US010020037B2

a2 United States Patent (10) Patent No.: US 10,020,037 B2

Abella et al. 45) Date of Patent: Jul. 10, 2018

(54) CAPACITY REGISTER FILE 6,941,489 B2* 9/2005 Delanocccocvveeeeeennnn, 714/10
7,512,772 B2* 3/2009 Gschwind et al. 712/227

75 I t o | Abell B 1 ESY: Javi 7,587,582 B1* 9/2009 Sudharsanan et al. 712/221
(75) Inventors Ca“m‘]t’ eca’ darcgonal()’Eg‘fler 7.684,265 B2* 3/2010 Bankman et al. 365/200
arretero Casado, Barcelona (ES); 2004/0103262 Al* 5/2004 Glossner et al. 712/4

Pedro Chaparro Monferrer, Barcelona 2005/0071723 Al* 3/2005 Luick ooooovvevereeieeiennn., 714/747

(ES); Xavier Vera, Barcelona (ES) 2005/0108503 A1* 5/2005 Sandon et al.c...c....... 712/4

2006/0077733 Al* 4/2006 Cheng et al. 365/200

(73) Assignee: Intel Corporation, Santa Clara, CA 2006/0077734 Aj: 4/2006 Fongccooeeviiiiniinnnn, 365/200
(US) 2007/0016758 Al* 1/2007 Tremblay et al. 712/220

2007/0291563 Al* 12/2007 Ilkbahar et al. 365/201

2008/0046681 Al* 2/2008 Sandon et al.c..oo...... 712/4

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 390 days. OTHER PUBLICATIONS

Canal, Ramon, et al. “Very Low Power Pipelines using Significance

Compression”, Copyright 2000, IEEE. pp. 181-190.
Kondo, Masaaki, et al. *“A Small, Fast and Low-Power Register File

by Bit-Partitioning”, Proceedings of the 11th International Sympo-
situm on High-Performance Computer Architecture (HPCA-11

20035). Copyright 2005, 10 pages.

(21) Appl. No.: 11/953,444
(22) Filed: Dec. 10, 2007

(65) Prior Publication Data

US 2009/0150649 Al Jun. 11, 2009
* cited by examiner

(51) Int. CL

GO6F 11/00 (2006.01) Primary Examiner — Robert Beausoliel
G11C 8/04 (2006.01) Assistant Examiner — Joshua P Lottich
(52) U.S. CL (74) Attorney, Agent, or Firm — Erik M. Metzger
CPC e, G1IC 8/04 (2013.01)
(58) Field of Classification Search (57) ABSTRACT
USPC cerenrnenes 365/200; 712/4; '714/6, 7, _8: 10, 710 An apparatus for storing X-bit digitized data, the register file
See application file for complete search history. comprising: a plurality of registers each register configured
_ for storing X bits, wherein each register 1s partitioned into Y
(56) References Cited sub-registers such that each sub-register stores at least X/Y
U.S PATENT DOCUMENTS !:)1’[5,, and whe}'eln at leasj[one extra X/Y—blt sub-regls‘fter 1S
incorporated 1n each register to provide redundancy 1n the
4,630,241 A * 12/1986 Kobayashi et al. 365/200 number of sub-registers for a total of at least Y+1 sub-
5,602,786 A * 2/1997 Pascucci et al. 365/200 registers per register, so that if a first sub-register 1n a first
gagggaggg i) 18//{ igg; gsls(hl_dﬂ *********************** 365/3 541/ g register includes faulty bits, data destined for storage in the
. . ul “““““““““““““““ \ _ . » » _ . »
6374347 BL* 42002 Johnsom . 112/998 ﬁrs‘F sub-register 1s storf?d 1n a second sqb register, in the first
6,625,746 B1* 9/2003 MOOIE ...cooerrrvrrvrrrrverrreeeee 714/6 register, that does not include faulty bits.
6,665,790 B1* 12/2003 Glossneretal. 712/4
6,748,519 Bl * 6/2004 MOOIE ..voveeevevieeeveannnnn, 712/217 15 Claims, 7 Drawing Sheets
Y
R7{1,24.5)
| a A REORDER BUFFER
instr(a =b + ¢} P
RT(1245)] |
Y
ol o R1(1,235)
| done
RAT ¥ ¥ Y
a[RELABT RI1(1.235)
b|RE2.345)
c|R4 {1,34,5)
\ v / R
R1(1,2,3,5) = R3 (2,3,4,5) + R4 (1,3,4.5) -~
ISSUE QUEVE
(1235
CAM1 CAMZ RAM T <
R3| (R4 R1{1.235) | R3(2.345) | RA(1,3.4.5) (1349 output

(72b)
-
inpuﬁb
(720} ¢ R1(1,2,3,5) and
W output (72b)
(72b)

U.S. Patent Jul. 10, 2018 Sheet 1 of 7 US 10,020,037 B2

FIG. 1

PROCESSOR 110-1

12
/ 0

MEMORY

116-1 115-2 115-M

CORE 1 CORE 2 nmmmax | COREM
PROCESSOR 2

140 150 _
~_ \ 110-3
ROUTER CACHE 160 PROCESSOR 3

110-N

110-2

130 PROCESSOR N

U.S. Patent Jul. 10, 2018 Sheet 2 of 7 US 10,020,037 B2

FIG.2

200

CORE115\

210 220 230 240 250

FETCH DECODE SCHEDULE EXECUTION

UNIT UNIT UNIT I UNIT RET'LFJ*EI'\T"ENT

REGISTER

210 260

U.S. Patent Jul. 10, 2018 Sheet 3 of 7 US 10,020,037 B2

300
/310 /
Ri
Read R2 —® R2 d3 d2 d1 do
o
R4
d3 d2 d1 do
Write R2 d3 d2 d d0
— 270
I / 320

