12 United States Patent

Dunne et al.

US010044786B2

US 10,044,786 B2
Aug. 7, 2018

(10) Patent No.:
45) Date of Patent:

(54) PREDICTING PERFORMANCE BY
ANALYTICALLY SOLVING A QUEUEING
NETWORK MODEL

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Jonathan Dunne, Dungarvan (IE);
James P. Galvin, Jr., Georgetown, KY
(US); Shadi Ghaith, Dublin (IE);
Patrick J. O’Sullivan, Dublin (IE);
Hitham Ahmed Assem Aly Salama,

Assignee:

Notice:

Appl. No.:

Filed:

US 2016/0142271 Al May
Int. CI.

GO6F 15/173 (2006.01
HO4L 29/08 (2006.01
HO4L 12/24 (2006.01
U.S. CL

CPC

Dublin (IE)

International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 553 days.

14/542,639

Nov. 16, 2014

Prior Publication Data

Field of Classification Search

CPC

19, 2016

)
)
)

HO4L 67/02 (2013.01); HO4L 41/145
(2013.01); HO4L 41/147 (2013.01); HO4L

67/10 (2013.01)

GO6F 11/34477; HO4L 41/0654

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,296,256 B2 11/2007 Liu et al.
7,739,099 B2 6/2010 Liu et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 100391159 C 5/2008
CN 101707632 5/2010
(Continued)

OTHER PUBLICATIONS

Urgaonkar et al., “An Analytical Model for Multi-tier Internet
Services and Its Applications”, 2005 ACM International Conference

on Measurement and Modeling of Computer Systems,
SIGMETRICS’05, Jun. 2005, Banfl, Alberta, Canada, 12 pages.

(Continued)

Primary Examiner — Umar Cheema
Assistant Examiner — Testu N Mekonen

(74) Attorney, Agent, or Firm — VanLeeuwen &
VanlLeeuwen; Anthony V. S. England

(57) ABSTRACT

An approach 1s provided for predicting system performance.
The approach operates by identifying a Queuing Network

Model (QNM) corresponding to an information technology
(IT) environment that includes a number of servers that
perform a plurality of parallel services. The QNM 1is trans-
formed to a linear model by senalizing the parallel services
as sequential services. Hardware based service demands are
retrieved from the system. Software-based service demands
are inferred from the hardware-based service demands.
Predicted performance results of the IT environment are
calculated based on the hardware-based service demands,
the software-based service demands inferred from the hard-
ware-based service demands, and the system transaction rate
of the system.

8 Claims, 8 Drawing Sheets

STt
20

)

v

¥

v
¥ ¢

310

hcedel Aoplication Senver (A5}
threeds 32 Single Cleus
dAuliple Server [HRES]

Pt [aats hlodel \Weh Serer
Bources '021as] | 0NS) Conneclor as
SIS noca SOME node
il 325

L4

lrowit Single
tsar Teat

35l

I

.—.—.—..n-.—.—+

y

MModel at colizctively in
OB {SEraE)

30
v

r‘i—.—.—.—..

HC
355 |®

Arly Precuct Form Apomsdrition [PFA] to
Haroaare Quiguing Mebeord IHQM) meadsE and
Gorewars Chuouss Matwors (300 mods

Ju

Sea hMedals
Figs. & & 6B

¥

-SDHAS)
- SCHDA)
-SDIWS)

Caiculate Service Demands (S0

¥
SUN
340

Y See Madei
M1 Fg s
345

. fpubworkload
470 Emmnvaﬂmn

Dieduce {infor; Soitware Sehvice Demadids (S0
- BOIAS threads) = SDIAS] ~ SD(D3)
- SDINB DSF) = SDJDB}
- 50 (WS conn.) = S0

WS + SDHAS) + SDHDB)
his

——

VTarsachon rate)
380

!

_ » Capacity Mmraggggnt {CH) Process |

¥

Calculate:
- Transacion Respomse Bime (THT)
- Flesou e Udizetion [RL1)
- Threugot
240

US 10,044,786 B2
Page 2

References Cited

U.S. PATENT DOCUMENTS

(56)
8,090,671 B2* 1/2012
8,340,909 B2 1/2013
8,756,307 B1* 6/2014
8,805,647 B2* 8/2014
9,003,416 B2 4/2015
9,111,022 B2* 8/2015
2005/0125213 Al* 6/2005
2005/0240935 Al 10/2005
2011/0093253 Al* 4/2011
2012/0290263 Al* 11/2012
2013/0339974 Al* 12/2013
2014/0350889 Al* 11/2014
2015/0067140 Al* 3/2015

CN
CN
CN
EP
WO
WO
WO

Tantawl GO6F 11/3452
706/45
Dan et al.
Chenccoovvvan. GO6F 11/3414
700/223
SMITNOV vvvvninenen, GO6F 11/008
702/186
Gangemi et al.
Kraftocoovvviennan, GO6F 11/3409
Chencc.oovven. GO6F 11/3414
703/22
Ramanathan
Kraftocoovvvinnnnn, GO6F 11/3419
703/21
SMITNOV .vvvvrineenen, G06F 11/008
702/186
Mitchell GO6F 9/50
718/104
SMIrNOvV GO6F 11/3409
702/186
Branch HO4I. 41/147
709/224

FOREIGN PATENT DOCUMENTS

101996126
101916321 B
102158357 B
2312445 Al
2001025876 A2
2012021328 A2
2013153029 Al

3/201
2/201
6/201
4/2011
4/2001
2/2012
10/2013

fpd (pd e

OTHER PUBLICATIONS

Menasce, “Two-level iterative queuing modeling of software con-

tention,” 10th IEEE International Symposium on Modeling, Analy-

sis and Simulation of Computer and Telecommunications Systems,

Oct. 2002, Fort Worth, TX, pp. 267-276.

Kounev et al., “Performance modeling and evaluation of large-scale
j2ee applications,” 29th International Computer Measurement
Group Conference, Dallas, TX, Dec. 2003, pp. 273-283.
Grinshpan, “Solving Enterprise Applications Performance Puzzles,”
John Wiley and Sons, Inc., Hoboken, New Jersey, 2012, 250 pages.
Bertoli et al., “Java modelling tools: an open source suite for
queueing network modelling and workload analysis,” 3rd Interna-
tional Conference on the Quantitative Evaluation of SysTems
(QEST) 2006, Riverside, CA, IEEE Press, Sep. 2006, 2 pages.
Smith et al., “Software Performance Engineering,” Addison-Wes-
ley, 1990, 23 pages.

Baskett et al., “Open, closed, and mixed networks of queues with
different classes of customers,” Journal of the Association for
Computing Machinery, vol. 22, No. 2, Apr. 1975, pp. 248-260.
Ghaith et al., “Automatic, load-independent detection of perfor-
mance regressions by transaction profiles,” 2013 International
Workshop on Joming AcadeMi1A and Industry Contributions to
testing Automation, JAMAICA 2013, Lugano, Switzerland, May
2013, pp. 59-64.

