12 United States Patent
Chen

US010048867B2

US 10,048,867 B2
Aug. 14, 2018

(10) Patent No.:
45) Date of Patent:

(54) METHOD TO SHORTEN HASH CHAINS IN
LEMPEL-Z1YV COMPRESSION OF DATA
WITH REPETITIVE SYMBOLS

(71) Applicant: Seagate Technology LLC, Cupertino,
CA (US)

(72) Inventor: Ning Chen, San Jose, CA (US)

(73) Assignee: SEAGATE TECHNOLOGY LLC,
Cupertino, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 203 days.

(21) Appl. No.: 14/976,236

(22) Filed: Dec. 21, 2015

(65) Prior Publication Data
US 2016/0110116 Al Apr. 21, 2016

Related U.S. Application Data

(63) Continuation of application No. 13/659,036, filed on
Oct. 24, 2012, now Pat. No. 9,231.613.

(51) Int. CL
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)
GO6F 3/06 (2006.01)
HO3M 7/30 (2006.01)
(52) U.S. CL
CPC ... GO6F 3/0608 (2013.01); GO6F 3/0638

(2013.01); GOGF 3/0679 (2013.01); HO3M
7/3084 (2013.01)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,247,638 A * 9/1993 O’Brien GO6F 3/0601
341/87

5,371,499 A 12/1994 Graybill et al. 341/51
5,933,104 A * §/1999 Kimura HO3M 7/3086
341/51

5,951,623 A 9/1999 Reynar et al. 708/203
5,978,795 A * 11/1999 Poutanen HO3M 7/3086
6,021,198 A 2/2000 Anigbogu et al. 380/9
6,141,421 A * 10/2000 Takaragi HO4L 9/0643
380/269

6,594,665 B1* 7/2003 Sowa GO6F 17/30949
7,451,166 B2* 11/2008 Damani GO6F 11/1471

(Continued)

OTHER PUBLICATIONS

Z1v, Jacob, et al., “A Universal Algorithm for Sequential Data

Compression”, IEEE Transaction on Information Theory, vol. I'T-23,
No. 3, May 1977, pp. 337-343.

Primary Examiner — Daniel Kuddus

(74) Attorney, Agent, or Firm — Christopher P. Maiorana,
PC

(57) ABSTRACT

An apparatus having a circuit 1s disclosed. The circuit may
be configured to (1) generate a sequence of hash values 1n a
table from a stream of data values with repetitive values, (11)
find two consecutive ones of the hash values in the sequence
that have a common value and (111) create a shortened hash
chain by generating a pointer in the table at an intermediate
location that corresponds to a second of the two consecutive
hash values. The pointer generally points forward in the
table to an end location that corresponds to a last of the data
values 1n a run of the data values.

18 Claims, 5 Drawing Sheets

220 ~

292 208
--—--—--+-lN BUFFER DATAZ LZ OuUT

COMPRESSOR
DATA1 CHAINZ
224 o
CHAIN1
CALCULATOR e CHAIN

TABLE

US 10,048,867 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
7,483,426 B2* 1/2009 Claseman GO6F 17/30949
370/392
RE41,152 E 2/2010 Reynaretal. 8/203
7,724,974 B2 5/2010 Koziarzoooeunens, 382/244
7,792,810 B1* 9/2010 Kamunski, Jr. ... GO6F 17/30864
707/705
7,966,424 B2* 6/2011 Abdoc...... HO3M 7/30
341/65
8,493,249 B2 7/2013 Mickleooooeeiiiii 341/107
8,661,428 B2* 2/2014 Clark GO6F 17/30174
717/170
2002/0108107 Al1* 8/2002 Darnell GOGF 8/4442
717/153
2003/0030575 Al1* 2/2003 Frachtenberg HO3M 7/3088
341/51
2012/0246163 Al* 9/2012 Liu ..cooiiinniiinnnnn HO041. 45/38
707/737

* cited by examiner

US 10,048,867 B2

Sheet 1 of 5

Aug. 14, 2018

U.S. Patent

10'\

N
N =
NN <
i
N
NN ©
m

Y ©

U.S. Patent Aug. 14, 2018 Sheet 2 of 5 US 10,048,867 B2

EXTERNAL I/F. F I G - 2

110
100

111 SSD CONTROLLER 171
HOST INTERFACE

TAG TRACKING 113 <ty _EPUCORE
| INSTR. | | DATA |

3~ ¥
,| COMMAND I

7L manacemENT_|
v~

141 “1L M@%@M_:
W~

<« |p! TRANSLATION |

| MANAGEMENT |

179 ~
I "pva | U ecex | ,| COHERENCY ™ |

| | bl MANAGEMENT
L2 _! LA _! RECYCLER | VARALEMERT |
151 .1?7_.1 —— e e o——
161 <y DEVICE |
\ MANAGEMENT
£CC b L
191 v

DEVICE INTERFACE LOGIC

1090 DEVICE I/F

NONVOLATILE
MEMORY

US 10,048,867 B2

Sheet 3 of 5

Aug. 14, 2018

U.S. Patent

200 ~

NN ©

N
//v

.

