12 United States Patent

Natanzon et al.

US010025931B1

(10) Patent No.:
45) Date of Patent:

US 10,025,931 B1
Jul. 17, 2018

(54) METHOD AND SYSTEM FOR MALWARE (358) Field of Classification Search
DETECTION CPC ... GO6F 21/567, GO6F 21/78; GO6F 2221/034
See application file for complete search history.
(71) Applicant: fggj Corporation, Hopkinton, MA (56) References Cited
_ U.S. PATENT DOCUMENTS
(72) Inventors: Assaf Natanzon, Tel Aviv (IL); Philip
Derbeko, Modin (IL) 9,672,355 B2* 6/2017 Titonisoeevvvnneeen, GOO6F 21/56
9,697,355 B1* 7/2017 Parko..oiiil, GO6F 21/552
(73) Assignee: EMC IP Holding Company LLC, 2013/0097706 Al 4/2013 Titonisceevveenn. G06F7§égj
Hopkinton, MA (US) 2014/0359302 A1* 12/2014 Joshi vooovvooree...... GOGF 12/1408
713/189
(*) Notice: Subject to any disclaimer, the term ot this . _
patent is extended or adjusted under 35 cited by examiner
U.S.C. 154(b) by 265 days. Primary Examiner — Mahfuzur Rahman
21) Appl. No.: 14/984.317 (74) Attorney, Agent, or Firm — Krishnendu Gupta
. No.: .
op (57) ABSTRACT
(22) Filed: Dec. 30, 2015 Example embodiments of the present invention relate to
methods, systems, and a computer program product for
(51) Int. CL detecting and responding to the presence of persistently
GO6F 21/00 (2013.01) executing malware. The method 1ncludes receiving a host-
: level I/O log and receiving a storage-level I/O log. An
GO6F 21/56 (2013.01) 2 g g g
GO6F 21/78 (2013.01) analysis may be performed on the host-level I/O log and the
storage-level 1/O log and evidence of malware may be
(52) U.S. Cl 2 2 M
CPC GOGF 21/567 (2013.01); Go6F 21/78 ~ Aetected according thereto.

(2013.01); GO6F 2221/034 (2013.01) 18 Claims, 5 Drawing Sheets

100
{

STORAGE-LEVEL
/O LOG 186
(INCL. EVIDENCE
OF MALWARE)

b»

STORAGE 160
RISK AGENT 180 l

MALWARE /O APP. /O RISK ENGINE
1658 169A
170
HOGT 110
MALWARE 130 RISK AGENT 190
APP, l/O HOST-LEVEL
169A /0 LOG 155

APPLICATION 120

M

US 10,025,931 B1

Sheet 1 of 5

Jul. 17, 2018

U.S. Patent

Ll

NION Sl

G491 ©010/
13A3T1LSOH

-t

L Ol

0¢} NOILYOIddV

V&9l
O/l 'ddVv

4 0Gl INIDV MSIY

veor 7 TN gegl
O/l “ddV « « O/l THYMIVIA

(IUVYMIVIN 40
JONAAIAT 11ONI)
98l 9010/
TIAITIOVHOLS

00} \

08} LNIOV MSIY

9l 49vVd0lSs

U.S. Patent

Jul. 17, 2018

Sheet 2 of §

—CEIVE HOST-LEV

/O LOGS

10

~CEIV

= STORAGE-

LEVEL /0O LOGS

ANALY/Z

= HOST-L

—VEL

/0 LOG AND STORAGE-
=L [/O LOG

LEV

DETECT MALWARE
BASED ON ANALYSIS
OF 110 LOGS

US 10,025,931 B1

U.S. Patent Jul. 17, 2018 Sheet 3 of 5 US 10,025,931 Bl

ANALYZE HOST-LEVEL
/0 LOG AND STORAGE-
LEVEL /0 LOG
330
WRITE READ
342 343
Y ' y
ANY CHANGE NOTICED ~
BETWEEN HOST-LEVEL AND DIFFERE!T\ISS %E%?—B“R THAN
STORAGE-LEVEL /10 LOGS B
345

