12 United States Patent

US010025844B2

(10) Patent No.: US 10,025,844 B2

Hrle et al. 45) Date of Patent: Jul. 17, 2018
(54) QUERY DISPATCHING SYSTEM AND (56) References Cited
METHOD
U.S. PATENT DOCUMENTS
(71) Applicant: Internati(.mal Business Machines 0.507.845 BL* 11/2016 Natanzon ... GOGT 17/30581
Corporation, Armonk, NY (US) 2010/0318559 Al* 12/2010 Yanc......... GOG6F 17/30545
707/769
(72) Inventors: Namik Hrle, Boeblingen (DE); (Continued)
Andreas Lohrer, Oberviechtach (DE);
Daniel Martin, Stuttgart (DE); FOREIGN PATENT DOCUMENTS
Matthias Tschaffler, Nuiringen (DE)
WO 2008140937 A2 11/2008
: WO 2013114198 Al 8/2013
(73) Assignee: International Business Machines
C tion, Armonk, NY (US
orporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this ~ Pending Application No. 1421916.6 (GB), filed on Dec. 10, 2014,
patent 1s extended or adjusted under 35 titled “Query Dispatching System and Method,” pp. 1-49.
U.S.C. 154(b) by 321 days. (Continued)
Primary Examiner — Khanh B Pham
21) Appl. No.: 14/856,664 . .
(21) Appl. No (74) Attorney, Agent, or Firm — David Zwick
(22) Filed: Sep. 17, 2015 (57) ABSTRACT
A computer receives a database request to be executed on a
(65) Prior Publication Data source database or a target database. The source database 1s
configured to etliciently process database queries of a first
US 2016/0171070 Al Jun. 16, 2016 query type, the target database 1s configured to efliciently
| o o process database queries of a second query type, data
(30) Foreign Application Priority Data changes in the source database are asynchronously repli-
cated to the target database, and all changed data in the
DGC 1():J 2014 (GB) 1421916.6 source database impacting q result Of the database request

(51) Int. CL
GOGF 17/30

U.S. CL
CPC ..

(2006.01)
(52)
GO6F 17/30578 (2013.01); GO6F 17/30339

(2013.01); GO6F 17/30377 (2013.01); GO6F
17/30383 (2013.01)

Field of Classification Search
CPC GO6F 17/30

See application file for complete search history.

(58)

are replicated to the target database before executing the
database request. The computer determines a latency time to
asynchronously complete a replication of unreplicated data
changes and determines a velocity of replication. The com-
puter predicts, using the latency time and velocity of repli-
cation, which of the databases will complete an execution of
the database request first and dispatches the database request
to the database predicted to complete the execution of the
database request first.

18 Claims, 3 Drawing Sheets

162 CLIENT-COMPUTER 102
CLIENT- —
R -
o \PPLCATION 104 | | PROCESSOR 406
152 4
CLIENT-
COMPUTER QUERY
132 ™ RESULT _j_'"-m
NETWORK
T 134
1 108
SERVER-COMPUTER 110
peent E ot Npaumma sanannsesanassnssanmsmsmancr | DISPATCHER |agessnssanssananasacansases R
MODULE i

H
i

136 A—R\\ (M2) 138
| QUERY QUERY o

i v PROCESSOR 154 118 i
: i
¢ R E
% 1320 | 126 ASYNC. REPLICATION OF DATA) sz% i
E DATA ‘ < _TRANSFER VELOCITY —— {28 L i
| :
|..|.[O0ERY 14D Rengine 138 _EL&M“ 8
LOG 144
148 130
127 R mPT{J; APPLY 124
DBMS | ﬁ VELOCITY VELOCITY ? LEMS I

US 10,025,844 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2013/0198368 Al 8/2013 Patterson et al.
2013/0343747 Al1* 12/2013 Sarwarco....... HO41. 43/0852
398/25
2014/0279897 Al* 9/2014 Bourbonnais GO6F 17/30575
707/634

OTHER PUBLICATIONS

Search Report (GB), Application Number: GB1421916.6, Date of

Search: Jun. 3, 2015, pp. 1-3.
Bodorik et al., “Distributed Query Processing Optimization Objec-
tives,” Data Engineering, 1988, Proceedings, Fourth International

Conference, Conference Date: Feb. 1-5, 1998, Los Angeles, CA,
IEEE, pp. 320-329.

* cited by examiner

U.S. Patent Jul. 17, 2018 Sheet 1 of 3 US 10,025,844 B2

162 CLIENT-COMPUTER 102
CLIENT-
MPUTER NT- . ™
APPLICATION 104
CLIENT- ,
COMPUTER | QUERY
{ NETWORK) T -
134
r 108
SERVER-COMPUTER Ho
T S N p-| DISPATCHER i ._
L e +| MODULE :
E 136 — ~ Wit J.//ER ~ M2)
: ~ ' e s 3 -
: WT ﬁUER‘(QUEM
i [(—MODULE -—= \
t ‘/r’ | PROCESSOR 134 :
E U5 | (OLTF) | STORAGE 136 \ OB it (OLAF) :
1a0 4126 ASYNC. REPLICATION OF DATA 1al
: DATA —— = o, DATA :
; ~. TRANSFERVELOCITY 128 :
e 1Y pLANNER 142 [~
e — 148 — 130
12z CAPT{J;E N, 122
DBAS ! (__vetoory > DBMS

FIG. 1

U.S. Patent Jul. 17, 2018 Sheet 2 of 3 US 10,025,844 B2

LATENCY TIME 202

203

FIG. 2

U.S. Patent Jul. 17, 2018 Sheet 3 of 3 US 10,025,844 B2

302
RECEIVING A REQUEST FOR PERFORMING A DATABASE STATEMENT [

REPLICATING DATA CHANGES

DETERMINING A LATENCY TIME FOR ASYNCHRONOQUSLY o u4

- — 306
DETERMINING A VELOCITY OF REPLICATING DATA CHANGES ,

USING THE DETERMINED LATENCY TIME AND THE DETERMINED — 208
VELOCITY AS INPUT FOR PREDICTING IF AN EXECUTION OF THE 3o
DATABASE STATEMENT OF THE REQUEST WILL BE FINISHED EARLIER
IN THE TARGET DATABASE THAN IN THE SOURCE DATABASE

IS THE REQUEST PREDICTED TO BE
FINISHED EARLIER IN THE TARGET DB
THAN IN THE SOURCE DB? '

—
YES NO ~
M2 T — 314

DISPATCHING THE REQUESTED DISPATCHING THE REQJESTED
STATEMENT FOR EXECUTION
ON THE TARGET DATABASE

STATEMENT FOR EXECUTION ON
THE SOURCE DATABASE

FIG. 3

US 10,025,844 B2

1

QUERY DISPATCHING SYSTEM AND
METHOD

BACKGROUND

The present disclosure relates generally to computing
systems, and more particularly to operating databases and
dispatching queries.

Databases are used to store information for an mnumer-
able number of applications and use case scenarios. Various
types of database management systems (DBMSs) exist and
various different database schemas are used, respectively, to
optimize for performing some particular kinds of database
queries elliciently. Said special-purpose databases may be
structured as to allow eflicient processing of database que-
ries of a first type but may be slow when processing database
queries of another type because of the table structure and
indices of the database, or because the internal query opti-
mization logic of the corresponding DBMS 1s not optimized
for said other kind of queries. For example, an online
analytical processing (OLAP) database may process OLAP
queries efliciently, but not OLTP queries. An online trans-
actional processing (OLTP) database may process OLTP
queries ethiciently, but not OLAP queries.

Some existing approaches (based e.g. on hybrid DBMSs)
try to overcome said difliculties by storing the data redun-
dantly in two diflerent copies of the data to be queried. Fach
copy being stored 1n a database that 1s optimized for eth-
ciently performing a particular kind of database query. Data
changes applied in one of said copies 1s replicated to the
other copy to ensure that a query returns the same resullt,
irrespective of whether the query 1s performed on the
original database or on the copy.

A problem of using a combination of two or more
databases optimized for different query types which are
synchronized by a replication process 1s that the decision to
which database a particular query 1s dispatched 1s often
inflexible and/or not optimal 1n terms of performance.