Liu et al., “Modeling 3-tiered web applications,” 13th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, Atlanta, GA, Sep.
2005, pp. 307-310.

Rolia et al., ““The method of layers,” IEEE Transaction on Software
Engineering, vol. 21, Issue 8, pp. 689-700, Aug. 1995.

Dunne et al., “Predicting Performance Regression of a Computer
System with a Complex Queuing Network Model,” U.S. Appl. No.
14/542,640, filed Nov. 16, 2014, 37 pages.

Baynat et al., “A product-form approximation method for general
closed queuing networks with several classes of customers,” In
Performance Evaluation, vol. 24, Issue 3, 1996, pp. 165-188.
Mansharamani et al.,, “Performance Testing: Far From Steady
State,” 2010 IEEE 34th Annual Computer Software and Applica-
tions Conference Workshops, Seoul, Korea, 2010, pp. 341-346.
U.S. Appl. No. 14/542,640, filed Nov. 16, 2014.

* cited by examiner

U.S. Patent

FIG.

Aug. 7,2018

1

Sheet 1 of 8

Processor(s)

US 10,044,786 B2

Information Handling System
Processor and Components

— 100
y
System Memory
120 é
Memory North Bridge | PCl _
------------------------------ Memory EXxpress: c Onfm” or i Display
*************************************** Controller ”1 o5 P 130
Memory L g o —
' 119 +++ USB StOrage Dthce | 245 ,
------------------------------------- USB Dewce USB |
R . Devices
--------- USB Device ' 142
+++ Yy
****** - Keyboard and Trackpad
+++++++++++++++++++++++++++ o 146
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Bluetooth 148
ExpressCar d PG Express 1dane | e e e 148
155 : USB o IR Receiver
--------------------------------- Controller | 150
140 ¥ Camera
802.11 W;reiess PCl Express 1-lane '
5 149 ‘ 162 - Audio line-in
************************************** 172 — | x _ and optical digital
: HD ; ................ f a d;{}ir Grti
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ lnterface : Audj() U P
EF! Boot Mgr SP! bus —— Crcwtry - 164
180 South Bridge | 158 / 160 Optical digital
___________________________________ 178 -/ /0 Device output and
T and g ; headphone jack
; A iATA . al
Internal ATAor UATA bus COer”er WCI‘ODhOﬂE 166 S ‘Speakefs
Hard Drive | - 3% 16800 r
1,8 T8 Ethernet
-Controller
o
Optical drive 188
o TL T PEN SEA N S ‘\‘m 190 ----------------
‘Legacy - Boot |
o \PCBus | LPGC Bus + ROM
Dewces 196
e T

1
+++++++++++++++++++



U.S. Patent Aug. 7,2018 Sheet 2 of 8 US 10,044,786 B2

Storage Device
{e.g., USB drive
T Personal Computer

1_ e

P "

insert .

L L]
~.-. .h. : ’
. . ). . . . il
- Laptop computer <« a ;
* . : . . . . r .
Sy ¥ R - ‘ I
™. R e e e e - i [y S o .
Ih ] i i g o "

. A iy s B

Tu i il LT b

e i w  Jel S I N ‘

A th x o ]e i L L |

e llq.' r LR ] -‘-‘-‘-I - 1

- '_ 1 . ‘

‘\"_-\.,__ l_all [ ] i [ ] ]

Rt o Y M,y 1, ' ]

o T Ty Ty T T T Ty Ty T T T, N L L L LT 3

I
t e e e

= - W

I'J'
N

p
N

XAy e
T T T T T

N

H ) e . N

i‘!nﬁ. . T -

— -
- =
e e e e o I WS
L]

-
== T ey oma
-

T -

- -

i
s
X

N
B
xx
-

X

™y
&

N A e
¥

T

Ekkkkkkkd

NI
)

b

EaE N |

i ardr

LN ]

drod ok b ode o d o droar
I

b

i

e e A
Plafinfiyit
i

E )

DA At i
¥

N
!

e o

N
e e

X
X
X
X
X
X
X
X
X
X
X

P
T

=
:*_-'r_‘_-i-*-l- L |

- -
Pt
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

g

oy
-
A
4
5
4
f
4
A
4
5
4
f
4
%

Y.
i-*-rr"
.\.*_'i

)

IS

¥

I

i

¥

I

i

¥

I

i

¥

I

MNNMNNIRNNNNN
£ e e e ll

omputer Network
e.g., LAN, WLAN, the Internet
PSTN, Wireless, etc.

-
F
k
-

B e e i P T
. . .o

- - m
e - - P
- -

AN O O W NN NN EEEEEN

--
L, .

. L.*.l L*.l L.*J 'u-.*a-' ? ? i I
o B B B o it A
S b R

4 M it o

o B e BEEE N AL T '
g by g b e e A A

Y F R Pl pad
'-I-*-I h_*',, !I-*-! ‘-I-*-l-. 5'- .

SN, ST
- r

*

ol
L
LY
*
[}
¢
o
XX

I'|
4
k

]

5
e g e e

L
)
T
=
T

5y
i

a1
i

| |

X
il

5
5
%
k

L )
!
-
=
)
b
!
~
!
[ ]

-
-

S b

|£;
W
H
k5 &

L |
]
LA
Py
N
Py
-

I
e

Lo
~
Tl
[ ¥
M

P

L]

L .h.i ]
-
L .-.i
-

L .-.i
e
LR

E ]

N
E N |
N
y

[
b o=

I I T N T I NN T A e
L

b oag=
bl
] L
[
(A
[l
ax
i'_.l
L]
-"'.l
-"q
wd
%

b
b
k
I
k
I
b
b

-

Mobile telephone

-,
I'I.
W

L
- i . Bl ISR PR 1'
- 3 “‘- L TR w by mim s A m o W e ____.-"" i
- - .
.‘_"; :' L] L - Il S e e g g T = L e - ‘_r.-l"‘r‘l_
~ i e e e i
r . " rmrm A A s =" 1
o / v ;
. -~ ] L L. ". 1
~ [ —— ] . ]
- A ' . . B )
- [ L 1
- ] ] 1 1
- W r [] i
- - . 2
- / s ' ]
. i 1 . i
..-""-' £ ' ' : i
- il - .
R ..-"f [ N 1. . i
-— - ' 1 i
P R ' . . )
e ™ . .- s i
-r'_‘.-r". ¥ [] i
- T W T W T T W W T T W T WM OT T T W™ W™ - e T T T T T T T T T WM T T WM W W™ . - ' 1.
i e e o il o o ot s o il . o e e il ol e e e e e . i b i e o il o i e e il i i e o o i e i il . i il . o .l 1.
N N N N N N N B Y A N N - .
b-f" o e I N el e e e R el N i
. 1 1 i
. . . : . LR 1
“ Lo e -~

{
1
Y
’
§
i
i
T
i
1
'
1
1
1
1
'
i
Ll
:
1
L
1

Handling System

1
1
1 . L ] .
I . . . .
I - - - F - -
I - - - - -
1
1
1 o mmp T
1 I el n
1 {-' \.&
I .
1 s tal e
' e T
. s '\'--.___-h i -'_‘_‘--r--..-._a._q._a._‘- - e _ﬂ-":"
[ ] A "l-..___‘__-_- — e —— []
1 : 1.___.__- ] + mma e am ) -#__.: Y
i e e e e ot e T 1
) '
i
. Y
S TAFU, SN S 1
R N L 4 :
L e N .

e i ) - R 3 ) :
| i '
i, i 1
| ."ﬂ.' i 1
l"‘ N - - i -a a- . 0 re :
1 i IS - T - . 1

S Sa T e e i — e T - : : ' : ' ’ .