//

US 10,048,867 B2

Sheet 4 of 5

Aug. 14, 2018

U.S. Patent

d19V1
NIVHO
9¢C

CNIVHO

¥OSSIHAINOD
1N0 L1
822

P Old

LNIVHO

AARE

\- 022

dd44N4d

dOLVIND VO

{44

e

NI

U.S. Patent Aug. 14, 2018 Sheet 5 of 5 US 10,048,867 B2

240 ~

242

BUFFER DATA VALUES

244
CALCULATE HASH VALUES
246
SEARCH FOR CONSECUTIVE
COMMON HASH VALUES

260
248 -

KNOWN
COMMON
VALUE?

PREVIOUS RUN

NO
250 262

POINT FORWARD TO END
OF CURRENT RUN

STORE POINTER
IN TABLE

252

STORE POINTER
IN TABLE

MORE IN POINT BACK
RUN?

< -

NO
258

COMPRESS DATA VALUES USING
POINTERS IN TABLE

FIG. 5

US 10,048,367 B2

1

METHOD TO SHORTEN HASH CHAINS IN
LEMPEL-Z1V COMPRESSION OF DATA
WITH REPETITIVE SYMBOLS

This application relates to U.S. Ser. No. 13/659,036, filed
Oct. 24, 2012, now U.S. Pat. No. 9,231,615, and U.S.
application Ser. No. 13/464,433, filed May 4, 2012, now
U.S. Pat. No. 8,839,073, each of which are hereby incorpo-

rated by reference 1n their entirety.

FIELD OF THE INVENTION

The present invention relates to hash chains generally
and, more particularly, to a method and/or apparatus to
shorten hash chains in Lempel-Z1v compression of data with
repetitive symbols.

BACKGROUND OF THE INVENTION

A Lempel-Z1v compression technique searches for recur-
ring data patterns in a stream of bytes. However, performing
the matching at all bytes of the stream 1s slow. A conven-
tional approach to improve the compression throughput uses
chains of hash values. Hash chains help the compression
technique process sequences with the same hash value to
find potential matches. A symbol run present in the stream
generates a long hash chain that slows the compression.

Referring to FIG. 1, a diagram of a portion of a conven-
tional hash chain 10 1s shown. The diagram illustrates a
portion of the normal hash chain 10 relative to sequential

locations 0-C. Each location 1-4, 8 and 9 contains a given
hash wvalue (white). Locations 0, 35-7 and A-C contain
different hash values (shaded). The normal hash chain 10 1s
created by setting pointers 1n each given hash value loca-
tions 1-4, 8 and 9 to a nearest previous given hash value
location. Therefore, long byte runs create long hash chains
having many pointers for the compression technique to
consider.

It would be desirable to implement a method to shorten
hash chains 1n Lempel-Z1v compression of data with repeti-
tive symbols.

SUMMARY OF THE INVENTION

The present invention concerns an apparatus having a
circuit. The circuit may be configured to (1) generate a
sequence ol hash values 1n a table from a stream of data
values with repetitive values, (11) find two consecutive ones
of the hash values 1n the sequence that have a common value
and (111) create a shortened hash chain by generating a
pointer 1n the table at an intermediate location that corre-
sponds to a second of the two consecutive hash values. The
pointer generally points forward in the table to an end
location that corresponds to a last of the data values 1n a run
of the data values.

The objects, features and advantages of the present inven-
tion include providing hash chains in Lempel-Z1v compres-
sion of data with repetitive symbols that may (1) shorten the
hash chains, (11) parse through a run visiting only two nodes
in a stream, (111) parse through a run regardless of the run
length, (1v) incur no extra storage penalty and/or (v) by
implemented 1n an integrated circuit.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and advantages of the
present invention will be apparent from the following
detailed description and the appended claims and drawings

in which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 1s a diagram of a portion of a conventional hash
chain:

FIG. 2 1s block diagram of an example implementation of
a memory controller;

FIG. 3 1s a diagram of a portion of a shortened hash chain;

FIG. 4 1s a block diagram of an example implementation
of an apparatus 1n accordance with an embodiment of the
present invention; and

FIG. 5 1s a tlow diagram of an example implementation of
a method for compressing a data stream.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1l

Some embodiments of the present invention may provide
a hash chain construction technique (or apparatus or
method) that shortens hash chains generated in a presence of
data value runs 1n a stream of data values (e.g., bytes or
symbols). A run 1s generally a sequence of two or more
locations (or nodes) that have the same value. The shortened
hash chains generally allow a Lempel-Ziv (e.g., LZ) com-
pression search to process through the data value runs of any
length quickly by visiting only a few (e.g., two) nodes. The
shortened hash chains may also enable the LZ compression
search to compare the runs by lengths, mstead of through
byte-by-byte comparisons. No extra storage costs may be
incurred by the shortened hash chains when compared with
classical hash chains.

The hash chain construction technique may group con-
secutive 1dentical (or common) data values into a single
node. Branches may be added to the chain by the technique
when grouping. Therefore, the shortened hash chain may be
considered a tree. Tracing nto a run generally uses only a
single node of a second data value (or a second byte or
symbol). Tracing out of the run may use another node of an
initial data value (or an 1nitial byte or symbol). A pointer (or
chain value) of the second node may point forward and may
be the only type of pointer to point forward. In classical has
chains, all pointers point backward. Therefore, the pointer of
the second node generally provides multiple (e.g., three)
pieces ol information: that the node 1s the second data value
of a run; a length of the run; and an 1mplicit pointer to an
initial (or first) node of the run.