SUMMARY

Embodiments of the present invention disclose a method,
computer program product, and system for dispatching a
database request to either a source database or a target
database wherein the source database 1s configured to ethi-
ciently process database queries of a first query type, the
target database 1s configured to efliciently process database
queries ol a second query type, wherein data changes in the
source database are asynchronously replicated to the target
database, and wherein all changed data 1n the source data-
base impacting a result of the database request are replicated
to the target database before executing the database request.
A computer receives a database request to be executed on a
source database or a target database, determines a latency
time to asynchronously complete a replication from the
source database to the target database of, at least, all
unreplicated data changes that impact the result of the
received database request and determines a velocity of
replication to the target database. The velocity of replication
1s one of: a capture velocity, the capture velocity being a
number or size of data changes applied to the source
database that can be identified 1n a predefined time interval;
an apply velocity, the apply velocity being a number or size
of 1dentified data changes that can be applied to the target
database 1n a predefined time interval; a function of the
capture velocity; a function of the apply velocity; or a
function of both the capture and the apply velocity. The

10

15

20

25

30

35

40

45

50

55

60

65

2

computer then predicts, using the determined latency time
and determined velocity of replication, which of the source
database or the target database will complete an execution of
the recerved database request first, wherein a high latency
time and a low velocity lowers a probability that the execu-
tion of the received database request will be finished first on
the target database. Responsive to predicting which of the
source database or the target database will complete the
execution of the database request first, the computer dis-
patches, the database request to the source database or the

target database predicted to complete the execution of the
database request first.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Features and advantages of the present invention waill
become apparent from the following detailed description of
illustrative embodiments thereof, which 1s to be read in
connection with the accompanying drawings. The various
features of the drawings are not to scale as the 1llustrations
are for clarity 1n facilitating one skilled in the art 1n under-
standing the mnvention in conjunction with the detailed
description. In the drawings:

FIG. 1 illustrates an exemplary system for managing
databases and dispatching queries, 1n accordance with an
embodiment of the present disclosure;

FIG. 2 1s a block diagram of latency time and its com-
ponents, 1n accordance with an embodiment of the present
disclosure; and

FIG. 3 1s a flowchart for dispatching database queries, 1n
accordance with an embodiment of the present disclosure.

DETAILED DESCRIPTION

In the following, like numbered elements 1n the figures
either designate similar elements or designate elements that
perform an equivalent function. Elements which have been
discussed previously will not necessarily be discussed 1n
later figures 1f the function 1s equivalent.

A “database” as used herein 1s a collection of electronic
information that 1s organized 1n memory or on a non-volatile
storage volume 1n the form of a particular, defined data
structure which supports or 1s optimized for data retrieval by
a particular type of database query.

A database may be organized in tables or columns or other
forms of data structures to provide eflicient retrieval. An
individual table may act as database. In conventional data-
bases, all tables of the database have the same structure 1n
respect to the physical orgamization of the data in the
memory or on a non-volatile storage medium. For example,
some row-oriented databases may include multiple tables
which organize their data 1n a row-oriented manner. Some
column-oriented databases may solely include tables which
organize their data in a column-oriented manner. In said
cases, the database and all its tables may structurally be
optimized for a particular type of database query.

There also exist some DBMSs (database management
systems) where a DBMS stores data redundantly 1n different
data structures that support different kinds of database
queries. Such a DBMS, when storing some data 1n a row-
oriented manner, may automatically create a copy of said
data and store the copy 1n a column-oriented manner. The
DBMS may hide the two different data structures, including
the two data copies, and be optimized for different kinds of
database queries from the user. The DBMS may “present”
only a single *““virtual table” to which database queries may

US 10,025,844 B2

3

be directed, and may automatically dispatch the database
queries to the one of the two data structures which 1s
optimized for processing said kind of query. Although said
kind of DBMS presents only a single “virtual table” to the
user or client application programs, in fact said DBMS
includes two diflerent database tables whose structures are
optimized for diflerent kinds of database queries. Said two
different kinds of database tables (e.g. a data container
organized 1n row-major order and a data container organized
in column-major order), although represented by a single
“virtual table”, will i the following be considered as two
databases optimized for different kinds of database queries
which may respectively act as source database or as target
database. Thus, according to the above definition, a “virtual
database table” that dispatches database queries to one of a
plurality of different data structures optimized respectively
for different kinds of database queries 1s thus, according to
the above definition, not a ‘database’ in the sense of the
invention. Rather, each of said plurality of different data
structures would respectively resemble a “database” as used
herein. The expression that a first database 1s “configured for
clliciently processing database queries of a first query type”
while a second database 1s “configured for efliciently pro-
cessing database queries of a second query type” may mean
that the two databases may have stored the same data but
may have stored the data in different data structures. Even i
the first and second database store the same data and all
environmental parameters, for example CPU load, memory
capacity, etc., of the first and the second database are
identical, a requested statement may be executed faster on
one of the databases than on the other database. The per-
formance of the requested statement may depend on the type
of the requested statement (e.g. SELECT type or INSERT
type, or the order of multiple JOIN clauses within the query).

A “database management system” (DBMS) 1s a software
and/or hardware based system that 1s designed to allow the
definition, creation, querying, updating and administration
of one or more databases. Typically, a DBMS 1s operable to
interact with a user, with other applications, and one or more

databases managed by the DBMS to process some requests
and to analyze data. Well-known DBMSs include MySQL,

ManaDB, PostgreSQL, SQLite, Microsoft SQL Server,
Microsoft Access, Oracle, SAP HANA, dBASE, FoxPro,
IBM DB2, and others.

The term “statement” 1s a data processing command.
According to preferred embodiments, a statement 1s a Struc-

tured Query Language (SQL) statement, which performs a
write operation (INSERT, UPDATE or DELETE) 1n a data-

base or a read operation (SELECT) to read data from the
database. A “statement” or “query” may have a particular
“query type”. According to some embodiments, a statement
may be specified according to the syntax requirements of a
database that does not support SQL as query language or that
accepts queries and statements 1n a diflerent syntax and then
maps such queries and statements to SQL syntax internally.

A “transaction” or “database transaction” 1s a logical unit
of database operations which are executed as a whole to
process user requests for retrieving data. A transaction 1s a
larger unit that includes and frames one or more statements.
A transaction ensures that the action of the framed state-
ments 1s atomic with respect to recovery.

The term “log” as used herein refers to a data structure
acting as a container for information on all statements and
transactions having been performed on a particular database.
A ‘log’ may be implemented as electronic document, e.g. a
text file, a binary file or a set of database records. A single

10

15

20

25

30

35

40

45

50

55

60

65

4

physical data structure (file, set of database records, etc.)
may include the logs of multiple databases.

The term “synchronization” of two databases as used
herein implies that a particular request will return an 1den-
tical result irrespective of which of the two databases 1s used
for processing the request.

FIG. 1 illustrates an exemplary system for managing
databases and dispatching queries, 1n accordance with an
embodiment of the present disclosure. The system depicted
in FIG. 1, will be described in the following by making
reference to a method of dispatching queries as depicted in
FIG. 3.

FIG. 1 shows an embodiment of a system 100 for man-
aging databases and for dispatching queries. The system
includes a source database 116 and a target database 118.
The source database may be configured for etliciently pro-
cessing database queries of a first query type, e.g. OLTP
queries. The target database 1s configured for efliciently
processing database queries of a second query type, e.g.
OLAP queries. Other types of specially optimized databases
may also be used and combined as source and target
databases. Examples are graph databases being optimized
for the storage and retrieval of data organized as a graph,
triplestores optimized for the storage and retrieval of sub-
ject-predicate-object triples, key-value pair based databases
for efliciently handling unplanned, ad hoc queries; document
stores, row-oriented databases, column-oriented databases
or individual tables organized 1n row major order or column
major order.

