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1

FEEDBACK ADAPTIVE NOISE
CANCELLATION (ANC) CONTROLLER AND
METHOD HAVING A FEEDBACK RESPONSEL

PARTIALLY PROVIDED BY A

FIXED-RESPONSE FILTER

This U.S. Patent Application Claims priority under 335
U.S.C. § 119(e) to U.S. Provisional Patent Application Ser.
No. 62/207,657 filed on Aug. 20, 2013.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of representative embodiments of this disclosure
relates to methods and systems for adaptive noise cancella-
tion (ANC), and 1n particular to an ANC feedback controller
in which the feedback response 1s provided by a fixed
transfer function feedback filter and a variable response
filter.

2. Background of the Invention

Wireless telephones, such as mobile/cellular telephones,
cordless telephones, and other consumer audio devices, such
as MP3 players, are in widespread use. Performance of such
devices with respect to intelligibility can be improved by
providing noise canceling using a microphone to measure
ambient acoustic events and then using signal processing to
insert an anti-noise signal into the output of the device to
cancel the ambient acoustic events.

In many noise cancellation systems, 1t 1s desirable to
include both feed-forward noise cancellation by using a
teed-forward adaptive filter for generating a feed-forward
anti-noise signal from a reference microphone signal con-
figured to measure ambient sounds and feedback noise
cancellation by using a fixed-response feedback filter for
generating a feedback noise cancellation signal to be com-
bined with the feed-forward anti-noise signal. In other noise
cancellation systems, only feedback noise cancellation 1is
provided. An adaptive feedback noise cancelling system
includes an adaptive filter that generates an anti-noise signal
from an output of a sensor that senses the noise to be
canceled and that 1s provided to an output transducer for
reproduction to cancel the noise.

In any ANC system having a feedback noise-canceling
path, the secondary path, which 1s the electro-acoustic path
at least extending from the output transducer that reproduces
the anti-noise signal generated by the ANC system to the
output signal provided by the mput sensor that measures the
ambient noise to be canceled, determines a portion of the
necessary feedback response to provide proper noise-can-
celing. In ANC systems 1n which the acoustic environment
around the output transducer and 1nput sensor varies greatly,
such as 1n a mobile telephone where the telephone’s position
with respect to the user’s ear changes the coupling between
the telephone’s speaker and a microphone used to measure
the ambient noise, the secondary path response varies as
well. Since the feedback path transfer function for generat-
ing a proper anti-noise signal 1s dependent on the secondary
path response, 1t 1s ditlicult to provide an ANC controller
that 1s stable for all possible configurations of the acoustic
path between the output transducer and input sensor that

may be present in an actual implementation.
Therefore, it would be desirable to provide an ANC

controller with improved stability in ANC feedback and
teed-forward/feedback ANC systems.

SUMMARY OF THE INVENTION

The above-stated objective of providing an ANC con-
trolled with improved stability, 1s accomplished in an ANC
controller, a method of operation, and an 1ntegrated circuait.
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The ANC controller includes a fixed filter having a
predetermined fixed transfer function and a variable-re-
sponse filter coupled together. The fixed transfer function
relates to and maintains stability of a compensated feedback
loop and contributes to an ANC gain of the ANC system.
The response of the variable-response filter compensates for
variation of a transfer function of a secondary path that
includes at least a path from a transducer of the ANC system
to a sensor of the ANC system, so that the ANC gain 1s
independent of the varnation of the transfer function of the
secondary path.

The description below sets forth example embodiments
according to this disclosure. Further embodiments and
implementations will be apparent to those having ordinary
skill in the art. Persons having ordinary skill in the art waill
recognize that various equivalent techniques may be applied
in lieu of, or 1n conjunction with, the embodiments discussed
below, and all such equivalents are encompassed by the
present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s an 1llustration of a wireless telephone 10,
which 1s an example of a personal audio device in which the
techniques disclosed herein can be implemented.

FIG. 1B 1s an 1illustration of a wireless telephone 10
coupled to a pair of earbuds EB1 and EB2, which 1s an
example of a personal audio system in which the techniques
disclosed herein can be implemented.

FIG. 2 1s a block diagram of circuits within wireless
telephone 10 and/or earbud EB of FIG. 1A.

FIG. 3A 1s an 1illustration of electrical and acoustical
signal paths 1n FIG. 1A and FIG. 1B including a feedback
acoustic noise canceler.

FIG. 3B 1s an 1illustration of electrical and acoustical
signal paths in FIG. 1A and FIG. 1B including a hybrid
feed-forward/teedback acoustic noise canceler.

FIGS. 4A-4D are block diagrams depicting various

examples of ANC circuits that can be used to implement
ANC circuit 30 of audio integrated circuits 20A-20B of FIG.

2.

FIGS. 5A-5F are graphs depicting acoustic and electric
responses within the ANC systems disclosed herein.

FIG. 6 15 a block diagram depicting a digital filter that can
be used to implement fixed response filter 40 within the
circuits depicted 1n FIGS. 4A-4D.

FIG. 7 1s a block diagram depicting an alternative digital
filter that can be used to implement fixed response filter 40
within the circuits depicted in FIGS. 4A-4D.