340A —

Y
DETECT MALWARE

BASED ON ANALYSIS
OF 11O LOGS

350

NOTIFY USER OF
DETECTION OF

MALWARE

US 10,025,931 B1

7V Ol
787 ___ cay
G3Y
DILdO/ VIQ3N
TRy DILINOVYI FIIAIU Of AHOW3AN
ANJLSAS
D0Yd ang
S —— ——
= 0SY - LOF
N Ol 304N0S
S GEP
i
P,
3532 _ 707

AV 1dSId Usv — 304N0S
" _
S wwmm,mw% D0
« NYHOOH _
» i
= 0cy 0]%7% J04NOS
- H0SSID0Hd AHOW3IN

06V

30IA3d
140d3 A
00

U.S. Patent

U.S. Patent Jul. 17, 2018 Sheet 5 of 5 US 10,025,931 Bl

500

FIG. 5

US 10,025,931 Bl

1

METHOD AND SYSTEM FOR MALWARE
DETECTION

A portion of the disclosure of this patent document may
contain command formats and other computer language
listings, all of which are subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as 1t appears 1n the Patent and Trademark Oflice patent

file or records, but otherwise reserves all copyright rights
whatsoever.

CROSS REFERENCE TO RELATED
APPLICATION

This Application 1s related to U.S. patent application Ser.
No. 14/755,517 entitled “METHOD AND SYSTEM FOR
MALWARE DETECTION IN VIRTUAL MACHINES”

filed on Jun. 30, 2015 the teachings of which applications are
hereby incorporated herein by reference in their entirety.

TECHNICAL FIELD

This application relates to malware detection.

BACKGROUND

Generally, malicious software of “malware™ mcludes so-
called Advanced Persistent Threats (APTs) may be charac-
terized by persistent, background execution with a purpose
of stealing sensitive information and/or obtaining unauthor-
1zed access to computing resources. Typically, detecting
APTs and taking remediation actions may be difficult. Tra-
ditionally, anti-malware products, including anti-virus appli-
cations, may depend on file signatures for detection of
malware. Typically, signatures of executable files of known
malware may be stored in a database, and detection products
may scan a target system for files having matching signa-
tures. Such detection techmiques may be thwarted by creat-
ing variants that have a same or similar functionality but
different signatures, a technique which 1s used to some
degree by fraudsters. These detection techniques may also
be thwarted by malware that actively seeks to avoid detec-
tion by disabling anti-virus software, embedding itself into
an operating system kernel, and other methods.

SUMMARY

Example embodiments of the present invention relate to
methods, systems, and a computer program product for
detecting and responding to the presence ol persistently
executing malware. The method includes receiving a host-
level I/O log and receiving a storage-level I/O log. An
analysis may be performed on the host-level I/O log and the
storage-level I/O log and evidence of malware may be
detected according thereto.

BRIEF DESCRIPTION OF THE DRAWINGS

Objects, features, and advantages of embodiments dis-
closed herein may be better understood by referring to the
tollowing description 1n conjunction with the accompanying
drawings. The drawings are not meant to limit the scope of
the claims included herewith. For clarity, not every element
may be labeled i every Figure. The drawings are not
necessarily to scale, emphasis instead being placed upon
illustrating embodiments, principles, and concepts. Thus,

10

15

20

25

30

35

40

45

50

55

60

65

2

features and advantages of the present disclosure will
become more apparent from the following detailed descrip-

tion of exemplary embodiments thereof taken 1n conjunction
with the accompanying drawings 1n which:

FIG. 1 1s a block diagram illustrating a system for
detecting evidence ol malware according to an example
embodiment of the present invention;

FIG. 2 1s a flow diagram 1llustrating a method for detect-
ing evidence of malware according to an example embodi-
ment of the present invention;