The system includes a replication engine 1358 configured
to asynchronously replicate data changes of data 120 in the
source database to the target database. As a result, the target
database 1s filled with a copy 120' of the data 120 of the
source database. Heremnafter, a latency time specifies the
total time needed to asynchronously and completely repli-
cate, at least all unreplicated data changes that have an
impact on the result of the statement, from the source
database to the target database. The latency time, as used 1n
some embodiments of the invention, 1s described 1n further
detail with respect to FIG. 2. The system 100 further
includes a dispatcher module 110. The dispatcher module
110 may be a software, hardware, and/or a firmware based
module for deciding to which database a particular query
should be dispatched for execution. The exemplary system
100 1s configured as follows:

The dispatcher module 110 receives a request 132 for
performing a statement, ¢.g. a database statement. Any data
changes applied 1n the source database on the requested data
must be processed before executing the request. This means
that the system must ensure that the request will return
identical results, irrespective of whether it 1s executed on the
source or the target database. All unreplicated changes
existing 1n the source database, at the moment of receiving
the request, have to be successiully replicated to the target
database before the query 1s allowed to execute on the target
database. The dispatcher module 110 determines the latency
time for the asynchronous replication of at least the unrep-
licated data changes of the source database that are of
relevance for the statement 1n the query. The data changes
being of relevance for the statement of the query include at
least all unreplicated data changes that have an impact on the
result of the statement. According to some embodiments,
said data changes include all unreplicated data changes
having been performed on any one of the columns of tables
of the source database which are to be accessed by said
statement. According to other embodiments, said data
changes include all unreplicated data changes having been

US 10,025,844 B2

S

performed on any one of the tables of the source database
which are to be accessed by said statement. According to
still other embodiments, said data changes include all unrep-
licated data changes having been performed on any one of
the tables of the source database.

For example, the determination of the latency time may be
performed by applying some heuristics on history data.
Depending on the embodiment, the historic data of indi-
vidual columns, of individual database tables or of indi-
vidual tables of the source database may be evaluated for
determining and predicting the latency time required for
replicating at least all data changes relevant for the statement
of the request to the target database. For example, the
dispatcher module 110 may continuously, e.g. every hour or
once 1n a day, receive some monitoring data M1, M2 from
the source and the target database 116, 118. The monitoring
data may include capture times 204 (FIG. 2), transier times
206 (FIG. 2), and apply times 208 (FIG. 2) observed for
previous data replication operations. For example, if the
historic data indicates that the latency time L resulting from
said three time values for 100 Megabytes (Mb) was 30
seconds at night and during weekends, but 60 seconds
during normal working days, the dispatcher module 110 may
determine, in dependence, e.g. on the current time and day
of the week, 11 the latency time 1s 30 seconds or 60 seconds.
Other, more complex heuristics may likewise be used, e.g.
a prediction of the latency time based on historic data taking
also into consideration the kind of data to be replicated
(backup data or operative data), the type or status of the
replication engine 158, currently observed hardware depen-
dent factors F1, F2, F3 (described 1n further detail in FIG. 2),
ctc. The current hardware dependent factors F1, F2, F3 (FIG.
2) may be determined automatically after having received
the request. According to embodiments, the dispatcher mod-
ule 110 may regularly receive a current capture velocity
value from a source DBMS 122 operating the source data-
base, and recetve a current apply velocity from a target
DBMS 124 operating the target database. In combination
with an estimated amount of data changes having accumu-
lated since the previous replication, and with a predefined or
dynamically estimated transter time 206 (FIG. 2), said
current velocity values may be used for predicting a current
latency time L 202 (FIG. 2) that 1s needed, given the current
system load and status parameters such as the current
velocities 148, 128 and 150, to replicate the data to allow a
query to be executed on the target database and return the
same result as when executed on the source database.

In various embodiments, the dispatcher module 110 also
determines a velocity of the replication, wherein the velocity
1s a capture velocity 148 or an apply velocity 150 or a
derivative of the capture and/or the apply velocity. The
dispatcher module 110 may use the determined latency time
and the determined velocity of replication as input for
predicting if an execution of the statement of the request 132
will be finished earlier 1n the target database than in the
source database. The higher the latency time and the lower
the velocity of replication, the lower the probability that the
request will be finished earlier in the target database. If the
request 1s predicted to be finished earlier 1n the target
database, the dispatcher module 110 dispatches the
requested statement for execution on the target database. IT
not, the dispatcher module 110 dispatches the requested
statement for execution on the source database.

Using a latency time in combination with a velocity for
deciding if the query should be dispatched to and executed
at the source database or the target database may be more
flexible than dispatching approaches which merely evaluate

5

10

15

20

25

30

35

40

45

50

55

60

65

6

the type of query and then strictly dispatch the query
depending on its type. By taking a velocity and a latency
time 1nto consideration, physical parameters of the I'T inira-
structure of the source and/or of the target database and of
the replication process are also taken into account. Thus,
dispatching may react to the varying load and performance
characteristics of the I'T infrastructure resources involved 1n
the replication process. For example, in cases where the
velocity 1s very low (e.g. due to a target DBMS server being
occupied to its capacity by other processes), a query may be
executed on the source database even though the query may
be of a type that 1s normally executed faster on the target
database. Thus, the overall performance of query execution
may be increased.

A combination of the velocity and of the latency time 1s
beneficial because the availability of different I'T resources
1s considered when said two values are mput for the pre-
diction. The velocity may, for example, depend on the speed
and capacity of the CPU, storage, and memory of the
computer hosting the source database and/or of the computer
hosting the target database, as said resources are responsible
for capturing and/or applying the changes to be replicated.
The latency time to transier the data change depends, e.g. on
a network connection to the source database. Thus, the
factors relevant to transier time may be completely difierent
than factors relevant to the capture or apply velocities. By
taking into account the latency time which includes and
correlates with the transfer time, several diflerent hardware-
related features of the underlying IT infrastructure have an
impact on the dispatching decision. Thus, the decision may
lead to better and more accurate results 1n terms of 1dent-
tying the database where a particular query, given the
current physical state of the IT infrastructure, will finish
carlier. Using the latency time may be advantageous, as the
latency time may be more easily 1dentifiable than the trans-
fer time because the identification of the transfer time
requires the 1dentification of the moment at which a capture
process ends and the apply process begins.

The capture process may be performed by a capture
module 112 which may repeatedly and automatically deter-
mine the current capture velocity 148 and forward 136 the
determined capture velocity M1 to the dispatcher module
110. Alternatively, a current capture velocity 148 may be
determined and returned by the capture module 112 1n
response to a request by the dispatcher module 110, the
request of the dispatcher module 110 being triggered by
receiving a query 132 from a client application 104 execut-
ing on a processor 106 of a client computer 102. The client
computer 102 may be one of a plurality of client computers
152, 162 connected via a network to the system 100.

The apply process may be performed by an apply module
114 which may repeatedly and automatically determine the
current apply velocity 150 and forward 138 the determined
apply velocity M2 to the dispatcher module 110. Alterna-
tively, a current apply velocity 150 may be determined and
returned by the apply module 114 in response to a request by
the dispatcher module 110 as described above for the capture
process.

In FIG. 1, the source and the target database may be
hosted on the same server 108. However, in many other
scenarios, the source database and each of the one or more
target databases may be hosted on a respective database
server, the servers being connected to each other via a
network. The dispatcher module 110 may be hosted on a
separate further server or on one of the servers hosting one
of said source or target databases.

US 10,025,844 B2

7

A computer-readable storage medium 156, which may
belong to the system 100, may include machine executable
instructions for execution by one or more processors 154,
The execution of the instructions causes the one or more
processors 154 to execute the database management and
query dispatching method of any one of the embodiments
described herein.

Referring now to FIG. 3, with continuing reference to
FIG. 1. FIG. 3 1s a flowchart for dispatching database
queries, 1 accordance with an embodiment of the present
disclosure. At 302, the dispatcher module 110 receives a
request 132 for performing a statement. All data changes
having been applied in the source database on requested data
must be processed belore executing the request. At 304 and
306, the dispatcher module 110 determines the latency time
and a velocity. The velocity may be a capture velocity 148,
an apply velocity 150, or a dernivative of the capture and/or
the apply velocity. As described above, the velocity may be
determined by the dispatcher module 110 by applying heu-
ristics on historical data and statistics. The velocity may also
be recerved from the capture module 112 and/or the apply
module 114 which may each monitor and provide the
historical or statistical data, or may even provide a current
estimated value for the capture or apply velocity 148, 150.
At 308, the dispatcher module 110 uses the determined
latency time and the determined velocity 148, 150 as input
for predicting 11 an execution of the statement of the request
will be finished earlier 1n the target database than in the
source database. Preferentially, the determined latency time
and velocity have been determined dynamically 1n response
to the receiving of the query 132 in dependence on currently
observed, hardware dependent factors F1, F2, F3 described
below with reference to FIG. 2, and/or 1n dependence on
historical and statistical data. The higher the latency time
and the lower the velocity, the lower the probability that the
request will be finished earlier on the target database. If the
request 1s predicted to be finished earlier in the target
database, the dispatcher module 110 dispatches, at 312, the
requested statement for execution on the target database. If
not, the dispatcher module 110 dispatches, at 314, the
requested statement for execution on the source database.