FIG. 8 1s a block diagram depicting signal processing

circuits and functional blocks that can be used to implement
the circuits depicted 1n FIG. 2 and FIGS. 4A-4D.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

The present disclosure encompasses noise canceling tech-
niques and circuits that can be implemented 1n a personal
audio device, such as a wireless telephone, tablet, note-book
computer, noise-canceling headphones, as well as 1n other
noise-canceling circuits. The personal audio device mncludes
an ANC circuit that measures the ambient acoustic environ-
ment with a sensor and generates an anti-noise signal that 1s
output via a speaker or other transducer to cancel ambient
acoustic events. The example ANC circuits shown herein
include a feedback filter and may include a feed-forward
filter that are used to generate the anti-noise signal from the
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sensor output. A secondary path, including the acoustic path
from the transducer back to the sensor, closes a feedback
loop around an ANC feedback path that extends through the
teedback filter, and thus the stability of the feedback loop 1s
dependent on the characteristics of the secondary path. The
secondary path 1nvolves structures around and between the
transducer and sensor, thus for devices such as a wireless
telephone, the response of the secondary path varies with the
user and the position of the device with respect to the user’s
car(s). To provide stability over a range of variable second-
ary paths, the instant disclosure uses a pair of filters, one
having a fixed predetermined response and the other having
a variable response that compensates for secondary path
variations. The fixed predetermined response 1s selected to
provide stability over the range of secondary path responses
expected for the device, contributes to the acoustic noise
cancellation and generally maximizes the range over which
the acoustic noise cancelation operates.

Referring now to FIG. 1A, an exemplary wireless tele-
phone 10 1s shown 1n proximity to a human ear 5. Illustrated
wireless telephone 10 1s an example of a device in which
techniques 1llustrated herein may be employed, but 1t 1s
understood that not all of the elements or configurations
embodied 1n 1illustrated wireless telephone 10, or in the
circuits depicted in subsequent 1llustrations, are required to
practice what 1s claimed. Wireless telephone 10 includes a
transducer such as speaker SPKR that reproduces distant
speech received by wireless telephone 10, along with other
local audio events such as ringtones, stored audio program
material, near-end speech (1.e., the speech of the user of
wireless telephone 10), sources from web-pages or other
network communications received by wireless telephone 10
and audio indications such as battery low and other system
event notifications. A near-speech microphone NS 1s pro-
vided to capture near-end speech, which 1s transmitted from
wireless telephone 10 to the other conversation participant
(s).

Wireless telephone 10 includes adaptive noise canceling
(ANC) circuits and features that inject an anti-noise signal
into speaker SPKR to improve intelligibility of the distant
speech and other audio reproduced by speaker SPKR. A
reference microphone R may be provided for measuring the
ambient acoustic environment and 1s positioned away from
the typical position of a user’s mouth, so that the near-end
speech 1s minimized 1n the signal produced by reference
microphone R. A third microphone, error microphone E,
may be provided in order to further improve the ANC
operation by providing a measure of the ambient audio
combined with the audio reproduced by speaker SPKR close
to ear 5, when wireless telephone 10 1s in proximity to ear
5. A circuit 14 within wireless telephone 10 may include an
audio CODEC 1integrated circuit 20 that receives the signals
from reference microphone R, near-speech microphone NS,
and error microphone E and interfaces with other integrated
circuits such as an RF integrated circuit 12 containing the
wireless telephone transceiver. In some embodiments of the
disclosure, the circuits and techniques disclosed herein may
be 1mcorporated 1n a single integrated circuit that contains
control circuits and other functionality for implementing the
entirety of the personal audio device, such as an MP3
player-on-a-chip integrated circuit. In the depicted embodi-
ments and other embodiments, the circuits and techniques
disclosed herein may be implemented partially or fully 1n
software and/or firmware embodied 1n computer-readable
storage media and executable by a processor circuit or other
processing device such as a microcontroller.
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In general, the ANC techniques disclosed herein measure
ambient acoustic events (as opposed to the output of speaker
SPKR and/or the near-end speech) impinging on error
microphone E and/or reference microphone R. The ANC
processing circuits of 1llustrated wireless telephone 10 adapt
an anti-noise signal generated from the output of error
microphone E and/or reference microphone R to have a
characteristic that minimizes the amplitude of the ambient
acoustic events present at error microphone E. Since acous-
tic path P(z) extends from reference microphone R to error
microphone E, the ANC circuits are eflectively estimating,
acoustic path P(z) combined with removing eflects of an
clectro-acoustic path S(z). Electro-acoustic path S(z) repre-
sents the response of the audio output circuits of CODEC IC
20 and the acoustic/electric transfer function of speaker
SPKR 1ncluding the coupling between speaker SPKR and
error microphone E 1n the particular acoustic environment.
Electro-acoustic path S(z) 1s affected by the proximity and
structure of ear 3 and other physical objects and human head
structures that may be 1n proximity to wireless telephone 10,
when wireless telephone 10 1s not firmly pressed to ear 5.
While the 1llustrated wireless telephone 10 includes a two
microphone ANC system with a third near-speech micro-
phone NS, other systems that do not include separate error
and reference microphones can implement the above-de-
scribed techniques. Alternatively, near-speech microphone
NS can be used to perform the function of the reference
microphone R 1n the above-described system. Also, in
personal audio devices designed only for audio playback,
near-speech microphone NS will generally not be included,
and the near-speech signal paths 1n the circuits described 1n
further detail below can be omitted without changing the
scope ol the disclosure. Also, the techniques disclosed
herein can be applied 1n purely noise-canceling systems that
do not reproduce a playback signal or conversation using the
output transducer, 1.e., those systems that only reproduce an
anti-noise signal.

