit for interruption 1n response to
the allowed number of running work units being
exceeded by the actual number of running work units
for the query;
wherein splitting the current work unit for parallelization
comprises splitting an unvisited portion of the current
work unit to distribute the current work unit across a
plurality of work units; and
wherein a number of the plurality of work units is
determined based on a minimum of a number of nodes
left unvisited at a level where the splitting occurs and
a number of available processing threads plus one
operation thread to account for the current work unit.
14. The computer program product according to claim 13,
wherein splitting the current work unit for interruption
COmMprises:
limiting a current work unit with coordinates of a current
leal node to create a first work unit; and
creating a second work unit by using a right-most branch
of the current work unit and using a left-most branch
based on coordinates of the current leal node incre-
mented by one at a lowest level.
15. The computer program product according to claim 13,
wherein:
the merging of the nodes of the plurality of sub-trees
initially occurs at less than a total number of levels 1n
the sub-trees; and
the method further comprises assigning leaves of the
merged sub-tree to diflerent processing threads.
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