FIG. 3 1s a flow diagram 1llustrating a method for detect-
ing evidence of malware according to read and write 1I/Os
according to an example embodiment of the present inven-
tion;

FIG. 4 1s a block diagram 1illustrating an apparatus accord-
ing to an example embodiment of the present invention; and

FIG. 5 1s an illustrating of an example embodiment of the
present invention as embodied 1n computer program code.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of a system 100 according to an
example embodiment of the present invention. As 1llustrated
in FIG. 1, the system 100 includes a host 110, a storage
system 160, and a risk engine 170. The host 110 comprises
an application 120 and a risk agent 150. The storage system
160 also has an associated risk agent 180 which, as 1llus-
trated 1n FIG. 1, operated in the storage system 160 but, in
alternate embodiments, may exist outside the storage system
160 1n the data path from the host 110 to the storage system
160. The risk agents 150, 180 are communicatively coupled
to the risk engine 170 which, as will be described in greater
detail below, may be configured to perform analysis on
metadata received from the risk agents 150, 180 and detect
presence of malware 130 based on the analysis performed.

As 1llustrated 1n FIG. 1, the application 120 may generate
an I/O 165A at times the application 120 1s executing/
running at the host 110. The application I/O 165A may be
transmitted from the host 110 to the storage system 160 and
be monitored by the risk agent 150 at the host level. Log
entries are created for the application I/O 165A at the host
level, referred to as host-level 1/0 logs 155. For the appli-
cation I/O 165A transmitted to the storage system 160, the
risk agent 180 at the storage system 160 also creates log
entries at the storage level, referred to as the storage-level
I/O log 186. The host-level I/O log 1355 1s transmitted from
the host risk agent 150 to the risk engine 170; likewise, the
storage-level 1/O log 186 1s transmitted from storage risk
agent 180 to risk engine 170.

In certain embodiments, malware 130 may attack the host
110 or be present/residing 1n the host 110 1n a dormant state
and get active at some point in time that may result in
malfunctioning or destruction of the system 100. In some
embodiments, malware may generate 1ts own 1/O 165B 1n
the host 110. In other embodiments, malware may mteract
with the application 120 and modity the application 1/O
165 A, such that the modified application I/O may be treated
as a malware I/O 165B. The malware 1/O 163B 1s also
transmitted from the host 110 to the storage system 160. In
many embodiments the malware 130 may alter the 1/O path
so that I/Os generated by the malware 130 may be hidden
from the standard I/O stack of the host 110 and thus not
intercepted by the host risk agent 150 (1.e., an I/O stack filter
drivers).

In one embodiment, malware 130, also referred to as
malicious software, may be any software used to disrupt
computer operations, gather sensitive information, or gain

US 10,025,931 Bl

3

access to private computer systems (e.g., host 110). In a
turther embodiment, malware 130 1s defined by 1ts malicious
intent, acting against the requirements of the computer user,
and does not include software that causes unintentional harm
due to some deficiency. In a further embodiment, malware
130 may be intended to steal information or spy on computer
users for an extended period without their knowledge, or 1t
may be designed to cause harm, olten as or to extort
payment.

As 1llustrated 1n FI1G. 1, the risk engine 170 1s configured
to detect the presence of malware 130 in the host 110. The
risk engine 170 1s configured to receive a host-level 1/0 log
155 and a storage-level I/O log 186. host-level 1/0 logstor-
age-level 1/0 log The risk engine 170 1s also configured to
perform an analysis on the received host-level I/O log 155
and a storage-level I/O log 186. According to the analysis
performed on the host-level /O log 155 and the storage-
level I/0 log 186 at the risk engine 170, the risk engine 170
may detect evidence of the presence of malware 130. For
example, 1n one instance, a malware I/O 165B may not have
any log entries in the host-level I/O log 155, but be recorded
in the storage-level I/O log 186, such that the risk engine 170
may find a difference between the host-level 1/O log 155 and
the storage-level 1/0 log 186, thereby providing evidence of
the presence of malware 130.