Referring now to FIG. 1B, another wireless telephone
configuration in which the techmques disclosed herein 1s
shown. FIG. 1B shows wireless telephone 10 and a pair of
carbuds EB1 and EB2, each attached to a corresponding ear
of a listener. Illustrated wireless telephone 10 1s an example
ol a device 1n which the techniques herein may be employed,
but 1t 1s understood that not all of the elements or configu-
rations 1llustrated 1n wireless telephone 10, or 1n the circuits
depicted 1n subsequent illustrations, are required. Wireless
telephone 10 1s connected to earbuds EB1, EB2 by a wired
or wireless connection, ¢.g., a BLUETOOTH™ connection
(BLUETOOTH 1s a trademark of Bluetooth SIG, Inc.).
Earbuds EB1, EB2 each have a corresponding transducer,
such as speaker SPKR1, SPKR2, which reproduce source
audio 1including distant speech received from wireless tele-
phone 10, ringtones, stored audio program material, and
injection of near-end speech (1.e., the speech of the user of
wireless telephone 10). The source audio also includes any
other audio that wireless telephone 10 1s required to repro-
duce, such as source audio from web-pages or other network
communications received by wireless telephone 10 and
audio 1ndications such as battery low and other system event
notifications. Reference microphones R1, R2 are provided
on a surface of the housing of respective earbuds EB1, EB2
for measuring the ambient acoustic environment. Another
pair of microphones, error microphones E1, E2, are pro-
vided 1n order to further improve the ANC operation by
providing a measure of the ambient audio combined with the
audio reproduced by respective speakers SPKR1, SPKR2

close to corresponding ears 5A, 5B, when earbuds EB1, EB2
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are mserted in the outer portion of ears SA, 5B. As 1n
wireless telephone 10 of FIG. 1A, wireless telephone 10
includes adaptive noise canceling (ANC) circuits and fea-
tures that 1inject an anti-noise signal into speakers SPKRI1,
SPKR2 to improve intelligibility of the distant speech and
other audio reproduced by speakers SPKR1, SPKR2. In the
depicted example, an ANC circuit within wireless telephone
10 recerves the signals from reference microphones R1, R2
and error microphones E1, E2. Alternatively, all or a portion
of the ANC circuits disclosed herein may be incorporated
within earbuds EB1, EB2. For example, each of earbuds
EB1, EB2 may constitute a stand-alone acoustic noise
canceler including a separate ANC circuit. Near-speech
microphone NS may be provided on the outer surface of a
housing of one of earbuds EB1, EB2, on a boom aflixed to
one of earbuds EB1, EB2, or on a combox pendant 7 located
between wireless telephone 10 and either or both of earbuds
EB1, EB2, as shown.

As described above with reference to FIG. 1A, the ANC
techniques 1illustrated herein measure ambient acoustic
events (as opposed to the output of speakers SPKR1, SPKR2
and/or the near-end speech) impinging on error microphones
E1, E2 and/or reference microphones R1, R2. In the embodi-
ment depicted 1n FIG. 1B, the ANC processing circuits of
integrated circuits within earbuds EB1, EB2, or alternatively
within wireless telephone 10 or combox pendant 7, indi-
vidually adapt an anti-noise signal generated from the output
of the corresponding reference microphone R1, R2 to have
a characteristic that minimizes the amplitude of the ambient
acoustic events at the corresponding error microphone El,
E2. Since acoustic path P, (z) extends from reference micro-
phone R1 to error microphone E, the ANC circuit 1n audio
integrated circuit 20A 1s essentially estimating acoustic path
P,(z) combined with removing eflects of an electro-acoustic
path S,(z) that represents the response of the audio output
circuits ol audio integrated circuit 20A and the acoustic/
clectric transier function of speaker SPKR1. The estimated
response includes the coupling between speaker SPKR1 and
error microphone E1 1n the particular acoustic environment
which 1s aflected by the proximity and structure of ear SA
and other physical objects and human head structures that
may be 1n proximity to earbud EB1. Similarly, audio inte-
grated circuit 20B estimates acoustic path P,(z) combined
with removing eflects of an electro-acoustic path S,(z) that
represents the response of the audio output circuits of audio
integrated circuit 20B and the acoustic/electric transfer
function of speaker SPKR2. As used 1n this disclosure, the
terms “headphone” and “speaker” refer to any acoustic
transducer intended to be mechamically held in place proxi-
mate to a user’s ear canal and include, without limitation,
carphones, earbuds, and other similar devices. As more
specific examples, “earbuds” or “headphones” may refer to
intra-concha earphones, supra-concha earphones and supra-
aural earphones. Further, the techniques disclosed herein are
applicable to other forms of acoustic noise canceling, and
the term “transducer” includes headphone or speaker type
transducers, but also other vibration generators such as
piezo-clectric transducers, magnetic vibrators such as
motors, and the like. The term “sensor” includes micro-
phones, but also includes vibration sensors such as piezo-
electric films, and the like.