According to embodiments, determining the velocity
includes calculating the velocity according to the following
formula:

Viotal=(mimimum(Fcapture, Vapply))y* C1+C2

Vcapture, the capture velocity, 1s indicative of the number
or size of data changes in the source database that can be
captured and scheduled for replication 1n a given time
interval.

Vapply, the apply velocity, 1s indicative of the number or
size of data changes that can be applied on the target
database 1n a given time interval.

Vtotal 1s the velocity determined by the dispatcher mod-
ule 110.

C1 1s a constant number, e.g. “17, “1.4”, <3 efc.

C2 1s a constant number, e.g. “07, “0.17, “0.4”, efc.
Typically, C1 1s “1” and C2 1s “0”. However, said values
may be modified by a user, e.g. in a configuration, 1f the user
should want to slightly modify or correct the automated
calculation for the minimum value mimmum(V capture, Vap-
ply), e.g. to ensure that the calculation returns a result that
includes a safety margin, or to take into consideration
additional hardware resources that contribute to the capture
or apply speed but for which performance data cannot be
automatically derived by the capture or apply modules 112,
114, nor by the dispatcher module 110.

10

15

20

25

30

35

40

45

50

55

60

65

8

Said calculation of the velocity of the replication process
may be advantageous, because the resulting velocity value
returned 1s 1dentical to the “bottleneck™ velocity value. Even
if the apply module 114 predicts that current data changes
can be applied with a speed of 100 Mb per second, the
velocity returned as a dertvative of the apply and the capture
velocity may only be 5 Mb per second 11 the capture module
112 determines the current capture velocity 1s only 5 Mb per
second. Even 11 the capture module 112 predicts that current
data changes can be captured with a speed of 400 Mb per
second, the velocity returned as a denivative of the apply and
the capture velocity may be only 20 Mb per second 1f the
apply module 114 determines the current apply velocity 1s
only 20 Mb per second. Thus, mstead of considering only
one of the two velocity values, or calculating an average, a
minimum value 1s calculated for computing a derivative
“velocity” from both the capture and the apply velocity.

In various embodiments, the dispatcher module 110
receives a first estimated duration EQ1 from a first query
planner 140 assigned to the source database 116, the first
estimate duration EQ1 being indicative of an estimated time
required for performing the requested statement on the
source database 116. The first estimated duration EQ1 may
depend, for example, on query-related features, e.g. the type
of the requested statement, e.g. 11 the requested statement 1s
of an OLTP type or an OLAP type. The dispatcher module
110 also receives a second estimated duration EQ2 from a
second query planner 142 assigned to the target database
118, the second estimate duration EQ2 being indicative of an
estimated time required for performing the requested state-
ment on the target database 118. The second estimated
duration EQ2 may depend, for example, on query-related
features, e.g. on the type of the requested statement. The
dispatcher module 110 then uses the received first and
second estimated durations EQ1, EQ2 as further imnput for
performing the prediction. "

The longer the received first
estimated duration EQ1 and the shorter the received second
estimated duration EQ2, the higher the probability that the
execution of the request statement 1s predicted to be finished
carlier 1n the target database 118 than 1n the source database
116. Said features may be advantageous, because the pre-
diction of which of the available databases will be the first
one to return a result for a particular query 1s particularly
accurate. By combining the results of two query planners
140, 142, which may be query planners of two separate
DBMSs, the duration of query execution on each of the
source and the target database can be predicted and query-
related features such as the query type may have an impact
on the result. For example, OLAP type queries may be
predicted to be executed in a shorter period of time on the
target database if the target database 1s an OLAP type
database and the source database 1s an OLTP database. In
addition, hardware related factors F1, F2 and/or F3 (FIG. 2)
may also be considered by the dispatcher module 110 by
taking 1nto consideration the velocity and the latency time.
As a result, the query might not be dispatched to the target
database 118, even 1n cases where the query execution time
itself 1s shorter 1n the target database, 11 1t 1s predicted that
the latency time L would outweigh the increased execution
time.

According to some embodiments, the first and the second
query planners 140, 142 are i1dentical and/or the source and
the target DBMSs 122, 124 are identical. For example, this
may be the case if the same DBMS manages both the source
and the target database.

Some embodiments may determine the transfer velocity
128 of the asynchronous replication process 126 and use the

US 10,025,844 B2

9

determined transier velocity 128 as further input for the
prediction. The higher the transfer velocity 128, the higher
the probability that the dispatcher module 110 will dispatch
a query to the target database 118. In some embodiments, the
transier velocity 128 and/or an estimated transfer time 206
(FIG. 2) may be determinable by simply using the total

latency time 202 which includes and correlates with the
transier time 206.

According to embodiments, performing the prediction
includes determining a transier velocity 128. The transfer
velocity 128 being indicative of the number or size of
captured data changes of the source database 116 that can be
transierred to the target database 118 in a predefined time
interval during the asynchronous replication 126. Said deter-

mination may be computed by executing a heuristics on
historical data that may be, for example, monitored and
stored by the replication engine 158. Monitoring and storing
data transier velocity data may be performed automatically
on a regular basis, and a current transier velocity value or
historical data, from which the transfer velocity 128 can be
computed, may be returned to the dispatcher module 110
regularly or upon a request by the dispatcher module 110.
Performing the prediction also includes calculating a com-
bined target duration according to the formula:

CTD:EQ2+(L$$$03)+CF

L 1s the determined latency time.
VT 1s the determined transfer velocity.
V 1s the determined velocity, e.g. the capture velocity 148,
the apply velocity 150, or a minimum value of the capture
and the apply velocity 148, 150.
C3 1s a constant number, preferably “17.
CTD 1s the combined target duration. The combined target
duration 1s indicative of a total duration predicted to be
necessary for replicating all unreplicated data changes and
completely performing the execution of the requested query
on the target database 118, starting from the current system
time at the moment the request 1s received. The time interval
between receiving the request and completing the execution
of the requested statement on the target database 118
includes the time for replicating the data changes, thus, the
predicted combined target duration may be a sum of the
predicted replication time and the estimated query execution
time on the target database 118. CF 1s a constant indicating,
hardware, soitware, and/or firmware-related delays, the
delays occurring when performing the requested query on
the target database 118, said delays being invariable over
time. CF may be, for example, “0”. Similar to parameters C1
and C2, the parameters “C3” and “CF” may be user-
configurable for slightly modifying and correcting the cal-
culation of the CTD value for different hardware 1nfrastruc-
tures. CF may represent fixed delays, such as delays caused
by the process of establishing a network connection between
the source and the target database.
EQ?2 is indicative of an estimated time required for performs-
ing the requested statement on the target database 118.
The execution of the statement of the request 1s predicted
to be finished earlier in the target database 118 than in the
source database 116 when the calculated combined target
duration 1s shorter than a predicted time for immediately
executing the requested statement on the source database
116. For example, said predicted time for immediately
executing the requested statement on the source database

10

15

20

25

30

35

40

45

50

55

60

65

10

116 may be received as the first estimated duration EQ1
from the first query planner 140.

Said features may provide for a dispatching strategy that
1s highly dynamic and may accelerate query execution by
accurately determining which database 1s capable of being
the first to return the requested result, by taking into account
the current hardware characteristics as well as the structural
particularities of the query and the available databases. The
dispatcher module 110 may act as a “‘super optimizer” or
“super query planner”, taking into account the predicted
query execution times of two or more DBMSs and respec-
tive query planners. According to embodiments, the predic-
tion of the first and second estimated times EQ1 and EQ2
may nclude evaluating database catalog lookups, checking
for database statistics, data types of the database columns to
be accessed, query planning (join order, “predicate push-
down”), and/or a current workload of the database for
performing queries having already been dispatched to said
database.

According to embodiments, the first estimated duration
EQ1 and the second estimated duration EQ2 may be nor-
malized 1n order to make the first and second estimated
durations comparable. This may allow using DBMSs with
corresponding query planners 140, 142 provided by different
vendors, such as IBM, SAP, Oracle and others to be com-
pared. The normalization may be performed, for example,
by the dispatcher module 110 and may allow for an
improved query dispatching even in a heterogeneous IT
environment.