The risk engine 170 assists the host 110 (or a datacenter
administrator 1n which the host 110 operates) in detecting
evidence of the presence ol potentially harmful malware that
may be executing in the host 110. This detection 1s per-
formed 1n part by detecting differences 1n I/O metadata at
different points 1n the data path. During operation, the host
risk agent 150 and the storage risk agent 180 gather log data
and provide the log data to the risk engine 170 to mnvoke an
analysis of the logged I/O metadata. In one embodiment, 1f
evidence of malware 1s detected, then a control action may
be taken to address the threat posed by the malware, which
may include notilying a human system operator or taking,
some automatic action.

Although FIG. 1 shows direct connections between the
risk agent 150, the risk agent 180, and the risk engine 170,
it will be appreciated that communications between these
components passes through physical computing hardware,
similar to communications between the application 120 and
other external computers or devices. In certain embodi-
ments, data logged by risk agents 150, 180 may include 1I/O
metadata relating to one or more of timestamp, I/O type
(e.g., read, write), start address, oflset, and length. In certain
other embodiments, elements of I/O metadata from each of
the host level I/O log 155 and the storage-level 1/0 log 186
may be compared by the risk engine 170 to look for evidence
of malware 130 operating at the host 110.

In certain embodiments, one or both of the risk agents
150, 180 may be a splitter. In one embodiment, the storage
risk agent 180 may be placed in the storage system 160. In
a further embodiment, the storage risk agent 180 may be
placed anywhere 1n the data path between the host 110 and
the storage system 160. In an example embodiment, the risk
agents 150, 180 may preferably be EMC RecoverPoint®
splitters by EMC Corporation of Hopkinton, Mass. In a
turther embodiment, each splitter may be an agent running
on a production host, a switch, or a storage array that may
be configured to intercept I/O and split them to a data
protection appliance (such as EMC RecoverPoint by EMC
Corporation of Hopkinton, Mass.) and to a storage system
160, fail 1/0O, redirect I/O, or do any other manipulation to
the I/0. In certain other embodiments, a risk engine 170 may
be a data protection appliance (such as EMC RecoverPoint

10

15

20

25

30

35

40

45

50

55

60

65

4

by EMC Corporation of Hopkinton, Mass.), which may be
a computer or a cluster of computers (1.e., a physical device),
or a set of processes (1.¢., a virtual device or a combination
of virtual and physical devices) that serve as a data protec-
tion appliance, responsible for data protection services
including, inter alia, data replication of a storage system, and
journaling I/0 requests 1ssued by a host computer 110 to the
storage system 160.

A discussion of mirroring may be found in U.S. Pat. No.

7,346,805 entitled “PROTECTION OF MIRRORED
DATA” 1ssued on Mar. 18, 2008, a discussion of journaling
and some techmiques associated with journaling may be
found 1n U.S. Pat. No. 7,516,287 entitled “METHODS AND
APPARATUS FOR OPTIMAL JOURNALING FOR CON:-
TINUOUS DATA REPLICATION” 1ssued on Apr. 7, 2009,
and a discussion of dynamically adding storage for a journal
may be found 1n U.S. Pat. No. 7,840,536 entitled “METH-
ODS AND APPARATUS FOR DYNAMIC JOURNAL
EXPANSION” 1ssued on Nov. 23, 2010, all of which are
assigned to EMC Corporation of Hopkinton, Mass. and are
hereby incorporated by reference 1n their entirety.