FIG. 2 shows a simplified schematic diagram of audio
integrated circuits 20A, 20B that include ANC processing,
as coupled to respective reference microphones R1, R2,
which provides measurements of ambient audio sounds that
are filtered by the ANC processing circuits within audio
integrated circuits 20A, 20B, located within corresponding

5

10

15

20

25

30

35

40

45

50

55

60

65

6

carbuds EB1, EB2. In purely feedback implementations,
reference microphone R may be omitted and the anti-noise
signal generated entirely from error microphones E1, E2.
Audio integrated circuits 20A, 20B may be alternatively
combined 1n a single itegrated circuit, such as integrated
circuit 20 within wireless telephone 10. Further, while the
connections shown in FIG. 2 apply to the wireless telephone
system depicted 1n FI1G. 1B, the circuits disclosed in FIG. 2
are applicable to wireless telephone 10 of FIG. 1A by
omitting audio integrated circuit 20B, so that a single
reference microphone nput 1s provided for each of reference
microphone R and error microphone E and a single output
1s provided for speaker SPKR. Audio integrated circuits
20A, 20B generate outputs for their corresponding channels
that are provided to the corresponding one ol speakers
SPKR1, SPKR2. Audio integrated circuits 20A, 20B receive
the signals (wired or wireless depending on the particular
configuration) from reference microphones R1, R2, near-
speech microphone NS and error microphones E1, E2.
Audio itegrated circuits 20A, 20B also interface with other
integrated circuits such as RF integrated circuit 12 contain-
ing the wireless telephone transceiver shown 1 FIG. 1A, In
other configurations, the circuits and techniques disclosed
herein may be incorporated 1n a single integrated circuit that
contains control circuits and other functionality for imple-
menting the entirety of the personal audio device, such as an
MP3 player-on-a-chip integrated circuit. Alternatively, mul-
tiple integrated circuits may be used, for example, when a
wireless connection 1s provided from each of earbuds EB1,
EB2 to wireless telephone 10 and/or when some or all of the
ANC processing 1s performed within earbuds EB1, EB2 or
a module disposed along a cable connecting wireless tele-
phone 10 to earbuds EB1, EB2.

Audio integrated circuit 20A includes an analog-to-digital
converter (ADC) 21A for recerving the reference micro-
phone signal from reference microphone R1 (or reference
microphone R 1n FIG. 1A) and generating a digital repre-
sentation ref of the reference microphone signal. Audio
integrated circuit 20A also includes an ADC 21B for receiv-
ing the error microphone signal from error microphone FEl
(or error microphone E 1n FIG. 1A) and generating a digital
representation err of the error microphone signal, and an
ADC 21C for receiving the near-speech microphone signal
from near-speech microphone NS and generating a digital
representation of near-speech microphone signal ns. (In the
dual earbud system of FIG. 1B, audio integrated circuit 208
receives the digital representation of near-speech micro-
phone signal ns from audio integrated circuit 20A via the
wireless or wired connections as described above.) Audio
integrated circuit 20A generates an output for driving
speaker SPKR1 from amplifier Al, which amplifies the
output of a digital-to-analog converter (DAC) 23 that
receives the output of a combiner 26. Combiner 26 combines
audio signals 1a from internal audio sources 24, and the
anti-noise signal anti-noise generated by an ANC circuit 30,
which by convention has the same polarity as the noise in
error microphone signal err and reference microphone signal
ref and 1s therefore subtracted by combiner 26. Combiner 26
also combines an attenuated portion of near-speech signal
ns, 1.e., sidetone information st, so that the user of wireless
telephone 10 hears their own voice 1 proper relation to
downlink speech ds, which 1s received from a radio fre-
quency (RF) integrated circuit 22. Near-speech signal ns 1s
also provided to RF integrated circuit 22 and 1s transmuitted
as uplink speech to the service provider via an antenna ANT.