""\-\‘_\.‘ . '-_---._\_-._-..-.1-‘_- o L .--_'_'_“__,_---:-- : :

e e i m m e e T o i \ . .
e L = : . Y
T m i T P P e — . it - i . 1
) '
i
., S, i
T -

—
- ‘_"-1'

e w m oA A A mrmwT-

Nonvolatile Data Store
e.g., hard drive,
database, etc.

= L
- . PR
Il R N -

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

)

LR -
e e m m m om owr we  ommw—



U.S. Patent Aug. 7,2018 Sheet 3 of 8 US 10,044,786 B2

Model Web Server
(W3) Connection as
SQMS node

Model Application Server (AS)] [ Model Data |
L threads as Single Queue |} Sources (DS) asi
Multiple Server (SGMS) | | SQMSnode §
310 320

Model all collectively in
sequence {seties)
330

input Single
User Test
350

- Apply Product Form Approximation (PFA} o |
| Hardware Queuing Network (HQN) model and |
 Software Queuing Network (SQN)ymodel  §

~ See Models
- Figs. 5 & 6B
: 360

See Model
Fig. BA

Deduce {infer} Software Service Demands (SD):
- SD{AS threads) = SD{AS) + SD(DB) |
»i- SD(DB DS) = SD(DB)
- oD (WS conn.) = SDIWS) + SD(AS) + SD{DB}) §

37 ﬁ

Calculate Service Demands (SD}: §
- SD{AS) '

D(DB)

SDIWS)

\

input workioad
nformation
(fransaction rate)

| Capacity Management (CM) Processé

Calculate:
- Transaction Response Time {TRT)

- Resource Utilization (RU)
- Throughput




U.S. Patent Aug. 7,2018 Sheet 4 of 8 US 10,044,786 B2

I Model of Apphcatzon Server {AS) Threads as Single Queue Multiple Server (SQMS) :
: 410 l_
S i
L '
: l
: { Server |
! o |
' I
' |
ey L Qoarunr Y ,'
' |
' |
| ; |
; :
' 5 ' \ i
: —p{ Server :
: Model of Data Sources (DS) as Smgle Queue Multiple Server (SQMS) Node :
' 420 |
: l
. |
' !
. |
' u
; |
; |
' |
: |
' l
' l
' i
' |
: l_
' l
' |
-' |
' I

|
; |
| 4.2.5 :
b |
I ..................................................... I
' |
' |
' |
' l
: |
. |
' |
I |
' |
: |
: I
' |
: |
' u
; |
|




U.S. Patent Aug. 7,2018 Sheet 5 of 8 US 10,044,786 B2

L

s s W R R A Sl L

: Application Server |
| 520 |

530




U.S. Patent Aug. 7,2018 Sheet 6 of 8 US 10,044,786 B2

i 1 |t »
| 3 | t 1| ] § f
B : N - i
11 ; B b :
1 P {3 !
| 3 I i P {
f1 } P | i} }
3 I B b :
i \ { | £ ]
l i) N, s
i i | i i }
I b} —~~ :
: | p(server )} | |
} i | - - P i
i i | i i }
| P | | {
: Web Server Connection 1 ! Application Server {AS) Threads! : Data Sources ;
, 610 ') 620 L 630 ,
SQN
45
e T tataly
; P T |
{ i 3 i i §
: i : :
1 ¢ arhY o N\ LTV IV i T ' 5
»(MyIIEIEH I IEHIED> -
i b 1 :
: Web Server o Application Server ' Database Server :
I 670 i 630 ¥ 690 I
HQN
360




U.S. Patent Aug. 7,2018 Sheet 7 of 8 US 10,044,786 B2

' Capacity Management in Clustered Environments |

Retrieve number of application servers
and number of resource servers used
by application servers |
105

Retrieve number of users, server demand.
data, and app. transaction groups

See Model
Fig. BA
740

Server
demand

See Model
Fig. 8B
750

Transaction

Set an instance of each fransaction group
for each of the apphcatmn servers

groups

ad | 4
’ /7
r L7 /
Divide number of users between & .7
fransaction group instances based on ratio- it
1 equalto probahility of cluster member 7
. ,/ d
/ N Set unused hfansac:hon group instance B
/ K seftings to zero and applicable group F IG 7
/] ; instance settings to actual transaction values: F b s
/ / 78 |
?60 !f ’i ................................. o
7 ! 3 |



U.S. Patent Aug. 7,2018 Sheet 8 of 8 US 10,044,786 B2

Multi-Cluster Model

740 \

DB Server CPU DB Server Disk

Serialized Multi-Cluster Model
750\
o
H O Ot O O -.

| App Server 1 App Server 2 App Server N DB Server CPU DB Server DiSk
} Users




US 10,044,786 B2

1

PREDICTING PERFORMANCE BY
ANALYTICALLY SOLVING A QUEUEING
NETWORK MODEL

BACKGROUND OF THE INVENTION

Complex IT environments contain numerous products
and applications that work 1n a delicate harmony. Adminis-
tration and configuration of these systems needs to be
managed on these products as well as between numerous
products. Using modeling to predict applications perfor-
mance under various possible hardware and software con-
figurations 1s used 1 Capacity Management (CM) pro-
cesses. Modeling saves time and provides a reduction of the
cost required to buy and setup the recommended hardware
alternatives, and the test the recommended alternatives by
running a test load on them. Modeling, however, faces
particular challenges. Analytical approaches to QNMs are
relatively fast, but unfortunately are limited to simple QNMs
that likely do not adequately represent the complex IT
environment. Unfortunately, the complexity of multiple
interacting processes running on multiple hardware
resources 1 a complex IT environment makes performance
prediction and capacity planning dithicult. Complex IT envi-
ronments that comprise distributed systems are inherently
difficult to analyze, and this difliculty becomes even more
challenging when the environment includes “black-box™
components such as software from diflerent vendors, usually
with no source code or instrumentation available. Tradi-
tional QNMs generated by most existing tools are complex
and the model complexity grows with system complexity.