According to embodiments, one or more of the following
operations are executed 1n response to receiving the request:

determining the latency time
determining the velocity, including the capture velocity
148 and/or the apply velocity 1350

determining a transier velocity 128, the transier velocity
128 being indicative of the number or size of captured
data changes on the source database 116 that can be
transierred to the target database 118 1n a predefined
time 1nterval during the asynchronous replication 126

requesting, by the dispatcher module 110, the first esti-
mated duration EQ1 from the first query planner 140

requesting, by the dispatcher module 110, the second
estimated duration EQ2 from the second query planner
142

predicting 11 an execution of the statement of the request
will be finished earlier in the target database 118 than
in the source database 116.

This may be advantageous, as the latency and velocity
may vary over time. By determining said values dynami-
cally, 1n response to recerving the request 132, the prediction
result will be more accurate.

According to embodiments, all unreplicated data changes
having been applied on the source database 116 on requested
data, before the receiving of the request, are i1dentified by
identifving all data changes having been applied in the
source database 116 before a particular moment 1n time. Said
moment may be the commit event of the most recently
committed transaction having committed in the source data-
base 116. According to said embodiments, the query per-
formed on the target database 118 will not *“see” data
changes imposed by preceding write statements of the same
query’.

Alternatively, said moment may be the moment when a
particular write statement introduced the data changes in the
source database 116 by performing an UPDATE and/or
DELETE database operation. Said particular write statement
and the requested statement belong to a requested transac-

US 10,025,844 B2

11

tion that has not yet committed when the dispatcher module
110 recerves the request. The particular write statement may
directly precede the requested statement in the requested
transaction. In this context, said uncommitted data changes
may also have to be replicated to the target database 118
before the query 1s allowed to be executed there. Various
embodiments may asynchronously replicate the identified
unreplicated data changes to the target database 118.

According to embodiments, the first query planner 140
has a first clock, the second query planner 142 has a second
clock and the dispatcher module 110 has a third clock.
Various embodiments may synchronize the first, second, and
third clocks, making one or more of the latency time, the
velocity, the first estimated duration EQ1, and the second
estimated duration EQ2 values comparable. For example, 1
the capture velocity value 1s determined in number of
statements per minute and the apply velocity value 1s
determined 1n Mb per second, at least one of said two figures
needs to be normalized, e.g. transformed to another unit, in
order to make the capture and apply velocity comparable,
¢.g. for determining the velocity as the mimimum of said two
velocities.

According to embodiments, the target database 118 1s one
of a plurality of target databases (not shown). Each of said
plurality of target databases 1s associated with a respective
second query planner. In some embodiments, each target
database and a DBMS operating said target database 1is
hosted by a respective database server connected to a server
hosting the source database via a network. In this embodi-
ment:

in response to receiving the request, sending, by the

dispatcher module 110, a duration request to each of the
plurality of second query planners

receiving, by the dispatcher module 110 1n response to the

duration requests, from each of two or more of the
second query planners: the latency time for the asyn-
chronous replication of the unreplicated data changes to

said target database; a velocity, the velocity having
been determined for the one of the target databases
associated with said second query planner, wherein said
velocity 1s a capture velocity or an apply velocity of
said target database or a derivative of said capture
and/or said apply velocity, the apply velocity having
been determined by said second query planner for the
target database associated to said second query planner;
and an estimated second duration EQ2 being indicative
of an estimated time required for performing the
requested statement on the target database associated
with said second query planner

calculating, by the dispatcher module 110, the combined
target duration CTD for any one of said two or more
target databases. Said calculation may be executed, for
example, according to embodiments configured to cal-
culate the CTD as described above. According to some
embodiments, the combined target duration CTD 1s
calculated for only a fraction of all possible pairs of
source database and target database. For example, the
calculation may be aborted once the dispatcher module
has calculated the CTD for a threshold number of target
databases, e.g. 50% of the available target databases.
For example, said threshold number of target databases
may be that fraction of target databases from which the
dispatcher module 110 received the relevant latency
time and velocity values first, e.g. the 50% of the target
systems having responded earliest to a request of the
dispatcher

5

10

15

20

25

30

35

40

45

50

55

60

65

12

comparing, by the dispatcher module 110, the calculated
combined target durations CTD with each other and
with the first estimated duration of performing the
requested statement on the source database

automatically dispatching, by the dispatcher module 110,

the requested statement for execution on the one of the
target databases having the shortest one of the com-
bined target durations CTD, if said shortest combined
target duration CTD 1s shorter than the first estimated
duration EQ1 received from the first query planner.

According to embodiments, a target DBMS 1n control of
the target database 118 1s configured to automatically
increase a version number assigned to the target database
118 upon any structural change of the target database that
potentially aflects the execution time of a query on the target
database 118. Such structural change can be, for example,
the adding or dropping of an index to or from a database
table, the adding or dropping of a database schema, etc. In
this embodiment, the second query planner 142 1dentifies a
version number of the target database 118; calculates the
second estimated duration EQ2 for the target DBMS having
assigned the identified version number; returns the calcu-
lated second estimated duration and the i1dentified version
number to the dispatcher module 110, e.g. 1n response to
receiving a duration request. The dispatcher module then
dispatches the requested statement for execution 1n associa-
tion with the version number to the target database 118
where the target DBMS compares, before executing the
dispatched statement on the target database, the version
number associated with the dispatched statement with the
version number currently assigned to said target database. I
the compared version numbers are identical, the target
DBMS performs the dispatched statement on the target
database 118. If the compared version numbers are not
identical, the target DBMS does not perform the dispatched
statement. According to some embodiments, the second
query planner may, 1n this case, recalculate the second
estimated duration EQ2 for the new version number and
return 1t to the dispatcher module 110 1n combination with
the new version number.

Said features may ensure that poor performance of a
query on a database, caused by a modification of the
structure 1n said database, 1s automatically avoided and an
automated update mechanism 1s provided for keeping the
prediction of query execution time up-to-date with the
structure of the underlying databases.

According to embodiments, a materialized query table
(“MQT”) of a database 1s used as the target database 118. A
materialized query table 1s a table whose definition includes
one or more database queries and whose data content 1s
retrieved as a result of executing said one or more database
queries, therefore said data content includes pre-computed
results that are derived from one or more tables accessed
upon execution of said one or more database queries. The
definition of a materialized query table may include joins,
functions, and/or other SQL elements. One or more other
database tables 1n the same database as the matenialized
query table that act as the data source for the matenalized
query table can be used as the source database 116.

Various embodiment determine the latency time for the
target database 118 by determining the expected time
between the beginning of a first refresh of the maternialized
query table and the end of a succeeding, second refresh of
the materialized query table. A “refresh” being the execution
of the one or more database queries included 1n the definition
for populating the materialized query table with data having
been currently derived by said executed query.

US 10,025,844 B2

13

The determining of the velocity v for the materialized
query table, i this particular embodiment, 1s i1dentical to
determining the apply velocity and the capture velocity. The
velocity v 1s determined by dividing the size of the data

content of the materialized query table (e.g. the number of °

records or Bytes) by the time required for performing the

one or more database queries on the one or more database
tables to extract the data from those one or more database
tables, and the time required for loading the extracted data
into the memory structures that represent the MQT.

According to some embodiments where the MQT 1s used
as the target database 118, the transier time 206 (FIG. 2) 1s
the time needed to transfer data that has successfully been
extracted from the source database 116, 1.e. from the one or
more accessed database tables, to the memory structures that
represent the MQT. This can be influenced, for example, by
disk and/or CPU capacity.

The transfer velocity VT i1s the amount of data retrieved
by said one or more database queries and that 1s transterred
from the source database, 1.e. from the one or more tables
accessed by the one or more queries, mto the memory
structures that represent the MQT. The latency time L, 1n this
case, may be the total time needed to perform the one or
more database queries included 1n the definition of the MQT
on the one or more tables, to transier the results of said query
execution to the memory structures that represent the MQT,
and to store the transferred data into said memory structures.
In other words, the latency time L 1s the time between two
retrieval events, that 1s, from the beginning of the first
refresh operation to the end of the second refresh operation.

According to some embodiments where the MQT 1s used
as the target database 118, the estimated query time EQ2 for
performing a query on the target database 118 1s the time
required to perform the requested statement on the MQT
(acting as the target database). The estimated query time
EQ1 for performing a query on the source database 116 is
the time required to perform the requested statement on the
one or more database tables which are accessed by the one
or more database queries included 1n the specification of the
MQT (acting as the source database). The fixed costs CF 1n
this case are usually equal or near to “0”.