Referring now to FIG. 3A, a simplified feedback ANC

circuit 1s shown which applies 1n examples of the wireless
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telephone shown in FIG. 1A, and to each channel of the
wireless telephone system shown in FIG. 1B. Ambient
sounds Ambient travel along a primary path P(z) to error
microphone E and are filtered by a feedback filter 38 to
generate anti-noise provided through amplifier Al to speaker
SPKR. Secondary path S(z) includes the electrical path from
the output of feedback filter 38 to speaker SPKR combined
with the acoustic path from the speaker SPKR through error
microphone E to the imput of feedback filter 38. Secondary
path S(z) and feedback filter 38 constitute a feedback loop
with a feedback gain Ggz(z)=1/(1+H(z)S(z))=Q(z)/
(Ambient™*P(z)), where Q(z) 1s the error microphone signal.
Q(z) 1s corrected, 1 needed, to remove any playback audio
that 1s not the anti-noise signal. Thus, the feedback gain
Gz(z), which determines the eflectiveness of the acoustic
noise canceling, 1s dependent on the response of secondary
path S(z) and the transier function H(z) of feedback filter 38.
Since G5(Zz) varies with the response of secondary path
S(z), an ANC feedback controller must generally be
designed using multiple models representing extreme values
of the response of secondary path S(z) and H(z) must be
conservatively designed 1n order to maintain a proper phase
margin (1.¢., the phase between the ambient sounds and the
anti-noise reproduced by speaker SPKR at an upper ire-
quency bound at which the G(z) falls to umty) and gain
margin (1.e., the attenuation relative to unity of the ambient
sounds and the anti-noise reproduced by speaker SPKR at
one or more frequencies for which the phase between the
ambient sounds and the anti-noise reaches zero, causing
positive feedback). A proper phase margin/gain margin are
necessary for stability of the feedback loop in an ANC
system employing feedback, as the phase margin/gain mar-
gin are directly determinative of the recovery of the ANC
system from a disturbance, such as high-amplitude noise, or
noise that the ANC system cannot cancel. On the other hand,
increasing the gain and phase margins typically requires
lowering the upper limit of the frequency response of the
teedback loop, reducing the ability of the ANC system to
cancel ambient noise. A wide variation in the response of
secondary path S(z) constrains any ofl-line design of the
teedback controller such that the performance of the feed-
back cancelation 1s limited at higher frequencies. A wide
variation 1n the response of secondary path S(z) 1s typical for
wireless telephones, earbuds, and the other devices
described above, which are used 1n or 1 proximity to a
user’s ear canal.

Referring now to FIG. 3B, a simplified feed-forward/
teedback ANC circuit 1s shown which alternatively applies
to the wireless telephone shown 1in FIG. 1A, and to each
channel of the wireless telephone system shown 1n FIG. 1B.
The operation of the feed-forward/feedback ANC 1s similar
to the pure feedback approach shown 1n FIG. 3A, except that
the anti-noise signal provided to amplifier Al 1s generated
by both the feedback filter 38 described above, and a
teed-forward filter 32, which generates a portion of the
anti-noise signal from the output of reference microphone R.
Combiner 36 combines the feed-forward anti-noise with the
teedback anti-noise. The feedback gain of feedback filter 38
1s still Gz(z)=1/(1+H(z)S(z))=Q(z)/(Ambient*P(z)).

Referring now to FIGS. 4A-4D), details of various exem-
plary ANC circuits 20 that may be included within audio
integrated circuits 20A, 20B of FIG. 2, are shown 1n
accordance with various embodiments of the disclosure. In
cach of the examples, the above-described feedback filter 38
1s implemented as a pair of filters. A first filter 40 has a fixed
predetermined response that 1s related to and helps maintain
stability of the compensated feedback loop and contributes
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to the ANC gain of the ANC system. The other filter 1s a
variable-response filter 42,42A that compensates for the
variations of at least a portion of the response of secondary
path S(z). The result 1s that the feedback ANC gain G.z(z)
1s rendered independent of the variations 1n the response of
secondary path S(z). In the equation given above for feed-
back gain G.,(z)=1/(1+H(z)S(z)) 1s equal to 1/(1+B(z)C(z)
S(z)). Thus when C(z) is set to the inverse S™'(z) of the
response of secondary path S(z), G,.(2)=1/(14B(2)S™(2)S
(2))=1/(1+B(2)z™") given S™'(z) S(z)=z~", where z7” is a
delay include to provide a causal design for filter 42A to
model the inverse S™*(z) of the response of secondary path
S(z). Thus, when C(z)=S""(z), the variable transfer function
of filter 42, 42 A 1n the circuits of FIGS. 4A-4D compensates
for variation 1n the response of secondary path S(z). The
feedback gain G,.5(z) therefore becomes a uniform feedback
gain Grp ,,.0,(Z) that no longer depends upon the variable
response of secondary path S(z). Unmiform feedback gain
Grpmisorm(Z) then relates to or depends upon only a fixed
transfer function B(z) and a set delay z~” and fixed transfer
function B(z) becomes the sole control variable 1n deter-
mining the ANC feedback control response. In each of the
cascaded filter configurations shown i FIGS. 4A-4D, the
order of filter 40 and filters 42, 42A 1n the cascade may be
interchanged.