SUMMARY

An approach 1s provided for predicting system perior-
mance. The approach operates by identifying a Queuing
Network Model (QNM) corresponding to an information
technology (IT) environment that includes a number of
servers that perform a plurality of parallel services. The
QNM 1s transformed to a linear model by serializing the
parallel services as sequential services. Hardware based
service demands are retrieved from the system. Software-
based service demands are inferred from the hardware-based
service demands. Predicted performance results of the IT
environment are calculated based on the hardware-based
service demands, the software-based service demands
inferred from the hardware-based service demands, and the
system transaction rate of the system.

The foregoing 1s a summary and thus contains, by neces-
sity, simplifications, generalizations, and omissions of
detail; consequently, those skilled 1n the art will appreciate
that the summary 1s illustrative only and 1s not intended to
be 1n any way limiting. Other aspects, inventive features,
and advantages of the present invention, as defined solely by
the claims, will become apparent in the non-limiting detailed
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent
to those skilled 1n the art by referencing the accompanying,

drawings, wherein:
FIG. 1 depicts a block diagram of a processor and

components of an information handling system;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a network environment that includes various
types of iformation handling systems interconnected via a

computer network;

FIG. 3 1s a flowchart that depicts the steps and processes
used to predicting performance of a complex IT environ-
ment by analytically solving a Queuing Network Model
(QNM);

FIG. 4 1s a component diagram depicting the models of
the Application Server threads, Data Sources, and Web
Server connection of a complex IT environment;

FIG. 5 1s a depiction of a Hardware Queuing Network
(HQN) model of the complex IT environment;

FIG. 6A 1s a depiction of a Software Queuing Network
(SQN) model formed by combining the three models shown
in FIG. 4;

FIG. 6B 1s a depiction of a refined Hardware Queuing
Network (HQN) formed by serializing the HQN shown in
FIG. 5;

FIG. 7 1s a depiction of a flowchart showing the logic
performed by a process that performs capacity management
in clustered environments;

FIG. 8A 1s a depiction of a multi-cluster model depicting
a clustered complex IT environment; and

FIG. 8B 1s a depiction of a serialized multi-cluster model
resulting from serializing the model shown 1n FIG. 8A.

DETAILED DESCRIPTION

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present 1nvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway




US 10,044,786 B2

3

computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program 1instructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other

10

15

20

25

30

35

40

45

50

55

60

65

4

device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The following detailed description will generally follow
the summary of the mvention, as set forth above, further
explaining and expanding the definitions of the various
aspects and embodiments of the invention as necessary. To
this end, this detailed description first sets forth a computing,
environment in FIG. 1 that 1s suitable to implement the
solftware and/or hardware techniques associated with the
invention. A networked environment 1s illustrated 1n FIG. 2
as an extension ol the basic computing environment, to
emphasize that modern computing techniques can be per-
formed across multiple discrete devices.

FIG. 1 illustrates information handling system 100, which
1s a simplified example of a computer system capable of
performing the computing operations described herein.
Information handling system 100 includes one or more
processors 110 coupled to processor interface bus 112.
Processor interface bus 112 connects processors 110 to
Northbridge 115, which 1s also known as the Memory
Controller Hub (MCH). Northbridge 115 connects to system
memory 120 and provides a means for processor(s) 110 to
access the system memory. Graphics controller 125 also
connects to Northbridge 115. In one embodiment, PCI
Express bus 118 connects Northbridge 115 to graphics
controller 125. Graphics controller 125 connects to display
device 130, such as a computer monitor.

Northbridge 115 and Southbridge 135 connect to each
other using bus 119. In one embodiment, the bus 1s a Direct
Media Interface (DMI) bus that transiers data at high speeds
in each direction between Northbridge 115 and Southbridge
135. In another embodiment, a Peripheral Component Inter-
connect (PCI) bus connects the Northbridge and the South-
bridge. Southbridge 135, also known as the I/O Controller
Hub (ICH) 1s a chip that generally implements capabilities
that operate at slower speeds than the capabilities provided
by the Northbridge. Southbridge 1335 typically provides
various busses used to connect various components. These
busses include, for example, PCI and PCI Express busses, an
ISA bus, a System Management Bus (SMBus or SMB),
and/or a Low Pin Count (LPC) bus. The LPC bus often
connects low-bandwidth devices, such as boot ROM 196
and “legacy” 1/0O devices (using a “super 1/0O” chip). The
“legacy” 1/0 devices (198) can include, for example, serial
and parallel ports, keyboard, mouse, and/or a floppy disk
controller. The LPC bus also connects Southbridge 135 to
Trusted Platform Module (TPM) 195. Other components




US 10,044,786 B2

S

often included 1n Southbridge 133 include a Direct Memory
Access (DMA) controller, a Programmable Interrupt Con-
troller (PIC), and a storage device controller, which connects
Southbridge 135 to nonvolatile storage device 185, such as
a hard disk drive, using bus 184.

ExpressCard 155 1s a slot that connects hot-pluggable
devices to the information handling system. ExpressCard
155 supports both PCI Express and USB connectivity as it
connects to Southbridge 135 using both the Universal Serial
Bus (USB) the PCI Express bus. Southbridge 135 includes
USB Controller 140 that provides USB connectivity to
devices that connect to the USB. These devices include
webcam (camera) 150, infrared (IR) receiver 148, keyboard
and trackpad 144, and Bluetooth device 146, which provides
for wireless personal area networks (PANs). USB Controller
140 also provides USB connectivity to other miscellaneous
USB connected devices 142, such as a mouse, removable
nonvolatile storage device 145, modems, network cards,
ISDN connectors, fax, printers, USB hubs, and many other
types of USB connected devices. While removable nonvola-
tile storage device 145 1s shown as a USB-connected device,
removable nonvolatile storage device 145 could be con-
nected using a different iterface, such as a Firewire inter-
face, etcetera.

Wireless Local Area Network (LAN) device 175 connects
to Southbridge 135 via the PCI or PCI Express bus 172.
LAN device 175 typically 1mp1ements one of the IEEE
.802.11 standards of over-the-air modulation techniques that
all use the same protocol to wireless communicate between
information handling system 100 and another computer
system or device. Optical storage device 190 connects to
Southbridge 135 using Serial ATA (SATA) bus 188. Serial
ATA adapters and devices communicate over a high-speed
serial link. The Serial ATA bus also connects Southbridge
135 to other forms of storage devices, such as hard disk
drives. Audio circuitry 160, such as a sound card, connects
to Southbridge 1335 via bus 158. Audio circuitry 160 also
provides functionality such as audio line-in and optical
digital audio 1n port 162, optical digital output and head-
phone jack 164, iternal speakers 166, and internal micro-
phone 168. Ethernet controller 170 connects to Southbridge
135 using a bus, such as the PCI or PCI Express bus.
Ethernet controller 170 connects information handling sys-
tem 100 to a computer network, such as a Local Area
Network (LAN), the Internet, and other public and private
computer networks.