FIG. 2 1s a flow diagram 200 illustrating a method for
detecting malware according to an example embodiment of
the present invention. In example embodiments of the pres-
ent invention, the method maybe performed at the risk
engine (e.g., risk engine 170 of FIG. 1). A host-level I/O log
155 1s received at a risk engine 170 from risk agent 150 at
the host 110 (210) and a storage-level I/O log 186 1s received
by the risk engine 170 from the risk agent 180 at the storage
system 160 (220). One or more of the host-level /0 log 155
and the storage-level 1/O log 186 may include metadata
selected from a group consisting of: a timestamp, a I/O type,
a start address, an oflset, an address, and an 1I/O length. An
analysis then may be performed on the host-level 1/O log
155 and the storage-level 1/0 log 186 (230). Based on the
analysis performed on the host-level I/O log 155 and the
storage-level 1/0 log 186, presence of malware may be
detected (250). If presence of malware 1s detected, a user
may be notified regarding the detection of the evidence of
the presence of malware.

FIG. 3 1s a flow diagram 300 illustrating a method for
detecting malware according to an example embodiment of
the present invention. Analysis 1s performed on the host-
level I/O log 155 and the storage-level I/O log 186 (330). A
determination then may be made as to whether, based on the
analysis, any unusual aspects are found 1n the host-level I/O
log 155 or the storage-level 1/O log 186 according to the
logged read I/0s and write I/Os (340). If any unusual aspect
found in the log 1s related to a wnte /O (342), it 1is
determined i1 there 1s any change between the host-level 1/O
log 155 and the storage-level 1/O log 186 (345A). Alterna-
tively, 11 the unusual aspect found in the log 1s related to a
read 1/0 (343), the risk engine 170 determines whether the
amount of difference in metadata for read I/Os 1n the
host-level I/O log 155 and the storage-level I/O log 186 1s
greater than a defined threshold (345B). If any difference 1s
observed 1nvolving write I/Os or 1 an amount of diflerences
between the logs us related to read I/Os then evidence of
malware 1s detected based on the analysis (350). Similar to
FIG. 2, 1f presence of malware 1s detected, a user may be
notified regarding the detection of the evidence of the
presence of malware

FIG. 4 1s a block diagram of an example embodiment
apparatus 403 according to the present invention. The appa-
ratus 405 may be part of a system 400 and includes memory
410 storing program logic 415, a processor 420 for execut-
ing a process 425 and a communications I/O interface 430,

US 10,025,931 Bl

S

connected via a bus 435. The exemplary apparatus 405 is
discussed only for illustrative purpose and should not be
construed as a limitation on the embodiments or scope of the
present invention. In some cases, some devices may be
added to or removed from a computer system based on
specific situations. For example, a computer system may be
representative of a standalone system or a system of a
production site, which comprises a number of hosts coupled
to a source disk and a target disk. In most embodiments, a
system/device may comprise a processor and a memory,
such as a laptop computer, personal digital assistant, or
mobile phones.

Processing may be implemented in hardware, software, or
a combination of the two. Processing may be implemented
in computer programs executed on programmable comput-
ers/machines that each includes a processor, a storage
medium or other article of manufacture that 1s readable by
the processor (including volatile and non-volatile memory
and/or storage elements), at least one mput device, and one
or more output devices. Program code may be applied to
data entered using an iput device to perform processing and
to generate output information.

In some embodiments, the system may be performed by
one or more programmable processors executing one or
more computer programs to perform the functions of the
system. In some other embodiments, all or part of the system
may be implemented as special purpose logic circuitry (e.g.,
a field-programmable gate array (FPGA) and/or an applica-
tion-specific integrated circuit (ASIC)). In some other
embodiments, all or part of the system may be implemented
using electronic hardware circuitry that include electronic
devices such as, for example, at least one of a processor, a
memory, a programmable logic device or a logic gate.

In one embodiment, the methods described herein are not
limited to the specific examples described. In a further
embodiment, rather, any of the method steps may be re-
ordered, combined or removed, or performed in parallel or
in serial, as necessary, to achieve the results set forth above.