Using MQTs as target databases 118 may significantly
improve the performance of query execution. An MQT can
replace repeating calculations, or can be used to avoid table
or index scans. Replicated MQTs can reduce the data
partitioning broadcast of tables that are not collocated.
Summary tables implemented as MQTs are usually much
smaller than the base (fact) tables. This may reduce memory
consumption and reduce the time necessary for loading the
relevant data mto memory. Currently MQTs are preferred
over real tables mostly for performance reasons (better
access path 1s chosen) per default. In cases where MQT data
1s outdated, the MQT needs to be refreshed belore the query
can actually be performed on the MQT. Similar to the other
use cases, selecting the data source to be accessed, based on
the comparison of the EQ1 and EQ2 as specified, may
enable the dispatcher module 110 to route the query to the
MQT or to the original database tables more precisely,
understanding the latency time and the combined target
duration (which implicitly does consider the “refresh age”.

According to embodiments, capturing the data changes in
the source databases 116 1s performed asynchronously to
performing transactional database queries on the source
database 116. Applying the captured and replicated data
changes on the target database 118 1s performed asynchro-
nously to a data transfer process, the data transfer process

10

15

20

25

30

35

40

45

50

55

60

65

14

transterring the captured, unreplicated data changes from the
source database 116 to the target database 118 for asynchro-
nous replication.

According to embodiments, capturing the data changes
includes evaluating a transaction log 144 of the source
database 116 for extracting statements that introduced the
unreplicated data changes that need to be replicated. Apply-
ing the captured and replicated data changes on the target
database 118 includes performing all the extracted data
changes on the target database 118.

Referring now to FIG. 2, a block diagram of the latency
time 202 and 1ts components, 1n accordance with an embodi-
ment of the present disclosure. The latency time 202
includes a capture time 204, a transfer time 206, and an
apply time 208 according to the formula:

L=capture_time+transfer time+apply_time

L 1s the latency time 202. The capture time 204 depends on
the capture velocity 148, which may depend on various
factors F1. The transfer time 206 depends on the transfer
velocity 128, which may depend on various factors F2. The
apply time 208 depends on the apply velocity 150, which
may depend on various factors F3. The latency time L 1s the
sum of the capture time, the transfer time and the apply time.

The capture_time 1s the time necessary for capturing, 1.e.,
identifving and extracting, all unreplicated data changes
existing 1n the source database 116 at a particular moment 1n
time, e.g. at the time of receiving a database query. In some
embodiments, the capture time 1s the time necessary for
capturing, 1.e., identifying and extracting, only those unrep-
licated data changes existing 1n the source database 116 at a
particular moment in time which are of relevance for said
query, e€.g. because the data changes are stored in tables
which are accessed when executing said query.

The transfer_time 1s the time necessary for transierring
the captured data changes from the source database to the
target database. The transier may be performed via a system
bus of a computer system or via a network, e.g. the internet
or an intranet connecting two different computers respec-
tively hosting the source database 116 or the target database
118.

The apply_time 1s the time necessary for applying the
transferred data changes on the target database 118. For
example, the apply_time can be the time necessary to
perform one or more INSERT, UPDATE or DELETE state-
ments on the target database 118 for applying the transferred
changes. The apply process may be performed, for example,
statement by statement or 1 a batch mode.

The capture velocity 148 i1s indicative of the number or
s1ze of data changes applied to the source database 116 that
can be 1dentified in a predefined time 1nterval by a capturing
process. For example, the capturing process may include
monitoring a log 144 of the source database 116 to identify
all INSERT, UPDATE or DELETE statements performed on
the source database 116 and stored 1n said log 144 during a
predefined time interval. For example, the unit of the capture
velocity 148 may be the number of statements extracted
from the log 144 per minute, or per second; said umt could
also be specified 1n Kilobytes or Megabytes of data changes
that were 1dentified 1n, and extracted from, the log 144 per
minute or second. The capturing process may capture each
data value change individually or 1n a batch mode.

The apply velocity 150 1s indicative of the number or size
of captured and transierred data changes that can be applied
to the target database 118 in the predefined time interval.
Similar to capture velocity 148, the apply velocity 150 may
be specified 1n statements executed on the target database

US 10,025,844 B2

15

118 per time interval, the amount of data changes 1n Kilo-
bytes, Megabytes, or Gigabytes applied on the target data-
base 118, e¢.g. Megabytes/sec, Gigabytes/hour, etc.

The transter velocity 128 1s indicative of the number or
s1ze ol captured data changes that can be transierred from
the source database 116 to the target database 118 in a
predefined time 1nterval. Again, the value may be specified
in transierred statements per minute or second, or 1n trans-
terred Kilobytes, or Megabytes of data changes per second.

The factors F1 may be, for example, one or more of the
tollowing: the number and capacity of the CPUs and/or the
size of the main memory used for capturing the data
changes, ¢.g. by evaluating the log 144, and/or the speed of
a non-volatile storage medium having stored the log 144
and/or the number of unprocessed log entries of log 144
which may specily unreplicated data changes. For example,
the number of log entries not having been evaluated by the
capture module 112 may indicate how {far the capture
process “1s behind” the data changes which are continuously
applied to the source database 116 in “normal operation
mode”. All factors F1 may depend on the load of the source
DBMS 122 and the load of a respective source database
server 108, and may also depend on the size and number of
the write statements executed asynchronously to the capture
process 1n the source database 116.

One or more of the factors F1 may also be indicative of
the degree the capture process of a source database 116 1s
“behind” the number or amount of the data changes having
already been applied to the source database 116. It may
happen that many Gigabytes of changed data have already
been applied to the source database 116, but have not yet
been extracted from the log 144 because the processor 154
of the source database 116, responsible for performing the
capture process, 1s currently busy performing other database
queries dispatched for execution to the source database 116.
Thus, one of the factors F1 may be the size of the source
database log 144 that has not been processed to extract
unreplicated data changes of the database.

The factors F2 may be, for example, one or more of the
tollowing: the stability and bandwidth of the network con-
nection, or the bus system over which the changes are
transterred; network delays caused by network errors or by
the transfer of competing data packages; the number of
network switches used for routing the data changes during
their asynchronous replication to the target database 118 (the
routing decision may cause delays, the more routers used,
the higher the typical transier velocity because the routing
decisions may be parallelized); and/or the number and
configuration of firewalls that have to be passed by the data
changes during their asynchronous replication (a cascade of
one or more firewalls may have to be passed by the repli-
cated data packets being transferred from the source data-
base 116 to the target database 118, each firewall may
process and evaluate the data to avoid the spread of mali-
cious content). The higher the number of firewalls to be
passed and the more restrictive the configuration of said
firewalls, the lower the transier velocity.

The factors F3 may be, for example, one or more of the
following: the number and capacity of the CPUs and/or the
s1ze ol the main memory used for applying the transferred
data changes on the target database 118, e¢.g. by performing
statements on the target database 118. Again, this may
depend on the load of the target DBMS and the load of a
respective target database server 108. One or more of the
factors F3 may also be indicative of the degree the apply
process of a target database 118 1s “behind” the availability
of the transferred data at the target database 118. It may

10

15

20

25

30

35

40

45

50

55

60

65

16

happen that many Gigabytes of data have already been
transierred to the target database 118, but have been queued
for the apply process 1n a waitting queue because the target
database 118 1s currently busy performing other database
queries dispatched for execution to the target database 118.
Thus, one of the factors of F3 may be the state of a waiting
queue for applying data changes on the target database 118.

A ‘computer-readable storage medium’ as used herein
encompasses any tangible storage medium which may store
instructions which are executable by a processor of a com-
puting device. The computer-readable storage medium may
be referred to as a computer-readable non-transitory storage
medium. The computer-readable storage medium may also
be referred to as a tangible computer readable medium. In
some embodiments, a computer-readable storage medium
may also be able to store data which 1s able to be accessed
by the processor of the computing device. Examples of
computer-readable storage media include, but are not lim-
ited to: a floppy disk, a magnetic hard disk drive, a solid state
hard disk, flash memory, a USB thumb drive, Random
Access Memory (RAM), Read Only Memory (ROM), an
optical disk, a magneto-optical disk, and the register file of
the processor. Examples of optical disks include Compact
Disks (CD) and Digital Versatile Disks (DVD), for example
CD-ROM, CD-RW, CD-R, DVD-ROM, DVD-RW, or
DVD-R disks. The term computer readable-storage medium
also refers to various types of recording media capable of
being accessed by the computer device via a network or
communication link. For example a data may be retrieved
over a modem, over the internet, or over a local area
network. Computer executable code embodied on a com-
puter readable medium may be transmitted using any appro-
priate medium, including but not limited to wireless, wire-
line, optical fiber cable, RE, etc., or any suitable combination
of the foregoing.