While FIG. 1 shows one information handling system, an
information handling system may take many forms. For
example, an information handling system may take the form
of a desktop, server, portable, laptop, notebook, or other
form factor computer or data processing system. In addition,
an information handling system may take other form factors
such as a personal digital assistant (PDA), a gaming device,
ATM machine, a portable telephone device, a communica-
tion device or other devices that include a processor and
memory.

The Trusted Plattorm Module (TPM 195) shown 1n FIG.
1 and described herein to provide security functions 1s but
one example of a hardware security module (HSM). There-
fore, the TPM described and claimed herein includes any
type of HSM including, but not limited to, hardware security

devices that conform to the Trusted Computing Groups
(TCG) standard, and entitled “Trusted Platform Module

(TPM) Specification Version 1.2.” The TPM 1s a hardware
security subsystem that may be incorporated into any num-
ber of information handling systems, such as those outlined

in FIG. 2.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 provides an extension of the information handling
system environment shown in FIG. 1 to illustrate that the
methods described herein can be performed on a wide
variety ol information handling systems that operate in a
networked environment. Types of information handling sys-
tems range from small handheld devices, such as handheld
computer/mobile telephone 210 to large mainirame systems,
such as mainirame computer 270. Examples of handheld
computer 210 include personal digital assistants (PDAs),
personal entertainment devices, such as MP3 players, por-
table televisions, and compact disc players. Other examples
of information handling systems include pen, or tablet,
computer 220, laptop, or notebook, computer 230, worksta-
tion 240, personal computer system 250, and server 260.
Other types of information handling systems that are not
individually shown 1n FIG. 2 are represented by information
handling system 280. As shown, the various information
handling systems can be networked together using computer
network 200. Types of computer network that can be used to

interconnect the various information handling systems
include Local Area Networks (LANs), Wireless Local Area

Networks (WL ANSs), the Internet, the Public Switched Tele-
phone Network (PSTN), other wireless networks, and any
other network topology that can be used to interconnect the
information handling systems. Many of the information
handling systems include nonvolatile data stores, such as
hard drives and/or nonvolatile memory. Some of the infor-
mation handling systems shown 1n FIG. 2 depicts separate
nonvolatile data stores (server 260 utilizes nonvolatile data
store 2635, mainirame computer 270 utilizes nonvolatile data
store 275, and information handling system 280 utilizes
nonvolatile data store 285). The nonvolatile data store can be
a component that 1s external to the various information
handling systems or can be internal to one of the information
handling systems. In addition, removable nonvolatile stor-
age device 145 can be shared among two or more informa-
tion handling systems using various techniques, such as
connecting the removable nonvolatile storage device 145 to
a USB port or other connector of the information handling
systems.

FIGS. 3-8B show an approach for predicting performance
by analytically solving a Queuing Network Model (QNM)
for a complex Information Technology (I'T) environment. In
this approach, modeling techniques are extended to general
three-tier systems. At the same time, the approach reduces
the measurement difliculties encountered when measuring
the QNM parameters (service demands). In doing, the
approach generates a generic model for three-tier systems
that accounts for contention caused by software resources. In
particular, the number of threads of the Application Server
(AS) and the number of database Data Sources (DS) are
presented 1n this approach. The model generated by this
approach 1s simple enough to be solved using time efhicient
analytical solvers and the model 1s further extendable to
handle contention caused by memory management and
critical sections. In this manner, the approach presented
herein improves computer systems by more accurately pre-
dicting a system’s performance and reducing the time and
resources needed to predict the performance.

The approach improves the Capacity Management (CM)
process by enhancing 1ts accuracy and significantly reducing
the time required to solve the resulting model. The appreach
therefore 1mproves the functionality of computer systems in
an I'T environment by utilizing a stmple model applicable for
a wide range of applications (three-tier) that can be solved
relatively quickly by QNM analytical solvers, and measures
the system service demands with single user tests available




US 10,044,786 B2

7

in many load generation tools. The approach produces more
accurate results as compared to normal load testing results,
leading to more accurate sizing of IT environments. The
approach further provides separate hardware and software
components that allow for separate flexible sizing of the
system and, despite providing flexible sizing, the approach
1s not application specific and does not need code level
knowledge or instrumentation. In addition, the approach 1s
suitable for extending to other soiftware resources, such as
memory and critical sections.

The approach further provides for predicting the perfor-
mance regression of a computer system with a complex
Queuing Network Model (QNM) containing clusters of
servers. While traditional approaches can simulate complex
computer systems with complex QNMs for predicting the
performance counters including the Transaction Response
Time (TRT) and Resource Utilization (RU) for different
workloads, these traditional approaches use simulation and
are time consuming processes that can take several hours for
complex systems. The approach provided herein solves
challenges posed by complex QNMs 1n clustered environ-
ments by using a technique that predicts the performance
issues by simplifying the complex (QNMs that contain
clusters of servers and, consequently, solving the simplified
QNM analytically, while at the same time achieving com-
parable results to traditional (more time consuming)
approaches. This approach solves the problem of predicting
performance anomalies under different workloads by using
a model that 1s solved analytically. This approach 1s based on
solving the complex QNMs for computer systems (analyti-
cally) 1n order to predict performance regression anomalies.
The approach utilizes a fast technique to predict the perfor-
mance characteristics of complex systems. The approach
provides simplification for QNMs for predicting perfor-
mance anomalies. The approach 1s based on modifying the
parallel servers to appear as sequential servers while, at the
same time, the approach modifies the service demands by
introducing new transaction groups—one for each extra
node 1n the cluster, and the approach divides the load among,
all of the transaction groups.

FIG. 3 1s a flowchart that depicts the steps and processes
used to predicting performance of a complex IT environ-
ment by analytically solving a Queuing Network Model
(QNM). FIG. 3 processing commences at 300 and shows the
steps taken by a process that performs a routine to predict
system performance. At step 310, the process models Appli-
cation Server (AS) threads as Single Queue Multiple Server
(SQMS). At step 320, the process models Data Sources (DS)
as SQMS node. At step 325, the process models Web Server
(WS) Connection as SQMS node. At step 330, the process
models all collectively 1in sequence (series). FIG. 4 shows
examples of the models corresponding to the various hard-
ware modules. FIG. 4 depicts the QNM for the application
server threads (model 410), the QNM for the database data
sources (model 420), and the QNM for the web server
connection (model 425). FIG. 6A depicts the software
QNMs modeled collectively 1n sequence.

At step 335, the process applies Product Form Approxi-
mation (PFA) to Hardware Queuing Network (HQN) model

and Software Queuing Network (SQN) model. The result of
step 335 1s SQN 340 which 1s stored in memory area 345 and
HQN 355 which 1s stored 1n memory area 360. See FIG. 6A
for a depiction of the SQN and FIGS. 3 and 6B {for
depictions of the HQN.