In some embodiments, the system may be implemented,
at least 1n part, via a computer program product, (e.g., 1n a
non-transitory machine-readable storage medium such as,
for example, a non-transitory computer-readable medium),
for execution by, or to control the operation of, data pro-
cessing apparatus (e.g., a programmable processor, a com-
puter, or multiple computers)). In certain embodiments, each
such program may be implemented 1n a high level proce-
dural or object-oriented programming language to commu-
nicate with a computer system. In certain other embodi-
ments, however, the programs may be implemented in
assembly or machine language. In some embodiments, the
language may be a compiled or an interpreted language and
it may be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other
unit suitable for use 1n a computing environment. In some
other embodiments, a computer program may be deployed
to be executed on one computer or on multiple computers at
one site or distributed across multiple sites and intercon-
nected by a communication network.

The methods and apparatus of this invention may take the
form, at least partially, of program code (1.e., instructions)
embodied 1n tangible non-transitory media, such as floppy
diskettes, CD-ROMs, hard drives, random access or read
only-memory, or any other machine-readable storage
medium. When the program code i1s loaded into and
executed by a machine, such as the computer of FIG. 4, the
machine becomes an apparatus for practicing the invention.
When implemented on one or more general-purpose pro-

10

15

20

25

30

35

40

45

50

55

60

65

6

cessors, the program code combines with such a processor
to provide a unique apparatus that operates analogously to
specific logic circuits. As such, a general purpose digital
machine can be transformed into a special purpose digital
machine. In some other embodiment, a non-transitory
machine-readable medium may include but 1s not limited to
a hard drive, compact disc, flash memory, non-volatile
memory, volatile memory, magnetic diskette and so forth but
does not include a transitory signal per se.

FIG. 5 1s a block diagram of a computer program product
500 including program logic 555 encoded on a computer-
readable medium 560 1n computer-executable code config-
ured for carrying out the methods of the invention, according
to an example embodiment of the present invention. The
logic for carrying out the method may be embodied as part
of the alorementioned system, which 1s usetul for carrying
out a method described with reference to embodiments
shown. In one embodiment, program logic 355 may be
loaded 1into memory and executed by processor. In a further
embodiment, program logic 555 may also be the same
program logic 555 on a computer readable medium.

Although the foregoing invention has been described 1n
some detail for purposes of clarity of understanding, 1t will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. The
scope of the invention 1s limited only by the claims and the
invention encompasses numerous alternatives, modifica-
tions, and equivalents. Numerous specific details are set
forth 1n the above description 1n order to provide a thorough
understanding of the mvention. These details are provided
for the purpose of example and the invention may be
practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that 1s known i the technical fields related to the
invention has not been described in detail so that the
invention 1s not unnecessarily obscured. Accordingly, the
above implementations are to be considered as illustrative
and not restrictive, and the invention 1s not to be limited to
the details given herein, but may be modified within the
scope and equivalents of the appended claims.

Herein, various exemplary embodiments of the present
invention are described with reference to the accompanying
drawings. It should be noted that all of these drawings and
description are only presented as exemplary embodiments. It
1s to be noted that, based on the description, alternative
embodiments may be conceived that may have a structure
and method disclosed as herein, and such alternative
embodiments may be used without departing from the
principle of the invention as claimed.

It may be appreciated that these exemplary embodiments
are provided only for enabling those skilled 1n the art to
better understand and then further implement the present
invention, not mmtended to limit the scope of the present
invention in any manner. Besides, in the drawings, for a
purpose of 1llustration, optional steps, modules, and units are
illustrated 1n dotted-line blocks.

The terms “comprise(s)”, “include(s)”, their derivatives
and like expressions used herein should be understood to be
open (1.e., “comprising/including, but not limited to”. The
term “based on” means “at least 1n part based on”, the term
“one embodiment” means ‘“‘at least one embodiment”, and
the term “‘another embodiment” indicates “at least one
further embodiment”. Relevant definitions of other terms
may be provided throughout.