A computer readable signal medium may include a propa-
gated data signal with computer executable code embodied
therein, for example, 1n baseband or as part of a carrier wave.
Such a propagated signal may take any of a variety of forms,
including, but not limited to, electro-magnetic, optical, or
any suitable combination thereof. A computer readable sig-
nal medium may be any computer readable medium that 1s
not a computer readable storage medium and that can
communicate, propagate, or transport a program for use by
or 1n connection with an instruction execution system,
apparatus, or device.

‘Computer memory” or ‘memory’ 1s an example of a
computer-readable storage medium. Computer memory 1s
any memory which 1s directly accessible to a processor.
‘Computer storage’ or ‘storage’ 1s a further example of a
computer-readable storage medium. Computer storage 1is
any non-volatile computer-readable storage medium. In
some embodiments computer storage may also be computer
memory or vice versa.

A ‘processor’ as used herein encompasses an electronic
component which 1s able to execute a program or machine
executable 1nstruction or computer executable code. Refer-
ences to the computing device comprising “a processor”
should be nterpreted as possibly including more than one
processor or processing core. The processor may for
instance be a multi-core processor. A processor may also
refer to a collection of processors within a single computer
system or distributed amongst multiple computer systems.
The term computing device should also be interpreted to
possibly refer to a collection or network of computing
devices each comprising a processor or processors. The
computer executable code may be executed by multiple

US 10,025,844 B2

17

processors that may be within the same computing device or
which may even be distributed across multiple computing
devices.

Computer executable code may comprise machine
executable instructions or a program which causes a pro-
cessor to perform an aspect of the present invention. Com-
puter executable code for carrying out operations for aspects
of the present mvention may be written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages and compiled 1into machine execut-
able instructions. In some 1nstances the computer executable
code may be in the form of a high level language or 1n a
pre-compiled form and be used in conjunction with an
interpreter which generates the machine executable mstruc-
tions on the fly.

The computer executable code may execute entirely on
the user’s computer, partly on the user’s computer, as a
stand-alone software package, partly on the user’s computer
and partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present invention are described with ret-
erence to tflowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block or a portion of the blocks of the
flowchart, illustrations, and/or block diagrams, can be
implemented by computer program instructions in form of
computer executable code when applicable. The amount of
processing resources may indicate the use degree of each of
the physical components such as CPU, memory, and N/W
bandwidth included 1n the computer system and their money
cost. It 1s further under stood that, when not mutually
exclusive, combinations of blocks in different flowcharts,
illustrations, and/or block diagrams may be combined.
These computer program instructions may be provided to a
processor ol a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
istructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified 1n the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

18

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as an apparatus,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment
(including firmware, resident soitware, micro-code, etc.) or
an embodiment combining soitware and hardware aspects
that may all generally be referred to herein as a “circuit,”
“module” or “system.” Furthermore, aspects of the present
invention may take the form of a computer program product
embodied 1mn one or more computer readable medium(s)
having computer executable code embodied thereon.

Although preferred embodiments have been depicted and
described 1n detail herein, 1t will be apparent to those skilled
in the relevant art that various modifications, additions,
substitutions and the like can be made without departing,
from the spirit of the invention, and these are, therefore,

considered to be within the scope of the invention, as defined
in the following claims.

What 1s claimed 1s:
1. A method for dispatching a database request to either a
source database or a target database,
wherein the source database 1s configured to efliciently
process database queries of a first query type, wherein the
target database 1s configured to efliciently process database
queries of a second query type, wherein data changes 1n the
source database are asynchronously replicated to the target
database, and wherein all changed data 1n the source data-
base impacting a result of the database request are replicated
to the target database before executing the database request,
the method comprising:
recerving, by a computer, a database request to be
executed on a source database or a target database;
determining, by the computer, a latency time to asynchro-
nously complete a replication from the source database
to the target database of, at least, all unreplicated data
changes that impact the result of the received database
request;
determiming, by the computer, a velocity of replication to
the target database, wherein the velocity of replication
1s one of:

a capture velocity, the capture velocity being a number
or size of data changes applied to the source database
that can be 1dentified in a predefined time nterval;

an apply velocity, the apply velocity being a number or
s1ze ol 1dentified data changes that can be applied to
the target database 1n a predefined time interval;

a Tunction of the capture velocity;

a Tunction of the apply velocity; or

a function of both the capture and the apply velocity;

predicting, by the computer, using the determined latency
time and determined velocity of replication, which of
the source database or the target database will complete
an execution of the received database request first, by:
determining, by the computer, a transier velocity, the
transier velocity being a number or size of 1dentified
data changes applied to the source database that can
be transferred to the target database 1n a predefined
time interval during an asynchronous replication to

the target database;

calculating, by the computer, a total target database
time, starting at the receipt of the database request by
the computer and ending at the completion of the
execution of the received database request on the
target database, according to the following formula:

US 10,025,844 B2

19

VT
CTD = EQ2 + (m — :gcg) +CF,

wherein L 1s the determined latency time,

wherein VT 1s the determined transfer velocity,

wherein V 1s the determined velocity of replication,

wherein C3 1s a correction constant,

wherein CTD 1s the total target database time,

wherein CF 1s a constant indicating invariable hard-
ware, soltware and/or firmware-related delays,
and

wherein EQ2 1s an estimated time for executing the
received database request on the target database;
and

comparing, by the computer, the calculated total target

database time with an estimated time for executing

the recerved database request on the source database,

wherein a high latency time and a low velocity lowers a

probability that the execution of the received database
request will be finished first on the target database; and
responsive to predicting which of the source database or
the target database will complete the execution of the
database request first,
dispatching, by the computer, the database request to
the source database or the target database predicted
to complete the execution of the database request
first.

2. The method according to claim 1, wherein determining,
by the computer, the velocity of replication further com-
prises calculating, by the computer, the velocity of replica-
tion according to the following formula:

Vtotal=(minimum(Vcapture, Vapply)*C1+C2,

herein Vcapture 1s the capture velocity,

herein Vapply 1s the apply velocity,

herein Vtotal 1s the determined velocity of replication,

and

wherein C1 and C2 are correction constants.

3. The method according to claim 1, further comprising:

receiving, by the computer, a first estimated time for
executing the received database request on the source
database:

receiving, by the computer, a second estimated time for
executing the received database request on the target
database; and

wherein predicting, by the computer, which of the source
database or the target database will complete the execu-
tion of the received database request first further
includes using the received first estimated time and
second estimated time, wherein a long received first
estimated time and a short received second estimated
time increases the probability that the execution of the
received database request will be finished first on the
target database.

4. The method according to claim 3, further comprising;:

normalizing, by the computer, the received first estimated
time and the received second estimated time.

5. The method according to claim 3,

wherein recerving, by the computer, the second estimated
time for executing the received database request on the
target database further comprises receiving, by the
computer, a version number ol the target database
associated with the second estimated time; and

wherein dispatching, by the computer, the database

request to the target database, i1 the target database 1s

predicted to complete the execution of the database

2=

10

15

20

25

30

35

40

45

50

55

60

65

20

request first, further comprises including, by the com-
puter, the received version number of the target data-
base with the dispatched database request.

6. The method according to claim 1, further comprising;:

identifying, by the computer, the unreplicated data

changes 1n the source database that impact the result of

the received database request, the unreplicated data

changes including:

data changes most recently committed in the source
database by a transaction; and

data changes 1n the source database, made by a data-
base operation 1n a same transaction as the received
database request, wherein the database operation
directly precedes the received database request and
wherein the data changes are not committed.

7. The method according to claim 6, wherein identifying,
by the computer, the unreplicated data changes 1n the source
database that impact the result of the received database
request further comprises evaluating a transaction log of the
source database and extracting database operations that
introduced the unreplicated data changes.