At step 350, the process recerves input from a single user
test that 1s used to test the hardware service demands. At step
3770, the process calculates the Hardware Service Demands

5

10

15

20

25

30

35

40

45

50

55

60

65

8

(SD). The Hardware Service Demands include the service
demands on the application server (SD(AS)), the service
demands on the database server (SD(DB)), and the service
demands on the web server (SD(WS)). At step 375, the
process deduces, or infers, the Software Service Demands
(SD) based upon various hardware service demands that
were calculated 1n step 370. The software service demand of
executing the application server threads (SD(AS threads)) 1s
approximated as being the sum of the hardware service
demands found at the application server (SD(AS)) and the
hardware service demands found at the database server
(SD(DB)). The software service demand of providing the
database data sources (SD(DB DS)) 1s approximated as
being equivalent to the hardware service demands found at
the database server (SD(DB)). Finally, the software service
demand of executing a web server connection (SD(WS
Conn)) 1s approximated as the sum of the hardware service
demands found at the web server (SD(WS)), the hardware
service demands found at the application server (SD(AS))
and the hardware service demands found at the database
server (SD(DB)).

At step 380, the process inputs workload information
(transaction rate) pertaining to the system that 1s being
tested. At step 385, a Capacity Management (CM) Process
1s performed using the hardware service demands calculated
in step 370, the software service demands calculated in step
3’75, and the transaction rate received at step 380. Based on
the various inputs, at step 390, the CM process calculates a
Transaction Response Time (TRT) for the system, a
Resource Utilization (RU) for the system, and a Throughput.
FIG. 3 processing thereaiter ends at 395.

FIG. 4 1s a component diagram depicting the models of
the Application Server threads, Data Sources and Web
Server connection of a complex I'T environment and FIG. 5
1s a depiction of a Hardware QQueuing Network (HQN)
model of the complex I'T environment. The Hardware Queu-
ing Network (HOQN) 1s a typical QNM such as the one shown
in FIG. 5, where normal hardware resources such as CPU
and hard disk are modeled as load independent queuing
stations 1n addition to the user Think Time (TT) node which
1s modeled by a delay station. In FIG. 5, HQN 500 is
depicted with interaction between various hardware compo-
nents in the complex IT environment. These hardware
components include web server 510, application server 520,
and database server 530.

Returning to FIG. 4, each software component (Applica-
tion Server threads, Data Sources. and Web Server connec-
tion) 1s simplified and modeled as a Single Queue Multiple
Server (SQMS) environment. Model 410 depicts the Appli-
cation Server threads, model 420 depicts the database Data
Sources, and model 425 depicts the Web Server connection.
The Software Queuing Network (SQN) contains, in addition
to the TT station, a set of nodes each represents a certain
solftware module. Each software module either causes no
queuing to execute 1n which case it 1s represented by a delay
station, or 1t can cause queuing to execute (such as a critical
section) 1n which case 1t 1s represented as a load independent
station (1.e. with a queue). For example, the critical section
1s represented by a station that has one processing unit and
a queue. A simple SQN 1s shown for each of the software
components 1n FIG. 4. Fach software module 1n the SQN has
a service demand on each hardware node in the HQN that 1s
shown 1n FIG. 5.

Referring to both FIGS. 4 and 5, the total service demand
on each module 1n the SQN 1s the summation of all service
demands for that module on each station 1n the HQN. While,
the total service demands for each hardware station in the




US 10,044,786 B2

9

HOQN 1s the summation of all service demands for that
station caused by each software module in the SQN. The
SON 1s first solved with the mitial (single user) modules
total service demands using the total number of users
accessing the system. Then the number of blocked users 1s
calculated by finding out the number of users 1n each station

queue within the SQN. The HON 1s then solved with the
total number of users excluding the users 1n the queues of the
SOQN and the total service demands of the hardware stations.
After solving the HQN each module service demand (in the
SQN) 1s set to the sum of the fraction of the residence time
(queuing and serving time) of each station in the HOQN
proportional to this module contribution to the original total
service demands of each HQN station. Then the above 1s
repeated again by solving the SQN with the new service
demands and solving the HQN with the total number of
users excluding the blocked users. This continues until the
number of blocked users 1s reasonably stable.

The application server (AS) 1n FIG. 5 dispatches each new
10b to a new thread which executes the required server

module. During 1ts execution the thread accesses the hard-
ware resources (CPU and hard disk) on both the AS and the

Database Server (DBS). Most of the AS code 1s executed
within the thread, except the 1gnorable demands dispatching,
module, so the SQN of the AS (520) 1s depicted with a single
module. This module can be represented by a single-queue
multi-server station, with a number of servers equals to the
number of the available threads in the AS. FIGS. 4 and 5
shows both the HQN and the SQN in this case. Conse-
quently, the service demand for that single software module
equals the sum of service demands over all the hardware
resources both at the AS and the DBS. This simplification
allows the service demands to be measured by a single user
test on all system resources. The SQN 1n FIG. 4 can be
solved analytically by modeling the single-queue multi-
server station 1 the SQN as a load-dependent station.
Solving the HOQN shown in FIG. § with the non-blocked
users 1s solved using a analytical technique.

The HON 1n FIG. 5 shows that the AS makes multiple
calls to the DBS. The DBS returns the execution to the AS
after each call and finally the AS returns back to the user ('T'T
station). Given that the number of data sources (DS) on the
DBS 1s limited (same as AS threads), the software conten-
tion (SC) effect happens at both tiers of the system resulting
of a complex nested SQN. To address this, the approach uses
an approximation which approximates the QNM of the
system (the HQN) to assume that each station 1s visited only
once. This makes the HQN less complex as the AS will make
one call to the DBS which will serve the job and return back
to the TT station.

FIG. 6A 1s a depiction of a Software Queuing Network
(SQN) model formed by combining the three models shown
in FIG. 4 and FIG. 6B 1s a depiction of a refined Hardware
Queuing Network (HQN) formed by senalizing the HQN
shown 1n FIG. 5. In the same manner as explained for the
HQN, and by applying the same theoretical background, the
same approximation 1s applied at the SQN level shown 1n
FIG. 4. The approach assumes the job visits each software
module (the web server connection, the AS threads, and the
DBS DS) only once. This assumption allows the modules to
be depicted sequentially with each module feeding into the
next module as shown in FIG. 6 A. Here, the job visits web
server connection 610, then AS threads 620, and finally DBS
DS 630. The SOQN contains three single-queue multi-server
stations with each of the stations 1s visited once as shown 1n

FIG. 6A.