FIG. 4A shows an ANC feedback filter 38A that receives
the error microphone signal err from error microphone E,
filters the error microphone signal with filter 42 having a
response C(z), and filters the output of filter 42 with another
filter 40 having a predetermined fixed response B(z).
Response (C(z) represents any filter response that helps
stabilize the ANC system against variations in the response
of secondary path S(z), and depending on other portions of
the system response, may or may not be exactly equal to the
inverse S™'(z) of the response of secondary path S(z). FIG.
4B 1illustrates another ANC feedback filter 38B 1n which {first
filter 42A has a response SE™"(z) that is an estimate of the
inverse S™'(z) of the response of secondary path S(z), and is
controlled according to control signals from a secondary
path estimator SE(z) control circuit. FIG. 4C 1llustrates yet
another ANC feedback filter 38C 1n which first filter 42B 1s
an adaptive filter that estimates response S™'(z) to generate
inverse response SE™'(z) via off-line calibration. When a
switch S1 1s opened (and thus ANC operation 1s muted), a
playback signal PB (that i1s also reproduced by the output
transducer) with delay z=* applied by delay 47 is correlated
with error microphone signal err by a least-means-squared
(LMS) coethicient controller 44, after the output of first filter
428 1s subtracted from playback signal PB by a combiner
46. The resulting adaptive filter obtains an estimate of the
response ol secondary path S(z) by directly measuring the
ellect of the response of secondary path S(z) on playback
signal PB. When ANC circuit 38C 1s operated on-line,
switch S1 1s closed and the outputs of LMS coeflicient
controller 44 are held constant and converted to 1mnvert the
response of adaptive filter 42A to yield response SE~'(2).
Adaptive filter 42A operates as a fixed non-adaptive filter
when on-line.

Referring to FIG. 4D, a feed-forward/feedback i1mple-
mentation of the above-described control scheme 1s shown.
Adaptive feed-forward filter 32 recerves reference micro-
phone signal ref and under ideal circumstances, adapts its
transier function W(z) to be some portion of P(z)/S(z) to
generate the feed-forward anti-noise signal FF anti-noise,
which 1s provided to output combiner 36 that combines
teed-forward anti-noise signal FF anti-noise with a feedback
anti-noise signal FB anti-noise generated by an ANC feed-
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back filter 38D. As described above, ANC feedback filter
38D includes first filter 40 having fixed predetermined
response B(z) and variable-response filter 42A that receives
control inputs that cause the response of filter 42A to model
inverse response SE~'(z). The coeflicients of feed-forward
adaptive filter 32 are controlled by a W coellicient control
block 31 that uses a correlation of two signals to determine
the response of adaptive filter 32, which generally mini-
mizes the error, 1n a least-mean squares sense, between those
components of reference microphone signal ref present 1n
error microphone signal err. The signals processed by W
coellicient control block 31 are the reference microphone
signal ref as shaped by a copy of an estimate of the response
of path S(z) provided by a controllable filter 34B and another
signal that includes error microphone signal err. By trans-
forming reference microphone signal ref with a copy of the
estimate SE(z) of the response of secondary path S(z),
response SE . ,»{Z), and minimizing error microphone sig-
nal err after removing components of error microphone
signal err due to playback of source audio, 1.e., playback
corrected error signal PBCE, adaptive filter 32 adapts to the
desired portion of the response of P(z)/S(z). To generate the
estimate SE(z) of the response of secondary path S(z), ANC
circuit 30 includes controllable filter 34B having an SE
coellicient control block 33 that provides control signals that
set the response of adaptive filter 34A and controllable filter
34B to response SE(z). SE coellicient control block 33 also
provides control signals to coeflicient mversion block 37
that computes coellicients that set the response of variable
response filter 42A to inverse response SE~'(z) from the
coellicients that determine response SE(z).

In addition to error microphone signal err, the other signal
processed along with the output of controllable filter 34B by
W coellicient control block 31 includes an mverted amount
of the source audio including downlink audio signal ds and
internal audio 1a that has been processed by filter response
SE(z), of which response SE ~,»{Z) 1s a copy. By 1njecting
an mverted amount of source audio, adaptive filter 32 1s
prevented from adapting to the relatively large amount of
source audio present 1n error microphone signal err and by
transforming the inverted copy of downlink audio signal ds
and internal audio 1a with the estimate of the response of
path S(z). The source audio that 1s removed from error
microphone signal err before processing should match the
expected version of downlink audio signal ds, and internal
audio 1a reproduced at error microphone signal err, since the
clectrical and acoustical path of S(z) 1s the path taken by
downlink audio signal ds and internal audio 1a to arrive at
error microphone E. Filter 34B 1s not an adaptive filter, per
se, but has an adjustable response that 1s tuned to match the
response of adaptive filter 34A, so that the response of
controllable filter 34B tracks the adapting of adaptive filter
34A.

Adaptive filter 34A and SE coeflicient control block 33
process the source audio (ds+1a) and error microphone
signal err after removal, by combiner 36, of the above-
described filtered downlink audio signal ds and internal
audio 1a, that has been filtered by adaptive filter 34A to
represent the expected source audio delivered to error micro-
phone E. The output of combiner 36 1s further filtered by an
alignment filter 35 having response 1+B(z)z~" to remove the
cllects of the feedback signal path on the source audio
delivered to error microphone E. Alignment filter 335 1is
described 1n further detail in U.S. patent application Ser. No.
14/832,585 filed on Aug. 21, 2015 entitled “HYBRID
ADAPTIVE NOISE CANCELLATION SYSTEM WITH
FILTERED ERROR MICROPHONE SIGNAL”, the disclo-
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sure of which 1s incorporated herein by reference. In the
above-incorporated patent application, an alignment filter 1s
used having variable response 1+SE(z)H(z) to remove the
cllect of the feedback portion of the ANC system, including
the secondary path, on the error signal, but since in the
instant disclosure H(z)=B(z)SE~'(z), alignment filter 35 has
response  14+SE(z2)H(2)=1+SE(z)SE'(2)B(z)=1+B(z)z "
Adaptive filter 34A 1s thereby adapted to generate a signal
from downlink audio signal ds and internal audio 1a, that
when subtracted from error microphone signal err, contains
the content of error microphone signal err that 1s not due to
source audio (ds+i1a).