8. The method according to claim 1 wherein the target
database 1s one of a plurality of target databases, the method
further comprising:

requesting, by the computer, an estimated time for execut-

ing the received database request from each of the
plurality of target databases;

receiving, by the computer, a plurality of estimated times

from each of two or more of the plurality of target
databases;
wherein determining, by the computer, the latency time
further comprises determining, by the computer the
latency time to asynchronously complete a replication
from the source database to each of the two or more of
the target databases;
wherein determining, by the computer, the velocity of
replication further comprises determining, by the com-
puter, the velocity of replication to each of the two or
more target databases;

wherein calculating, by the computer, the total target
database time further comprises calculating, by the
computer, the total target database time for each of the
two or more target databases;

wherein comparing, by the computer, the calculated total
target database time further comprises comparing, by
the computer, each of the two or more calculated total
target database times with each other and with the
estimated time for executing the received database
request on the source database; and

wherein dispatching, by the computer, the database
request 1s further responsive to the prediction of which
of the source database or one of the two or more target
databases will complete the execution of the database
request first.

9. The method according to claim 1,

wherein a matenalized query table of a database 1s the
target database,

wherein another database table 1n a same database as the
materialized query table that 1s a data source for the
materialized query table 1s the source database,

wherein determining, by the computer, the latency time
includes determining an expected time from a begin-
ning of a first refresh of the materialized query table to
an end of a succeeding, second refresh of the mater-
alized query table, and

wherein determining, by the computer, the velocity of
replication to the target database includes dividing the

US 10,025,844 B2

21

materialized query table data content size by a time
required to both extract data from the other database
table that 1s the data source and load the extracted data
into memory structures that represent the materialized
query table.

10. A computer system for dispatching a database request
to either a source database or a target database, wherein the
source database 1s configured to efficiently process database
queries of a first query type, wherein the target database 1s
configured to efliciently process database queries of a sec-
ond query type, wherein data changes 1n the source database
are asynchronously replicated to the target database, and
wherein all changed data in the source database impacting a
result of the database request are replicated to the target
database before executing the database request, the com-
puter system comprising one or more processors, one or
more computer readable memories, one or more computer
readable tangible storage medium, and program instructions
stored on at least one of the one or more storage medium for
execution by at least one of the one or more processors via
at least one of the one or more memories, the program
instructions comprising;:

program 1nstructions to receive, by a computer, a database
request to be executed on a source database or a target
database;:

program 1nstructions to determine, by the computer, a
latency time to asynchronously complete a replication
from the source database to the target database of, at
least, all unreplicated data changes that impact the

result of the received database request;
program 1nstructions to determine, by the computer, a

velocity of replication to the target database, wherein
the velocity of replication 1s one of:

a capture velocity, the capture velocity being a number
or size of data changes applied to the source database
that can be identified 1n a predefined time interval;

an apply velocity, the apply velocity being a number or
s1ze ol 1dentified data changes that can be applied to
the target database 1n a predefined time interval;

a Tunction of the capture velocity;

a Tunction of the apply velocity; or

a Tunction of both the capture and the apply velocity;
program 1nstructions to predict, by the computer, using

the determined latency time and determined velocity of
replication, which of the source database or the target
database will complete an execution of the received
database request first, the program instructions to pre-
dict further comprising:

program 1instructions to determine, by the computer, a
transier velocity, the transfer velocity being a num-
ber or size of identified data changes applied to the
source database that can be transferred to the target
database 1 a predefined time interval during an
asynchronous replication to the target database;

program 1nstructions to calculate, by the computer, a
total target database time, starting at the receipt of

the database request by the computer and ending at
the completion of the execution of the received
database request on the target database, according to
the following formula:

VT
CTD = EQ2 + (L:g — w:%) +CF,

10

15

20

25

30

35

40

45

50

55

60

65

22

wherein L 1s the determined latency time,

wherein VT 1s the determined transfer velocity,
wherein V 1s the determined velocity of replication,
wherein C3 1s a correction constant,

wherein CTD 1s the total target database time,
wherein CF 1s a constant indicating invariable hard-

ware, soltware and/or firmware-related delays,
and

wherein EQ2 1s an estimated time for executing the

received database request on the target database;
and
program 1nstructions to compare, by the computer, the
calculated total target database time with an esti-
mated time for executing the received database
request on the source database,
wherein a high latency time and a low velocity lowers a
probability that the execution of the received database
request will be finished first on the target database; and
responsive to predicting which of the source database or
the target database will complete the execution of the
database request first,
program 1nstructions to dispatch, by the computer, the
database request to the source database or the target
database predicted to complete the execution of the
database request first.

11. The computer system according to claim 10, wherein
program 1nstructions to determine, by the computer, the
velocity of replication further comprises program instruc-
tions to calculate, by the computer, the velocity of replica-
tion according to the following formula:

Viotal=(mimimum(Fcapture, Vapply))*C1+C2,

herein Vcapture 1s the capture velocity,
herein Vapply 1s the apply velocity,
herein Vtotal i1s the determined velocity of replication,
and
wherein C1 and C2 are correction constants.
12. The computer system according to claim 10, further
comprising:
program 1nstructions to receive, by the computer, a first
estimated time for executing the received database
request on the source database;
program 1instructions to receive, by the computer, a second
estimated time for executing the received database
request on the target database; and
wherein program instructions to predict, by the computer,
which of the source database or the target database will
complete the execution of the recerved database request
first further includes using the received first estimated
time and second estimated time, wheremn a long
received first estimated time and a short recerved
second estimated time increases the probability that the
execution of the received database request will be
fimshed first on the target database.
13. The computer system according to claim 12, further
comprising:
program 1nstructions to normalize, by the computer, the
received first estimated time and the received second
estimated time.
14. The computer system according to claim 12,
wherein program 1nstructions to receive, by the computer,
the second estimated time for executing the recerved
database request on the target database further com-
prises program instructions to receive, by the computer,
a version number of the target database associated with
the second estimated time:; and

)

US 10,025,844 B2

23

wherein program instructions to dispatch, by the com-
puter, the database request to the target database, 1t the
target database 1s predicted to complete the execution
of the database request first, further comprises program
instructions to include, by the computer, the received
version number of the target database with the dis-

patched database request.
15. The computer system according to claim 10, further

comprising;

program 1nstructions to identify, by the computer, the
unreplicated data changes in the source database that
impact the result of the received database request, the
unreplicated data changes including:
data changes most recently committed in the source
database by a transaction; and
data changes 1n the source database, made by a data-
base operation 1n a same transaction as the received
database request, wherein the database operation
directly precedes the received database request and
wherein the data changes are not commaitted.
16. The computer system according to claim 15, wherein

program instructions to identifly, by the computer, the unrep-
licated data changes 1n the source database that impact the
result of the received database request further comprises
program 1nstructions to evaluate a transaction log of the
source database and extract database operations that intro-
duced the unreplicated data changes.

t

17. The computer system according to claim 10 wherein

e target database 1s one of a plurality of target databases,
the program instructions further comprising:

program 1nstructions to request, by the computer, an
estimated time for executing the received database
request from each of the plurality of target databases;

program 1instructions to receive, by the computer, a plu-
rality of estimated times from each of two or more of
the plurality of target databases;

wherein program instructions to determine, by the com-
puter, the latency time further comprise program
istructions to determine, by the computer the latency

time to asynchronously complete a replication from the
source database to each of the two or more of the target

databases:;

10

15

20

25

30

35

40

24

wherein program instructions to determine, by the com-
puter, the velocity of replication further comprise pro-
gram 1nstructions to determine, by the computer, the
velocity of replication to each of the two or more target
databases:;

wherein program instructions to calculate, by the com-
puter, the total target database time further comprise
program instructions to calculate, by the computer, the
total target database time for each of the two or more
target databases;

wherein program instructions to compare, by the com-
puter, the calculated total target database time further
comprise program instructions to compare, by the
computer, each of the two or more calculated total
target database times with each other and with the
estimated time for executing the received database
request on the source database; and

wherein program instructions to dispatch, by the com-
puter, the database request 1s further responsive to the
prediction of which of the source database or one of the
two or more target databases will complete the execu-
tion of the database request first.

18. The computer system according to claim 10,

wherein a matenalized query table of a database 1s the
target database,

wherein another database table 1n a same database as the
materialized query table that 1s a data source for the
materialized query table 1s the source database,

wherein program instructions to determine, by the com-
puter, the latency time includes program instructions to
determine an expected time from a beginning of a first
refresh of the materialized query table to an end of a
succeeding, second refresh of the materialized query
table, and

wherein program instructions to determine, by the com-
puter, the velocity of replication to the target database
includes program instructions to divide the material-
1zed query table data content size by a time required to
both extract data from the other database table that 1s
the data source and load the extracted data into memory
structures that represent the matenalized query table.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