10

15

20

25

30

35

40

45

50

55

60

65

10

Each software module in FIG. 6A only relies on the
hardware service demands depicted in FIG. 6B within the
same tier. In other words, web server connection 610 shown
in F1G. 6 A relies on the CPU and hard disk hardware service
demands of web server 670, application server 680, and
database server 690 shown in FIG. 6B. Application server

620 shown in FIG. 6A relies on the CPU and hard disk
hardware service demands of application server 680 and

database server 690 shown 1n FIG. 6B. Finally, database data
sources 630 shown 1n FIG. 6A relies on the CPU and hard
disk hardware service demands of database server 690
shown 1n FIG. 6B.

The blocked users are calculated to include users waiting,
in the queues of both single-queue multi-server stations
representing the threads and DS modules. The SQN shown

in FIG. 6A and the HOQN shown 1n FIG. 6B are iteratively

solved 1n the same manner as explained for the single tier
system. This approximation can be generalized to n-tier
systems.

FIG. 7 1s a depiction of a flowchart showing the logic
performed by a process that performs capacity management
in clustered environments. FIG. 7 processing commences at
700 and shows the steps taken by a process that performs a
capacity management routine for clustered environments. At
step 705, the process retrieves number the of application
servers and the number of resource servers used by the
application servers from cluster configuration memory area
710. At step 715, the process retrieves the number of users,
the server demand data, and the application transaction
group data from user memory area 720, server demand
memory area 7235, and transaction groups memory area 730,
respectively. At step 735, the process builds a model of the
clustered system environment that i1s stored 1n memory area
740 (see FIG. 8A for a depiction of a clustered system
environment model). At step 745, the process serializes all
of the nodes depicted 1n the model stored 1n memory area
740 with the serialization resulting in a serialized clustered
system environment model that 1s stored 1n memory area
750 (see FIG. 8B for a depiction of a senalized clustered
system environment model). At step 755, the process sets an
instance of each transaction group for each of the application
servers 1n table 760. At step 765, the process divides the
number ol users between the transaction group instances
based on a ratio that 1s equal to the probability of each cluster
member with the table being updated to show the number of
users for each transaction group instance. In the example,
there are sixty users divided amongst six transaction group
instances so that each instance 1s assigned ten users. At step
770, the process sets each unused transaction group instance
settings to a value of zero and sets the applicable group
instance settings to actual transaction values. These 1nstance
settings are reflected 1n the updates made to table 760.

FIG. 8A 1s a depiction of a multi-cluster model depicting
a clustered complex IT environment. Multi-cluster model
740 shows a system composed of three nodes as an example
this nodes are clusters of the application server where the
load 1s distributed between these servers via a load balancer
soltware with a certain probability. The app server nodes
(app server 1, app server 2, through app server N) are
simplified 1n order to solve the complex clustered environ-
ment analytically and predict any performance regression
anomalies. The app servers are modeled as parallel nodes. In
the example, assume that the system has three application
servers 1n the cluster and that the load 1s 30 users which are
distributed equally among them. Also assume that the serv-
ers are 1dentical and the service demands n such servers are




US 10,044,786 B2

11

0.05 and 0.06 sec. For each of the two classes called login
and search respectively. This 1s shown 1n table below:

App App App DB Srvr DB Srvr
it Users ServO Serv1l Serv?2 CPU Disk
Trans. users  (sec) (sec) (sec) (sec) (sec) (sec)
Login 30 60 0.05 0.05 0.05 0.08 0.09
Search 30 60 0.06 0.06 0.06 0.08 0.07

FIG. 8B 1s a depiction of a serialized multi-cluster model
resulting from serializing the model shown i FIG. 8A.
Serialized multi-clustered model 750 shows the three app
servers from the example serialized along with the database
server CPU and database server disk. Unlike the parallel app
servers shown 1n FIG. 8A, the app servers in FIG. 8B are
modeled as serial servers. However, 1n order to serialize the
system, new transaction groups are introduced—one for
cach extra node in the cluster. Each group contains the same
set of transactions as what 1s 1n the original workload. So for
the example, the search and login transactions in the original
workload have additional transaction groups added. Here,
there will be one login transaction and one search transac-
tion for each app server (app server 0, 1, and 2). Login 0 and
search 0 correspond to app server 0, login 1 and search 1
correspond to app server 1, and Login 2 and search 2
correspond to app server 2. Consequently, the number of
users 1s divided between the transaction groups with a ratio
equal to the probability associated with the corresponding
cluster member which, 1n the example, 1s a 0.33 probability.
For each unused transaction group, the service demand on
the corresponding node (application server) 1s set to zero.
For example, searchl will have service demand of 0.06 on
AppServerl and zero on AppServer() and AppServer2 and so
on. For the other resources 1n the network (Users, DB-Server
CPU and DBServer Disk) the service demand will stay as 1t

1s 1n the entire transaction groups. This can be summarized
as 1n the below table:

DB DB

App App App SIvr SIvr

Users Serv0O Serv1l Serv2 CPU  Disk

Trans. # users  (sec) (sec) (sec) (sec) (sec) (sec)
Login0 10 60 0.05 0.00 0.00 0.08 0.09
SearchO 10 60 0.06 0.00 0.00 0.08 0.07
Loginl 10 60 0.00 0.05 0.05 0.08 0.09
Searchl 10 60 0.00 0.06 0.06 0.08 0.07
Login2 10 60 0.00 0.00 0.05 0.08 0.09
Search? 10 60 0.00 0.00 0.06 0.08 0.07

While particular embodiments of the present ivention
have been shown and described, 1t will be obvious to those
skilled 1n the art that, based upon the teachings herein, that
changes and modifications may be made without departing
from this invention and its broader aspects. Therefore, the
appended claims are to encompass within their scope all
such changes and modifications as are within the true spirit
and scope of this invention. Furthermore, 1t 1s to be under-
stood that the mvention 1s solely defined by the appended
claims. It will be understood by those with skill in the art that
i a specific number of an introduced claim element 1is
intended, such intent will be explicitly recited in the claim,
and 1n the absence of such recitation no such limitation is
present. For non-limiting example, as an aid to understand-
ing, the following appended claims contain usage of the
introductory phrases “at least one” and “one or more” to

10

15

20

25

30

35

40

45

50

55

60

65

12

introduce claim elements. However, the use of such phrases
should not be construed to imply that the introduction of a
claim element by the indefinite articles “a” or “an” limits any
particular claim containing such introduced claim element to
inventions containing only one such element, even when the
same claim includes the introductory phrases “one or more”
or “at least one” and indefinite articles such as “a” or “an’;
the same holds true for the use in the claims of definite
articles.