Referring to FIG. 2, a block diagram of an example
implementation of an apparatus 100 1s shown. The apparatus
(or circuit, or system or integrated circuit) 100 may be
implemented as a memory controller. In some embodiments
of the present invention, the apparatus 100 may implement
a solid state drive controller. The apparatus 100 generally
controls a block (or circuit) 199. The circuit 199 may
implement a nonvolatile memory circuit. In some embodi-
ments, the circuit 199 may implement a solid state drive
memory circuit. The circuits 100-199 may represent mod-
ules and/or blocks that may be implemented as hardware,
software, a combination of hardware and software, or other
implementations.

The circuit 100 may be communicatively coupled via one
or more external interface (or ports) 110 to a host (e.g., a
computer). The interfaces 110 may be implemented as one
or more of: a serial AT attachment (e.g., SATA) interface; a
serial attaches small computer system interface (e.g., SAS)
interface; a peripheral component interconnect express (e.g.,
PCie) interface; a Fibre Channel interface; an Ethernet
Interface (such as 10 Gigabit Ethernet); a nonstandard
version ol any of the preceding interfaces; a custom inter-
face; or any other type of interface used to interconnect
storage and/or communications and/or computing devices.

US 10,048,367 B2

3

The circuit 100 may also be communicatively coupled via
one or more device interfaces (or ports) 190 to the circuit
199. The circuit 199 generally includes one or more storage
devices, such as one or more of flash device blocks (or
circuits) 192. The interfaces 190 may be implemented as one
or more of: an asynchronous interface; asynchronous inter-
face; a single data rate (e.g., SDR) imterface; a double data

rate (e.g., DDR) mterface; a dynamic random access
memory (e.g., DRAM) compatible DDR or DDR2 synchro-

nous 1nterface; an open NAND flash interface (e.g., ONFI)
compatible interface, such as an ONFI 2.2 or ONFI 3.0
compatible interface; a toggle-mode compatible tlash inter-
face; a nonstandard version of any of the preceding inter-
faces; a custom interface; or any other type of interface used
to connect to storage devices.

Each circuit 192 generally includes one or more indi-
vidual flash die (or circuits) 194. Multiple circuits 194 may
be optionally and/or selectively accessible 1n parallel. The
circuit 192 may be configured to couple to circuit 100
communicatively. Any type of storage device may be imple-
mented 1n the circuit 192, such as a single-level cell (e.g.,
SLC) NAND flash memory, a multi-level cell (e.g., MLC)
NAND flash memory, a NOR flash memory, flash memory
using polysilicon or silicon nitride technology-based charge
storage cells, two-dimensional or three-dimensional tech-
nology-based flash memory, read-only memory (e.g.,
ROM), static random access memory (e.g., SRAM),
dynamic random access memory (e.g., DRAM), ferromag-
netic memory, phase-change memory, racetrack memory,
resistive RAM (e.g., ReRAM), or any other type of memory
device or storage medium.

The interfaces 190 are generally organized as: one or
more busses with one or more of the circuits 192 per bus;
one or more groups of busses with one or more of the circuits
192 per bus, where busses 1n a group are generally accessed
in parallel; or any other orgamization of one or more of
circuits 192 onto the interfaces 190.

The circuit 100 generally includes one or more blocks,
such as host interface blocks (or circuits) 111, data process-
ing blocks (or circuits) 121, a bufler block (or circuit) 131,
a map block (or circuit) 141, a recycler block (or circuit)
151, an error correction code (e.g., ECC) block (or circuit)
161, a device interface logic block (or circuit) 191, and a
central processing umit (e.g., CPU) block (or circuit) 171.

The circuits 111 generally send and receive commands
and/or data via the iterfaces 110, and may track progress of
individual commands via a tag tracking block (or circuit)
113. The commands may 1nclude a read command specify-
ing an address (such as a logical block address (e.g., LBA))
and an amount of data (such as a number of LBA quanta or
sectors) to read. In response to the read command, the circuit
100 may provide read status and/or read data. The com-
mands may also include a write command specifying an
address (such as an LBA) and an amount of data (such as a
number of LBA quanta or sectors) to write. In response to
the write command, the circuit 100 generally provides a
write status and/or requests write data and optionally sub-
sequently provides write status. The commands may include
a deallocating command (e.g., a trim command) speciiying
one or more addresses (such as one or more LBAs) that
should no longer be allocated. In response to the deallocat-
ing command, the circuit 100 may modily the map accord-
ingly and optionally provides a deallocating status.

The circuit 121 may optionally and/or selectively process
some or all of the data sent between the circuit 131 and the
interfaces 110. The circuit 121 may optionally and/or selec-
tively process data stored in the circuit 131. The circuit 121

5

10

15

20

25

30

35

40

45

50

55

60

65

4

generally uses one or more engine blocks (or circuits) 123 to
perform one or more of: formatting; reformatting; transcod-
ing; and any other data processing and/or manipulation task.

The circuit 131 may store data sent to/from interfaces 110
and from/to the interfaces 190. The circuit 131 may addi-
tionally store system data, such as some or all map tables,
used by the circuit 100 to manage one or more of the circuits
192. The circuit 131 generally includes one or more of: a
memory block (or circuit) 137 used for temporary storage of
data; a direct memory access (e.g., DMA) block (or circuit)
133 used to control movement of data to and/or from circuit
131; and an ECC-X block (or circuit) 1335 used to provide
higher-level error correction and/or redundancy functions;
and other data movement and/or manipulation functions.