Referring now to FIGS. 5A-SF, graphs of amplitude and
phase responses ol portions of the ANC systems described
above are shown. FIG. 5A shows an amplitude response
(top) and phase response (bottom) of secondary path S(z) for
various users. As can be seen from the graph, the variation
in the amplitude of the response of secondary path S(z)
varies by 10 dB or more in frequency regions of interest
(typically 200 Hz to 3 KHz). FIG. 5B shows a possible
design amplitude response (top) and phase response (bot-
tom) of filter 40 response B(z), while FIG. 5C shows the
response of SE(z)SE~'(z) for a simulated ANC system in
accordance with the above disclosure. FIG. 5D shows a
convolution of SE(z)SE™'(z), illustrating that the resulting
response 1s a short delay, e.g., 3 taps of filter 42, 42A. FIG.
S5E shows the response B(z)C(z) of the adaptive controller 1n
the simulated system, and FIG. SF shows the closed-loop
response of the simulated system, showing that the gain
variation for all users has been reduced to about 2 dB across
the entire illustrated frequency range.

Referring now to FIG. 6, a filter circuit 40A that may be
used to implement fixed filter 40 1s shown. The nput signal
1s weighted by coellicients a,, a, and a; by corresponding
multipliers 35A, 55B and 535C and provided to respective
combiners 56 A, 536B, 56C at feed-forward taps of the filter
stages, which comprise digital integrators 50A and 50B. A
teedback tap 1s provided by a delay 53 and a multiplier 55D,
providing the second-order low-pass response illustrated in
FIG. 5A. The resulting topology 1s a delta-sigma type filter.
Depending on requirements of the ANC system, the
response of fixed filter 40 may be a low-pass response, or a
band-pass response.

Referring now to FIG. 7, an alternative filter circuit 40B
that may be used to implement fixed filter 40 1s shown. The
input signal 1s weighted by coeflicient a, by multiplier 65C
and added to the output signal by combiner 66B to provide
a feed-forward tap and the output of a first delay 62A 1is
weighted by coeflicient a, by another multiplier 65D and
also combined with the output signal by combiner 66B. A
second delay 62B provides a third mnput to combiner 66B.
The mput signal 1s combined with feedback signals prowded
from the output of first delay 62A and weighted by coetl-
cient b, by a multiplier 65A and from the output ot second
delay 628 and weighted by coellicient b, by a multiplier
65B. The resulting filter 1s a bi-quad that can be used to
implement a low-pass or band-pass filter as described above.

Retferring now to FIG. 8, a block diagram of an ANC
system 1s shown for implementing ANC techniques as
described above and having a processing circuit 140 as may
be implemented within audio integrated circuits 20A, 20B of
FIG. 2, which 1s illustrated as combined within one circuit,
but could be implemented as two or more processing circuits
that inter-communicate. A processing circuit 140 includes a
processor core 102 coupled to a memory 104 in which are
stored program instructions comprising a computer program
product that may mmplement some or all of the above-
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described ANC techniques, as well as other signal process-
ing. Optionally, a dedicated digital signal processing (DSP)
logic 106 may be provided to implement a portion of, or
alternatively all of, the ANC signal processing provided by
processing circuit 140. Processing circuit 140 also includes
ADCs 21A-21E, for receiving inputs from reference micro-
phone R1 (or error microphone R), error microphone E1 (or
error microphone E), near speech microphone NS, reference
microphone R2, and error microphone E2, respectively. In
alternative embodiments in which one or more of reference
microphone R1, error microphone E1, near speech micro-
phone NS, reference microphone R2, and error microphone
E2 have digital outputs or are communicated as digital
signals from remote ADCs, the corresponding ones of ADCs
21A-21E are omitted and the digital microphone signal(s)
are iterfaced directly to processing circuit 140. A DAC 23A
and amplifier Al are also provided by processing circuit 140
for providing the speaker output signal to speaker SPKR1,
including anti-noise as described above. Similarly, a DAC
23B and amplifier A2 provide another speaker output signal
to speaker SPKR2. The speaker output signals may be
digital output signals for provision to modules that repro-
duce the digital output signals acoustically.

While the mnvention has been particularly shown and
described with reference to the preferred embodiments
thereot, 1t will be understood by those skilled 1n the art that
the foregoing and other changes 1n form, and details may be
made therein without departing from the spirit and scope of
the 1vention.