What 1s claimed 1s:

1. A method, 1 an mnformation handling system compris-
ing one or more processors and a memory, of predicting
system performance, the method comprising:

identifying a non-linear Queuing Network Model (QNM)

corresponding to an information technology (IT) envi-
ronment, wherein the non-linear QNM includes a plu-
rality of servers that perform a plurality of parallel
services;

transforming the non-linear QNM to a linear model by

serializing the parallel services as sequential services;
conducting a single-user test of the IT environment;
based on the single-user test, measuring a plurality of
hardware-based service demands related to a plurality
of hardware resources, wherein a first hardware service
demand 1s related to a web server, a second hardware
service demand 1s related to an application server, and
a third hardware service demand 1s related to a database
Server;
inferring a plurality of software-based service demands on
the linear model, wherein the plurality of software-
based service demands are based on the plurality of
hardware-based service demands, and wherein the
inferring further comprises:
estimating a {irst software demand that is related to a
demand of executing a plurality of application server
threads as bemng a sum of the second hardware
service demand and the third hardware service
demand;
estimating a second software demand that 1s related to
a demand of providing a plurality of database data
sources as being equivalent to the third hardware
service demand; and
estimating a third software demand that 1s related to a
demand of executing a web server connection by a
web server as being a sum of the first hardware
service demand, the second hardware service
demand, and the third hardware service demand;
recerving a system transaction rate based on the single-
user user test of the IT environment:; and
calculating one or more predicted performance results of
the IT environment based on the plurality of hardware-
based service demands, the plurality of software-based
service demands, and the system transaction rate.
2. The method of claim 1 wherein the transforming turther
COmMprises:
generating a first model of a demand of executing a web
server connection as being executed 1 a first Single
Queue Multiple Server (SQMS) environment;

generating a second model of a demand of executing a
plurality of application server threads as being executed
in a second SQMS environment;
generating a third model of a demand of providing a
plurality of database data sources as being executed 1n
a third SQMS environment; and

forming the linear model by modeling the first SQMS
environment, the second SQMS environment, and the
third SQMS environment collectively 1n series wherein




US 10,044,786 B2

13

an output from each of the SQMS environments 1s an
input to another of the SQMS environments.

3. The method of claim 2 further comprising;:

applying a product form approximation (PFA) to the first,
second, and third models to combine a plurality of
soltware resources 1nto a single software (QINM.

4. An information handling system comprising:

ONne Or mMore processors;

a memory coupled to at least one of the processors;

a set of 1mstructions stored in the memory and executed by
at least one of the processors to predict system perfor-

mance, wherein the set of instructions perform actions
of:
identifying a non-linear Queuing Network Model
(QNM) corresponding to an information technology
(IT) environment, wherein the non-linear QNM
includes a plurality of servers and that perform a
plurality of parallel services;
transforming the non-linear QNM to a linear model by
serializing the parallel services as sequential ser-
vices:
conducting a single-user test of the IT environment;
based on the single-user test, measuring a plurality of
hardware-based service demands related to a plural-
ity of hardware resources, wherein a first hardware
service demand 1s related to a web server, a second
hardware service demand 1s related to an application
server, and a third hardware service demand 1s
related to a database server:
inferring a plurality of software-based service demands
on the linear model, wherein the plurality of soft-
ware-based service demands are based on the plu-
rality of hardware-based service demands, wherein
the inferring further comprises:
estimating a first software demand that 1s related to
a demand of executing a plurality of application
server threads as being a sum of the second
hardware service demand and the third hardware
service demand;
estimating a second software demand that 1s related
to a demand of providing a plurality of database
data sources as being equivalent to the third hard-
ware service demand; and
estimating a third software demand that 1s related to
a demand of executing a web server connection by
a web server as being a sum of the first hardware
service demand, the second hardware service
demand, and the third hardware service demand;
receiving a system transaction rate based on the single-
user user test of the I'T environment; and
calculating one or more predicted performance results
of the IT environment based on the plurality of
hardware-based service demands, the plurality of
software-based service demands, and the system
transaction rate.
5. The mformation handling system of claim 4 wherein
the action of transforming further comprises:
generating a first model of a demand of executing a web
server connection as being executed 1n a first Single
Queue Multiple Server (SQMS) environment;
generating a second model of a demand of executing a
plurality of application server threads as being executed
in a second SQMS environment;
generating a third model of a demand of providing a
plurality of database data sources as being executed in
a third SQMS environment; and

5

10

15

20

25

30

35

40

45

50

55

60

65

14

forming the linear model by modeling the first SQMS
environment, the second SQMS environment, and the
third SQMS environment collectively 1n series wherein
an output from each of the SQMS environments 1s an
input to another of the SQMS environments.

6. The information handling system of claim 5 wherein
the actions further comprise:

applying a product form approximation (PFA) to the first,

second, and third models to combine a plurality of
soltware resources into a single software QINM.

7. A computer program product stored in a computer
readable storage medium, comprising computer instructions
that, when executed by an information handling system,
causes the mformation handling system to predict a system

performance by performing actions comprising:
identifying a non-linear Queuing Network Model (QNM)
corresponding to an information technology (I'T) envi-
ronment, wherein the non-linear QNM includes a plu-
rality of servers and that perform a plurality of parallel
services;
transforming the non-linear QNM to a linear model by
serializing the parallel services as sequential services;
conducting a single-user test of the IT environment;
based on the single-user test, measuring a plurality of
hardware-based service demands related to a plurality
ol hardware resources, wherein a first hardware service
demand 1s related to a web server, a second hardware
service demand 1s related to an application server, and
a third hardware service demand 1s related to a database
Server;
inferring a plurality of software-based service demands on
the linear model, wherein the plurality of software-
based service demands are based on the plurality of
hardware-based service demands, and wherein the
inferring further comprises:
estimating a {irst software demand that is related to a
demand of executing a plurality of application server
threads as being a sum of the second hardware
service demand and the third hardware service
demand;
estimating a second software demand that 1s related to
a demand of providing a plurality of database data
sources as being equivalent to the third hardware
service demand; and
estimating a third software demand that 1s related to a
demand of executing a web server connection by a
web server as being a sum of the first hardware
service demand, the second hardware service
demand, and the third hardware service demand;
recerving a system transaction rate based on the single-
user user test of the IT environment:; and
calculating one or more predicted performance results of
the IT environment based on the plurality of hardware-
based service demands, the plurality of soitware-based
service demands, and the system transaction rate.
8. The computer program product of claim 7 wherein the
action of transforming further comprises:
generating a first model of a demand of executing a web
server connection as being executed 1n a first Single
Queue Multiple Server (SQMS) environment;
generating a second model of a demand of executing a
plurality of application server threads as being executed
in a second SQMS environment;
generating a third model of a demand of providing a
plurality of database data sources as being executed 1n
a third SQMS environment;



US 10,044,786 B2

15

forming the linear model by modeling the first SQMS
environment, the second SQMS environment, and the
third SQMS environment collectively 1n series wherein
an output from each of the SQMS environments 1s an
input to another of the SQMS environments; and 5

applying a product form approximation (PFA) to the first,
second, and third models to combine a plurality of
soltware resources 1nto a single software QINM.

G x e Gx o

16



	Front Page
	Drawings
	Specification
	Claims