The circuit 161 may optionally and/or selectively pro-
cesses some or all data sent between the circuit 131 and
interfaces 190. The circuit 161 may optionally and/or selec-
tively processes data stored in the circuit 131. The circuit
161 may be configured to provide lower-level error correc-
tion and/or redundancy functions, such as in accordance
with one or more ECC techniques. The circuit 161 may
implement one or more of: a cyclic redundancy check (e.g.,
CRC) code; a Hamming code; an Reed-Solomon (e.g., RS)
code; a Bose, Ray-Chaudhuri and Hocquenghem (e.g.,
BCH) code; an low density parity check (e.g., LDPC) code;
a Viterb1 code; a trellis code; a hard-decision code; a
solt-decision code; an erasure-based code; any error detect-
ing and/or correcting code; and any combination of the
preceding. The circuit 161 may include one or more decod-
ers, such as low density parity check decoders.

The circuit 191 generally controls instances of the circuit
192 via the mterfaces 190. The circuit 191 may be config-
ured to send data to/from the instances of the circuit 192
according to a protocol of the circuit 192. The circuit 191
generally includes a scheduling block (or circuit) 193 to
selectively sequence control of the instances of the circuit
192 via the mterfaces 190. The circuit 193 may be config-
ured to queue operations to the mstances of the circuit 192,
and to selectively send the operations to the individual
instances of circuit 192 (or circuit 194) when available.

The circuit 141 may be configured to convert between
data addressing used on the interfaces 110 and data address-
ing used on the interfaces 190, using a table block (or circuit)
143 to map external data addresses to locations in the circuit
199. The circuit 141 may convert LBAs used on the inter-
faces 110 to block and/or page addresses targeting one or
more of the circuits 194, via mapping provided by the table
143. For LBAs that have never been written since dnive
manufacture or deallocation, the circuit 141 generally points
to a default value to return i1t the LBAs are read. For
example, when processing a deallocating command, the
circuit 141 may be modified so that entries corresponding to
the deallocated LBAs point to a default value. Various
default values may be implemented, each having a corre-
sponding pointer. The default values generally enable read-
ing some deallocated LBAs (such as 1n an 1nitial range) as
a particular default value, while reading other deallocated
LBAs (such as 1n a subsequent range) as another default
value. The default values may be defined by flash memory,
hardware, firmware, command and/or primitive arguments
and/or parameters, programmable registers, or various com-
binations thereof.

The circuit 141 1s generally configured to use the table
143 to perform and/or to look up translations between
addresses used on the interfaces 110 and data addressing
used on the interfaces 190. The table 143 may be 1mple-
mented as one or more of: a one-level map; a two-level map;

US 10,048,367 B2

S

a multi-level map; a map cache; a compressed map; any type
of mapping from one address space to another; and any
combination of the foregoing. The table 143 generally
includes one or more of: static random access memory;
dynamic random access memory; nonvolatile memory (such
as tlash memory); cache memory; on-chip memory; ofl-chip

memory; and any combination of the foregoing.

In some embodiments, the circuit 151 generally performs
garbage collection. For example, instances of the circuit 192
may contain blocks that should be erased before the blocks
are re-writeable. The circuit 151 may be configured to
determine which portions of the istances of the circuit 192
are actively 1 use (e.g., allocated instead of deallocated),
such as by scanning a map maintained by the circuit 141, and
to make unused (e.g., deallocated) portions of the instances
of circuit 192 available for writing by erasing the portions.
The circuit 151 may also be configured to move data stored
within instances of circuit 192 to make larger contiguous
portions of the instances of circuit 192 available for writing.

The circuit 192 may be configured to selectively and/or
dynamically configured, managed, and/or used to have one
or more bands for storing data of diflerent types and/or
properties. A number, arrangement, size, and type of the
bands may be dynamically changeable. For example, data
from a computing host may be written into a hot (e.g.,
active) band, while data from the circuit 151 may be written
into a cold (e.g., less active) band. In some usage scenarios,
if the computing host writes a long sequential stream, a size
of the hot band may grow, whereas 1f the computing host
does random writes or few writes, a size of the cold band
may grow.

The circuit 171 may be configured to control various
portions ol the circuit 100. The circuit 171 generally
includes a CPU core block (or circuit) 172. The circuit 172
may be implemented as one or more single-core and/or
multi-core processors. Some or all of the individual proces-
sors cores 1n the circuit 172 may be multi-threaded. The
circuit 172 generally includes instruction and/or data caches
and/or memories. For example, the instruction memory may
contain instructions to enable the circuit 172 to execute
programs (e.g., program instructions, software and/or {irm-
ware) to control the circuit 100. Some or all of the nstruc-
tions executed by the circuit 172 may be stored on instances
of circuit 192.

The circuit 171 may include a command management
block (or circuit) 173 to track and control commands
received via interfaces 110 while the commands are in
progress; a bufler management block (or circuit) 175 to
control allocation and use of the circuit 131; a translation
management block (or circuit) 177 to control the circuit 141;
a coherency management block (or circuit) 179 to control
consistency of data addressing and to avoid contlicts such as
between external data accesses and recycle data accesses; a
device management block (or circuit) 181 to control the
circuit 191; an identity management block (or circuit) 182 to

Stream of Data Values
Corresponding Hashes
Normal Chain Table —
Shortened Chain Table -

10

15

20

25

30

35

40

45

50

6

control modification and communication of identily infor-
mation, and optionally other management units.