It may be noted that the flowcharts and block diagrams 1n
the figures may 1illustrate the apparatus, method, as well as
architecture, functions and operations executable by a com-

US 10,025,931 Bl

7

puter program product according to various embodiments of
the present invention. In this regard, each block i the
flowcharts or block diagrams may represent a module, a
program segment, or a part ol code, which may contain one
or more executable instructions for performing specified
logic functions. It should be further noted that, in some
alternative implementations, functions indicated in blocks
may occur in an order differing from the order as illustrated
in the figures. For example, two blocks shown consecutively
may be performed 1n parallel substantially or 1n an mverse
order sometimes, which depends on the functions mnvolved.
It should be further noted that each block and a combination
of blocks 1n the block diagrams or flowcharts may be
implemented by a dedicated, hardware-based system {for
performing specified functions or operations or by a com-
bination of dedicated hardware and computer instructions.

What 1s claimed 1s:

1. A computer-implemented method for detecting mal-
ware on a computing system comprising:

receiving a host-level I/O (anput/output) log on a com-

puting system;

receiving a storage-level 1/0 log on the computing sys-

fem;

performing an analysis of the host-level I/O log and the

storage-level 1/0 log; and
detecting evidence of malware according to the analysis
of the host-level 1/0 log and the storage-level 1/O log,

wherein the detecting evidence of malware according to
the analysis of the host-level I/O log and the storage-
level 1/0 log comprises detecting evidence of malware
operational 1n a storage host,

wherein the detecting evidence of malware operational 1n

the storage host comprises detecting diflerences
between the host-level 1/0O log and the storage-level I/O
log,

wherein the detecting differences between the host-level

I/0 log and the storage-level 1/0 log comprises 1den-
tifying I/0 requests logged at the storage-level 1/0 log
and not logged 1n the host-level IO log; and

wherein the identitying I/O requests logged at the storage-

level I/O log and not logged 1n the host-level I/O log
comprises, for diflerences between write 1/0 requests,
detecting any difference between the host-level I/O log
and the storage-level 1/O log.

2. The method of claim 1

wherein receiving a host-level 1/0 log comprises recerv-

ing the host-level I/O log from a first splitter opera-
tional 1n a storage host; and

wherein receiving a storage-level 1/O log comprises

receiving the storage-level 1/O log from a second
splitter 1n a data path from the storage host to a storage
device.

3. The method of claim 2 wherein receiving the storage-
level I/O log from a second splitter 1n a data path from the
storage host to a storage device comprises receiving the
storage-level I/O log from the second splitter operating 1n a
data storage system.

4. The method of claiam 1 wherein one or more of
receiving a host-level I/O log and receiving a storage-level
I/0 log comprises:

receiving metadata for read 1/0 requests; and

receiving metadata for write 1/0 requests.

5. The method of claiam 1 wherein one or more of
receiving a host-level I/O log and receiving a storage-level
I/0 log comprises recerving /O metadata selected from a
group consisting of: a timestamp, an I/O type, a start
address, an offset, an address, and an 1/O length.

10

15

20

25

30

35

40

45

50

55

60

65

8

6. The method of claim 1 wherein 1dentifying I/O requests
logged at the storage-level 1/O log and not logged 1n the
host-level 1/O log comprises, for differences between read
I/O requests, determining whether differences between the
host-level I/O log and the storage-level I/O exceed a thresh-
old of acceptable differences between the host-level 1/0 log
and the storage-level 1/O log.

7. A computing system for detecting malware comprising:

one or more processors; and

memory storing computer program code that when

executed on the one or more processors
causes the system to:
a first risk agent configured to receirve a host-level 1/0O
(1nput/output) log;

a second risk agent configured to receive a storage-level
I/0 log; and

a risk engine configured to perform an analysis of the
host-level I/O log and the storage-level 1/O log and
detect evidence of malware according to the analysis of
the host-level I/O log and the storage-level 1/0 log,

wherein the risk engine 1s further configured to detect
evidence ol malware operational 1n a storage host,

wherein the risk engine 1s further configured to detect
differences between the host-level I/O log and the
storage-level 1/0 log,

wherein the risk engine 1s further configured to i1dentity

I/O requests logged at the storage-level IO log and not
logged at the host-level I/O log, and

wherein the risk engine 1s further configured to, for

differences between write /O requests, detect any
difference between the host-level /O log and the stor-
age-level 1/0 log.