What 1s claimed 1s:

1. An adaptive noise cancellation (ANC) controller, com-
prising:

a fixed filter having a predetermined fixed transfer func-
tion (B(z)) that relates to and maintains stability of a
compensated feedback loop, wherein the fixed filter
contributes to an ANC gain of an ANC system; and

a variable-response f{ilter coupled to the fixed filter,
wherein a response of the vaniable-response filter com-
pensates for variations of a transfer function of a
secondary path that includes at least a path from a
transducer of the ANC system to a sensor of the ANC
system, so that the ANC gain 1s independent of the
variations 1n the transfer function of the secondary
path, wherein the response of the vanable-response
filter 1s an inverse of the transfer function of the
secondary path.

2. The ANC controller of claim 1, wherein the fixed filter
causes the ANC gain to be a uniform feedback gain that
depends on the predetermined fixed transier function.

3. The ANC controller of claim 1, wherein the response of
the vanable response filter 1s controlled in conformity with
a control output of an adaptive filter of the ANC system.

4. The ANC controller according to claim 3, wherein the
variable-response filter 1s the adaptive filter, whereby the
response of the variable-response filter 1s dependent on
frequency content of a signal provided as an input to the
variable response filter to which the response of the variable-
response lilter 1s applied.

5. The ANC controller according to claim 3, wherein the
adaptive filter 1s an adaptive filter of a feed-forward portion
of the ANC system that adapts to cancel the etlects of the
secondary path on a component of a signal reproduced by
the transducer of the ANC system.

6. The ANC controller according to claim 1, wherein the
sensor 1s a microphone and the transducer 1s a speaker.
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7. An integrated circuit (IC) for implementing at least a
portion of an audio device including acoustic noise cancel-
ing, the integrated circuit comprising:

an output for providing an output signal to an output

transducer including an anti-noise signal for countering
the eflects of ambient audio sounds 1n an acoustic

output of the transducer;
at least one microphone 1nput for recerving at least one

microphone signal indicative of the ambient audio

sounds and that contains a component due to the
acoustic output of the transducer; and
a processing circuit that adaptively generates the anti-
noise signal to reduce the presence of the ambient audio
sounds heard by the listener, wherein the processing,
circuit implements a feedback filter having a response
that generates at least a portion of the anti-noise signal
from the at least one microphone signal, the feedback
filter comprising a fixed filter having a predetermined
fixed transfer function (B(z)) and a variable-response
filter coupled to the fixed filter, wherein a response of
the variable-response filter compensates for variations
of a transier function of a secondary path that includes
at least a path from the transducer to the at least one
microphone, wherein the response of the variable-
response filter 1s an mverse of the transfer function of
the secondary path.

8. The integrated circuit of claim 7, wherein the fixed filter
causes an ANC gain of the system formed by the feedback
filter, the transducer, the at least one microphone and the
secondary path to be a uniform feedback gain that depends
on the predetermined fixed transfer function.

9. The mtegrated circuit of claim 7, wherein the response
of the varniable response filter 1s controlled 1n conformity
with a control output of an adaptive filter implemented by
the processing circuit that models the secondary path.

10. The integrated circuit of claim 9, wherein the variable-
response filter 1s the adaptive filter, whereby the response of
the variable-response filter 1s dependent on frequency con-
tent of a signal provided as an input to the variable response
filter to which the response of the variable-response filter 1s
applied.

11. The mntegrated circuit of claim 9, wherein the pro-
cessing circuit further implements a feed-forward adaptive
filter that generates another portion of the anti-noise signal,
and further implements a secondary path adaptive filter that
adapts to cancel the eflects of the secondary path on a
component of a source audio signal reproduced by the
transducer of the ANC system.

12. A method of canceling effects of ambient noise, the
method comprising:

adaptively generating an anti-noise signal to reduce the

presence of the ambient noise;

providing the anti-noise signal to a transducer;

measuring the ambient noise with a sensor of an ANC

system; and

filtering an output of the sensor with a fixed filter having

a predetermined fixed transfer function (B(z)) that
relates to and maintains stability of a compensated
feedback loop, wherein the fixed filter contributes to an
ANC gain of the ANC system and a variable-response
filter coupled to the fixed filter, wherein a response of
the variable-response filter compensates for variations
of a transier function of a secondary path that includes
at least a path from a transducer of the ANC system to
the sensor, so that the ANC gain 1s independent of the
variations 1n the transfer function of the secondary
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path, wherein the response of the varnable-response
filter 1s an inverse of the transfer function of the
secondary path.

13. The method of claim 12, wherein the filtering causes
the ANC gain to be a uniform feedback gain that depends on 53
the predetermined fixed transfer function.

14. The method of claim 12, further comprising control-
ling the response of the variable response filter 1n conformaity
with a control output of an adaptive filter of the ANC system.

15. The method of claim 14, wherein the wvariable-re- 10
sponse filter 1s the adaptive filter, wherein the response of the
variable-response filter controlled 1n dependence on ire-
quency content of a signal provided as an input to the
variable response filter to which the response of the variable-
response filter 1s applied. 15

16. The method of claim 14, wherein the adaptive filter 1s
an adaptive filter ol a feed-forward portion of the ANC
system that adapts to cancel the effects of the secondary path
on a component of a signal reproduced by the transducer of
the ANC system. 20

17. The method of claim 12, wherein the sensor 1s a
microphone and the transducer 1s a speaker.
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