The circuit 171 1s generally configured to perform other
management tasks, such as one or more of: gathering and/or
reporting performance statistics; controlling power sequenc-
ing, controlling and/or monitoring and/or adjusting power
consumption; responding to power failures; controlling and/
or monitoring and/or adjusting clock rates; and other man-

agement tasks.
The host may include one or more of a computer, a

workstation computer, a server computer, a storage server, a
storage area network (e.g., SAN), a network area storage
(e.g., NAS) device, a direct-attached storage (e.g., DAS)
device, a storage appliance, a personal computer, a laptop
computer, a notebook computer, a netbook computer, a
tablet device or computer, an ultrabook computer, an elec-
tronic reading device (such as an e-reader), a personal digital
assistant, a navigation system, a (handheld) global position-
ing satellite receiver device, an automotive control system,
an automotive media control system or computer, a printer,
copier or fax machine or all-in-one device, a point of sale
(e.g., POS) device, a cash register, a media player, a tele-
vision, a media recorder, a digital video recorder, a digital
camera, a cellular handset, a cordless telephone handset, and
an electronic game.

The circuit 100 may be implemented on a single inte-
grated circuit (e.g., IC), a single die of a multi-die IC, a
plurality of die of a multi-die IC, or a plurality of ICs. For
example, the circuit 131 may be implemented on a same die
as other elements of the circuit 100. For another example,
the circuit 131 may be implemented on a different die than
other elements of the circuit 100. Additional details of the
circuit 100 and the circuit 199 may be found in U.S. Pat. No.
8,839,073, which 1s hereby incorporated by reference 1n 1ts
entirety.

Referring to FIG. 3, a diagram of a portion of a shortened
hash chain 200 1s shown. The shortened hash chain 200 may
run across multiple sequential locations (e.g., locations 0-C).
Each location 0-C may correspond to a respective hash value
for multiple (e.g., 2 to 8) data values and a respective pointer
(or chain value). Each pointer may either (1) point to another
location having the same hash value or (11) contain a default
value (e.g., a zero value pointer).

Several rules may be used i1n creating the pointers. A
pointer for a second location 1n a current run (or string) of
common hash values may be created to point forward to an
end (or final) location of the current run. Pointers for other
locations 1n the current run having the common hash value
may be created to all point back to the second location 1n the
current run. After the current run has ended, a pointer of a
next location having the common hash value may be set to
point back to the second location of the now-ended current
run.

Table I provides an example of a shortened hash chain
table and a normal hash chain table based on a stream of data
values as follows:

TABLE 1
Locations
0 1 2 3 4 5 6 7 8 9 A B C
W X X X Y X X V4
D E F G H I | K
-1 -1
-1 -1

oy = A
bo bo T e
bo o T e
—_

US 10,048,367 B2

7

The stream of data values 1n the example generally
includes: a value W; a run of 6 consecutive values X; a value
Y: another run of 4 consecutive values X; and a value Z. The
corresponding hash values may be calculated based on the
data values 1n a current location and the next few (e.g., two)
locations. For example, the hash value D may be calculated
from the data values W, X and X (e.g., in the locations 0, 1
and 2, respectively). The (common) hash value E may be
calculated based on three consecutive data values X. The
hash value F may be calculated from the data values X, X
and Y (e.g., 1n the locations 5, 6 and 7, respectively) and so
on. Other numbers of data values may be used to calculate
the hash values to meet the criteria of a particular applica-
tion.

In the normal chain table, each location having the
common hash value E may point back to a nearest earlier
location having the common hash value E. Thus, the pointer
in the location 3 points back to the location 2; the pointer 1n
location 4 points back to the location 3; the pointer in the
location 8 points back to the location 4; and the pointer in the
location 9 points back to the location 8. An example of the
normal hash chain table 1s illustrated in FIG. 1.

For the 1mitial run 1n the shortened chain table: the pointer
of the location 1 may be set to the default (e.g., minus one)
value; and the pointer of the location 2 may be set to point
torward to the location 6 (e.g., the end location of the mitial
run). For the next run in the shortened chain table: the
pointer of the location 8 may point backward to the location
2 (e.g., the second location of the 1nitial run); and the pointer
of the location 9 may be set to point forward to the location
B (e.g., the end location of the next run). An example of the
shortened hash chain table 1s generally illustrated 1n FIG. 3.

Referring to FIG. 4, a block diagram of an example
implementation of an apparatus 220 1s shown 1n accordance
with an embodiment of the present invention. The apparatus
(or circuit, or system, or integrated circuit) 220 may be
implemented within the circuit 100. The apparatus 220
generally comprises a block (or circuit) 222, a block (or
circuit) 224, a block (or circuit) 226 and a block (or circuit)
228. The circuits 222-228 may represent modules and/or
blocks that may be implemented as hardware, software, a
combination of hardware and software, or other implemen-
tations. In some embodiments, the circuits 222-228 may
implemented as the circuits 121, 131 and/or 171.

A signal (e.g., IN) may be recerved by the circuit 222. The
signal IN generally conveys a stream of data values having
repetitive symbols. The circuit 222 may generate and present
a signal (e.g., DATA1) to the circuit 224. A signal (e.g.,
DATA2) may also be generated by the circuit 222 and
presented to the circuit 228. Each signal DATA1 and DATA?2
may carry copies of the data values. The circuit 224 may
generate and present a signal (e.g., CHAIN1) to the circuit
226. A signal (e.g., CHAIN2) may be generated by the
circuit 226 and transferred to the circuit 228. Fach signal
CHAIN1 and CHAIN2 may carry pointers of a shorted hash
chain.