8. The system of claim 7

wherein the first risk agent 1s a first splitter operational 1n

a storage host; and

wherein the second risk agent 1s a second splitter 1n a data

path from the storage host to a storage device.

9. The system of claim 8 wherein the second splitter 1s
configured to operate 1n a data storage system.

10. The system of claim 7 wherein one or more of the first
risk agent and the second risk agent 1s configured to receive
metadata for read I/O requests and receive metadata for
write 1I/0O requests.

11. The system of claim 7 wherein one or more of the first
risk agent and the second risk agent 1s configured to receive

metadata selected from a group consisting of: a timestamp,
an I/O type, a start address, an oflset, an address, and an I/O
length.

12. The system of claim 7 wherein the risk engine 1s
further configured to, for differences between read /O
requests, determiming whether differences between the host-
level 1/0 log and the storage-level I/0 exceed a threshold of
acceptable differences between the host-level I/0 log and the
storage-level 1/0 log.

13. A computer program product including a non-transi-
tory computer readable storage medium having computer
program code encoded thereon that, when executed by a
processor of a computer, causes the computer to detect
evidence ol malware, comprising:

computer program code for receirving a host-level 1/0O

(1nput/output) log;

computer program code for receiving a storage-level 1/0

log;

computer program code for performing an analysis of the

host-level I/0 log and the storage-level I/0 log; and

US 10,025,931 Bl

9

computer program code for detecting evidence of mal-
ware according to the analysis of the host-level 1/O log
and the storage-level 1/O log,

wherein the computer program code for detecting evi-
dence of malware according to the analysis of the
host-level 1/O log and the storage-level 1/0 log com-
prises detecting evidence of malware operational in a
storage host,

wherein the computer program code for detecting evi-
dence of malware operational 1n the storage host com-
prises detecting diflerences between the host-level 1/0
log and the storage-level I/O log,

wherein the computer program code for detecting differ-
ences between the host-level I/O log and the storage-
level 1/0 log comprises 1dentifying 1/0 requests logged
at the storage-level I/O log and not logged 1n the
host-level 1/0 log; and

wherein the computer program code for identifying 1/0O
requests logged at the storage-level /O log and not
logged 1n the host-level 1/0 log comprises, for difler-
ences between write 1/0 requests, detecting any difler-
ence between the host-level /O log and the storage-
level 1/0 log.

14. The computer program product of claim 13

wherein receiving a host-level 1/0 log comprises receiv-
ing the host-level I/O log from a firsts litter operational
in a storage host; and

5

10

15

20

25

10

wherein receiving a storage-level /O log comprises
receiving the storage-level 1/O log from a second
splitter 1n a data path from the storage host to a storage
device.

15. The computer program product of claim 14 wherein
receiving the storage-level I/O log from a second splitter in
a data path from the storage host to a storage device
comprises receiving the storage-level /O log from the
second splitter operating 1n a data storage system.

16. The computer program product of claim 13 wherein
one or more of receiving a host-level I/O log and receiving
a storage-level 1/0 log comprises:

receiving metadata for read 1/0 requests; and

recetving metadata for write I/0 requests.

17. The computer program product of claim 13 wherein
one or more of receiving a host-level I/0 log and receiving
a storage-level I/O log comprises recerving 1/O metadata
selected from a group consisting of: a timestamp, an 1/O
type, a start address, an oflset, an address, and an I/O length.

18. The computer program product of claim 13 wherein
identifying I/0O requests logged at the storage-level /O log
and not logged 1n the host-level I/O log comprises, for
differences between read I/O requests, determining whether
differences between the host-level I/O log and the storage-
level I/O exceed a threshold of acceptable differences
between the host-level I/O log and the storage-level 1/0O log.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