The circuit 222 may implement a bufler circuit. The
circuit 222 1s generally operational to temporarly store the
data values received in the signal IN. A copy of the data
values may be presented in the signal DATA1 from the
circuit 222 to the circuit 224. Another copy of the data values
may be presented in the signal DATA2 from the circuit 222
to the circuit 228 1n the signal DATA2.

The circuit 224 may implement a calculator circuit. The
circuit 224 1s generally operational to (1) generate a sequence
of hash wvalues, (1) find two consecutive common hash
values and (111) create a shorted hash chain by generating one

10

15

20

25

30

35

40

45

50

55

60

65

8

or more pointers. The hash values may be generated from the
stream ol data values received in the signal DATA1L. The
hash values may be stored i1n a table (e.g., stored in the
circuit 226). Each hash value may be calculated from
multiple (e.g., two or more) data values. The resulting hash
values may be transferred in the signal CHAIN1 to the
circuit 226. If two consecutive common hash values are
found, a run of at least three consecutive same (repeated)
data values generally exists 1n the signal IN. Therefore, a
pointer may be generated in the circuit 226 at an interme-
diate (or second) location in the table that corresponds to a
second of the consecutive common hash values (and the
second of the consecutive same data values). The pointer
may point forward in the table to an end location that
corresponds to a last of the same data values 1n the data value
run. In some embodiments, the circuit 224 may compare the
consecutive data values (e.g., a byte-to-byte comparison) to
ensure that a run of common data values exist 1n the signal
DATAL.

The circuit 224 may be further operational to examine
additional hash values 1n the run, 11 any. I a third consecu-
tive common hash value 1s found, an additional pointer may
be set 1n the table at an additional location corresponding to
the third consecutive common hash value (and the third
consecutive same data value). The additional pointer may
point backward 1n the table to the intermediate location. The
circuit 224 may continue examining more hash values and
setting more pointers in the run backward to the intermediate
location. The pointers may be transierred to the circuit 226
in the signal CHAIN1. When the end location of the last
same data value 1s reached, the run may be considered at an
end.

The circuit 226 may implement a chain table memory
circuit. The circuit 226 1s generally operational to store hash
values and pointers of a shortened chain table created by the
circuit 224. The pointers may be presented in the signal
CHAIN2 from the circuit 226 to the circuit 228.

The circuit 228 may implement a compressor circuit. The
circuit 228 i1s generally operational to compress the data
values received 1n the signal DATA2 using the pointers
received 1n the signal CHAIN2. The compressed iforma-
tion may be presented 1n the signal OUT. In some embodi-
ments, the compression may be a LZ compression. Other
compression techmques may be implemented to meet the
criteria ol a particular application.

Referring to FIG. 5, a flow diagram of an example
implementation of a method 240 for compressing a data
stream 15 shown. The method (or process) 240 may be
implemented by the apparatus 220. The method 240 gener-
ally comprises a step (or state) 242, a step (or state) 244, a
step (or state) 246, a step (or state) 248, a step (or state) 250,
a step (or state) 252, a step (or state) 254, a step (or state)
256, a step (or state) 258, a step (or state) 260 and a step (or
state) 262. The steps 242-262 may represent modules and/or
blocks that may be implemented as hardware, software, a
combination of hardware and software, or other implemen-
tations.

In the step 242, the circuit 222 may buller a portion of the
data values received 1n the signal IN. The circuit 224 may
calculate the hash values 1n the step 244 based on the data
values buflered 1n the circuit 222 and received in the signal
DATAIL. In the step 246, the circuit 224 may search for two
or more consecutive hash values having a common (or
same) hash value. The two or more consecutive common
hash values generally indicate a run of three or more
common data values. If a current run of the data values 1s
found, the circuit 224 may check 1n the step 248 to see 1f the

US 10,048,367 B2

9

common hash value was previously found. For an initial find
of the common hash value, the circuit 224 may generate a
pointer (or chain value) 1n the second location of the current
run to point to an end location of the current run during the
step 250 (e.g., 1n FIG. 3 the pointer 1n the location 2 points
to the location 6). The end location may be identified by
counting a predetermined number of locations beyond a last
location having the common hash value. For example, 11 the
hash values are calculated using three data values (or nodes),
the end location 1n the current run 1s two locations (2=3-1)
beyond the last location having the common hash value. IT
the hash values are calculated using five data values (or
nodes), the end location of the current run 1s four locations
(4=5-1) beyond the last location having the common hash
value. In the step 252, the pointer may be stored 1n a chain
table held 1n the circuit 226.

The circuit 224 may check in the step 254 for more
common hash values in the current run. For each subsequent
hash value having the common value, the circuit 224 may
generate a respective pointer for the respective location 1n
the step 256. All respective pointers of the subsequent
common hash values may point back to the second location
in the current run (e.g., 1n FIG. 3 the pointers in the locations
3 and 4 each point back to the location 2). Each respective
pointer may be stored in the chain table 1n the circuit 226.
A loop around the steps 252-256 may continue until a
pointer for the last common hash value 1n the current run has
been stored in the chain table. After all of the pointers
associated with the current run have been stored, the circuit
228 may compress the data values received in the signal
DATA2 using the hash chain received 1n the signal CHAIN2
from the chain table.

If the common hash value found i the current run 1s a
repeat of a previous common hash value of a previous run,
the circuit 224 may generate a pointer in the first (or mnitial)
location of the current run 1n the step 260. The pointer 1n the
first location of the current run may point back to the second
location of the previous run (e.g., in FIG. 3 the location 8
points back to the location 2). The pointer may then be
stored 1n the chain table within the circuit 226 1n the step
262. The method 240 may continue with the step 250 where
the pointer of the second location 1n the current run 1s set to
point forward to the end location of the current run.

Some embodiments of the present invention may group
consecutive 1dentical data values (or nodes) for a current run
in a data stream 1nto a single node (e.g., the second location)
of a hash chain. The hash chain may branch when grouping
so the hash chain may be treated as a tree. Tracing into the
current run generally uses the single node (e.g., the second
location). Tracing out of the current run to a previous run
may use another node (e.g., the first location).

A pointer 1n the second location may point forward to an
end location of the current run. The pointer 1n the second
location may (1) indicate that a current run 1s 1n progress, (11)
specily a length of the current run and (111) 1imply the position
of a starting (or beginning) location of the current run (e.g.,
the first location). Tracing initiated inside the run 1s gener-
ally the sane as tracing into the run. Comparisons between
runs simply align the ends of the runs, rather than perform-
ing the byte-by-byte comparisons as 1s commonly per-
formed.

The functions performed by the diagrams of FIGS. 2-5
may be implemented using one or more of a conventional
general purpose processor, digital computer, microproces-
sor, microcontroller, RISC (reduced instruction set com-
puter) processor, CISC (complex instruction set computer)
processor, SIMD (single instruction multiple data) proces-

10

15

20

25

30

35

40

45

50

55

60

65

10

sor, signal processor, central processing unit (CPU), arith-
metic logic unit (ALU), video digital signal processor
(VDSP) and/or similar computational machines, pro-
grammed according to the teachings of the present specifi-
cation, as will be apparent to those skilled in the relevant
art(s). Appropriate software, firmware, coding, routines,
instructions, opcodes, microcode, and/or program modules
may readily be prepared by skilled programmers based on
the teachings of the present disclosure, as will also be
apparent to those skilled 1n the relevant art(s). The software
1s generally executed from a medium or several media by
one or more of the processors of the machine implementa-
tion.

The present invention may also be implemented by the
preparation of ASICs (application specific integrated cir-
cuits), Plattorm ASICs, FPGAs (field programmable gate
arrays), PLDs (programmable logic devices), CPLDs (com-
plex programmable logic devices), sea-of-gates, RFICs (ra-
dio frequency integrated circuits), ASSPs (application spe-
cific standard products), one or more monolithic integrated
circuits, one or more chips or die arranged as flip-chip
modules and/or multi-chip modules or by interconnecting an
appropriate network of conventional component circuits, as
1s described herein, modifications of which will be readily
apparent to those skilled 1n the art(s).

The present invention thus may also include a computer
product which may be a storage medium or media and/or a
transmission medium or media including instructions which
may be used to program a machine to perform one or more
processes or methods 1n accordance with the present inven-
tion. Execution of instructions contained in the computer
product by the machine, along with operations of surround-
ing circuitry, may transiform input data into one or more files
on the storage medium and/or one or more output signals
representative of a physical object or substance, such as an
audio and/or visual depiction. The storage medium may
include, but 1s not limited to, any type of disk including
floppy disk, hard drive, magnetic disk, optical disk, CD-
ROM, DVD and magneto-optical disks and circuits such as
ROMs (read-only memories), RAMS (random access
memories), EPROMs (erasable programmable ROMs),
EEPROMSs (electrically erasable programmable ROMs),
UVPROM (ultra-violet erasable programmable ROMs),
Flash memory, magnetic cards, optical cards, and/or any
type of media suitable for storing electronic instructions.

The elements of the invention may form part or all of one
or more devices, units, components, systems, machines
and/or apparatuses. The devices may include, but are not
limited to, servers, workstations, storage array controllers,
storage systems, personal computers, laptop computers,
notebook computers, palm computers, personal digital assis-
tants, portable electronic devices, battery powered devices,
set-top boxes, encoders, decoders, transcoders, compressors,
decompressors, pre-processors, post-processors, transmit-
ters, receivers, transceivers, cipher circuits, cellular tele-
phones, digital cameras, positioning and/or navigation sys-
tems, medical equipment, heads-up displays, wireless
devices, audio recording, audio storage and/or audio play-
back devices, video recording, video storage and/or video
playback devices, game platiforms, peripherals and/or multi-
chip modules. Those skilled 1n the relevant art(s) would
understand that the elements of the invention may be imple-
mented 1n other types of devices to meet the criteria of a
particular application.

The terms “may” and “generally” when used herein in
conjunction with “is(are)” and verbs are meant to commu-
nicate the intention that the description 1s exemplary and

US 10,048,367 B2

11

believed to be broad enough to encompass both the specific
examples presented in the disclosure as well as alternative
examples that could be derived based on the disclosure. The
terms “may” and “generally” as used herein should not be
construed to necessarily imply the desirability or possibility
of omitting a corresponding element.

While the mnvention has been particularly shown and
described with reference to the preferred embodiments
thereot, 1t will be understood by those skilled 1n the art that
various changes in form and details may be made without
departing from the scope of the invention.

The 1nvention claimed 1s:

1. An apparatus comprising:

an interface configured to process a plurality of read

operations from a memory and a plurality of write
operations to the memory;

a local memory configured to bufler a plurality of pointers

associated with a plurality of mapped values; and

a control circuit configured to

generate each of the plurality of mapped values by
mapping two or more data values at two or more
consecutive positions 1 a run of data,

store the plurality of mapped values i1n the local
memory,

find 1n the local memory two or more consecutively
located mapped values among the plurality of
mapped values that have a common value,

calculate an end location i1n the local memory that
corresponds to an end of the run of data as a
predetermined offset from a last location 1n the local
memory that buflers a last of the mapped values that
has the common value, and

set a forward pointer associated with an intermediate
location in the local memory to point to the end
location 1n the local memory that corresponds to the
end of the run of data,

wherein the intermediate location in the local memory
buflers a second of the two or more consecutively
located mapped values that have the common value.

2. The apparatus according to claim 1, wherein the control
circuit 1s further configured to

set another pointer associated with another location 1n the

local memory that corresponds to another run of data
that maps to the common value to point to the inter-
mediate location 1n the local memory to create a chain.

3. The apparatus according to claim 1, wherein the control
circuit 1s further configured to

compress the run of data using the forward pointer

associated with the mtermediate location 1n the local

memory to 1dentify both a start location of the run of

data and the end location of the run of data, and
store the run of data as compressed in the memory.

4. The apparatus according to claim 1, wherein the control
circuit 1s further configured to

set a backward pointer associated with another location 1n

the local memory that buflers a fourth consecutive copy
of the common value to point to the intermediate
location 1n the local memory.

5. The apparatus according to claim 1, wherein the
intermediate location in the local memory buflers the for-
ward pointer and at most one of the mapped values.

6. The apparatus according to claim 1, wherein the control
circuit 1s further configured to

compare the run of data with another run of data by

aligning the end location of the run of data with another
end location of the other run of data.

10

15

20

25

30

35

40

45

50

55

60

65

12

7. The apparatus according to claim 1, wherein the
interface and the control circuit form part of a solid-state
drive controller.

8. A method for creating a chain, comprising the steps of:

generating each of a plurality of mapped values by

mapping two or more data values at two or more
consecutive positions in a run of data;

storing the plurality of mapped values 1n a local memory;

buflering a plurality of pointers associated with the plu-

rality of mapped values 1n the local memory;

finding in the local memory two or more consecutively

located mapped values among the plurality of mapped
values that have a common value;

calculating an end location in the local memory that

corresponds to an end of the run of data as a predeter-
mined offset from a last location 1n the local memory
that buflers a last of the mapped values that has the
common value; and

setting a forward pointer associated with an intermediate

location 1n the local memory to point to the end location
in the local memory that corresponds to the end of the
run of data,

wherein the intermediate location 1n the local memory

buflers a second of the two or more consecutively
located mapped values that have the common value.

9. The method according to claim 8, further comprising
the step of:

setting another pointer associated with another location in

the local memory that corresponds to another run of
data that maps to the common value to point to the
intermediate location 1n the local memory to create the
chain.

10. The method according to claim 8, further comprising
the steps of:

compressing the run of data using the forward pointer

associated with the intermediate location in the local

memory to identify both a start location of the run of

data and the end location of the run of data; and
storing the run of data as compressed 1n the memory.

11. The method according to claim 8, further comprising
the step of:

setting a backward pointer associated with another loca-

tion in the local memory that buflers a fourth consecu-
tive copy of the common value to point to the inter-
mediate location 1n the local memory.

12. The method according to claim 8, wherein the inter-
mediate location 1n the local memory buflers the forward
pointer and at most one of the mapped values.

13. The method according to claim 8, further comprising
the step of:

comparing the run of data with another run of data by

aligning the end location of the run of data with another
end location of the other run of data.

14. The method according to claim 8, wherein the steps
are implemented 1n a solid-state drive controller.

15. An apparatus comprising;:

a memory configured to buller data;

a local memory configured to bufler a plurality of pointers

associated with a plurality of mapped values; and

a controller configured to

generate each of the plurality of mapped values by
mapping two or more data values at two or more
consecutive positions 1 a run of data,

store the plurality of mapped values in the local
memory,

US 10,048,867 B2
13 14

find 1n the local memory two or more consecutively
located mapped values among the plurality of
mapped values that have a common value,
calculate an end location i1n the local memory that
corresponds to an end of the run of data as a 5
predetermined oflset from a last location 1n the local
memory that buflers a last of the mapped values that
has the common value, and
set a forward pointer associated with an intermediate
location in the local memory to point to the end 10
location 1n the local memory that corresponds to the
end of the run of data,
wherein the intermediate location in the local memory
buflers a second of the two or more consecutively
located mapped values that have the common value. 15
16. The apparatus according to claim 15, wherein the
controller 1s further configured to
compress the run of data using the forward pointer
associated with the intermediate location in the local
memory to 1identify both a start location of the run of 20
data and the end location of the run of data, and
store the run of data as compressed in the memory.
17. The apparatus according to claim 15, wherein the
controller 1s further configured to
set a backward pointer associated with another location 1n 25
the local memory that buflers a fourth consecutive copy
of the common value to point to the intermediate
location 1n the local memory.
18. The apparatus according to claim 15, wherein the
memory and the controller form part of a solid-state drive. 30

% x *H % o

	Front Page
	Drawings
	Specification
	Claims