<
< Register

S I e«
4

U.S. Patent Jul. 10, 2018 Sheet 4 of 7 US 10,020,037 B2

FIG. 44

Bank 3 Bank 2 Bank 1 Bank 0 g
free list free list free list free list Read R
® [R2,R1,R3,R3] €«—— _ S -

d3 d2 d1

ROUTER
400

d3 d2 d1 d0
® [R2,R1,R3,R3] Write &
< R1 Tag
< R2
table
<« R3
< R4

Bank Bank Bank Bank

Bank 2
free list

440-3

Bank 0
free list

Bank 1
free list

Bank 3
free list

440-2 440-1 440-0

| Do not send

Sub-register instruction to

Sub-register
available?

Sub-register

Sub-register
' available?

No schedule unit

450

U.S. Patent Jul. 10, 2018 Sheet 5 of 7 US 10,020,037 B2

FI1G.4B
free Iists RICRO
| l REORDER BUFFER
Instr (a="b + ¢) 4 5 |
RTR5RTR6 |
b \R1 R2
J done

R1,R2,R1,R5

b|{R3,R3.R5 R1

cl RAR7RORA |
. e

— Y

R1R2R1.R5 =R3R3R5R1 + R4.R7 R2 R4

$

ISSUE QUEUE
CAM1 CAMZ2 RAM {
R1 RS
R3 R4| [R1,RZR1,R5 | R3R3,R5RT | RART,R2,R4 | Output (72b)

Input2
(72b)

R1,R2,R1,R5 and
output (72b)

nput1
(72b)

U.S. Patent Jul. 10, 2018 Sheet 6 of 7 US 10,020,037 B2

FIG.5A4
Free list
Banks 3, 2, 1,0, a
Bank Bank Bank Bank Bank Biﬂz
R2(1,2,4,5) 3 2 1 0 a

T

— “n

“r >

- “w >

— “nu >

d3
d3 d2 d1 d0 500
o (Laas d3 d2 : d1 0]
d3 d2 XXX d1 do
0! I I N I O b
o B | 2| x| dt | odo |¢ R
o I N N e
I R I I L
(4) —_— A A A
Bank Bank Bank Bank Bank 510

3 2 1 0 a

U.S. Patent Jul. 10, 2018 Sheet 7 of 7 US 10,020,037 B2

FIG.5B
7(1,2,4,5)
REORDER BUFFER
_ free list -
instr (2 = b + ¢) ——»l |
R7(1,245) | [a—
h c R (1 2.3,5)
¢—| done
Y
aw R1(1,2,3,9) .
b|R3(2,3,4,5)
c|R4(1,345)
- —

R1

R1(1,2,35) = R3 (2,3,4,5) + R4 (1,3,4,5)

¢ 18b
ISSUE QUEUE 1 ll l! (1,2,3,9)

CAM1 CAM2 RAM
2345)
R3 | [R4 RT(1.2,35) | R3(2,34,5) | R& (1.3,45) 1:543) — | | output
| _ (72b)
input2
(72b) R1(1,2,3,5) and
input output (72b)

(72b)

US 10,020,037 B2

1
CAPACITY REGISTER FILE

COPYRIGHT & TRADEMARK NOTICES

A portion of the disclosure of this patent document
contains material, which 1s subject to copyright protection.
The owner has no objection to the facsimile reproduction by
anyone ol the patent document or the patent disclosure, as 1t
appears 1n the Patent and Trademark Oflice patent file or
records, but otherwise reserves all copyrights whatsoever.

Certain marks referenced herein may be common law or
registered trademarks of third parties afliliated or unathliated
with the applicant or the assignee. Use of these marks 1s for
providing an enabling disclosure by way of example and
shall not be construed to limit the scope of this invention to
material associated with such marks.

TECHNICAL FIELD

The present invention relates generally to register files
and, more particularly, to partitioning of register files to
improve storage.

BACKGROUND

A register file 1s an array of processor registers 1n a central
processing unit (CPU), or processor. Modern integrated
circuit-based register files are usually implemented by way
of fast static random access memories (SRAMs) with mul-
tiple ports. Such SRAMs are distinguished by having dedi-
cated read and write ports. The instruction set architecture of
a conventional CPU may typically define a set of registers
which are used to stage data between memory and the
functional units on an Integrated circuit (IC), also referred to
as a chip.

ICs have consistently migrated to smaller feature sizes
over the years, allowing more circuitry to be packed on each
chip. This increased capacity per unit area can be used to
decrease cost or increase functionality per unit area. In
general, as the feature size shrinks, many characteristics
improve. For example, the cost per unit and the switching
power consumption go down, and the speed goes up.

Since these speed and power consumption gains are
apparent to the end user, there 1s strong motivation to use
finer geometries to shrink the dimensions of device elements
and line features 1n electronic circuits. In order to increase
device density on a waler comprising a number of circuit
chips, the supply voltage (VDD) needs to be scaled appro-
priately to power devices, primarily because scaling critical
dimensions of a device requires scaling the driving voltage
to provide the same electric field density that governs
current density, field eflects and amplification, etc.

Unfortunately, process variations may not similarly scale
in a cooperative manner, leading to larger relative vanability
in device performance. In addition, lower voltage margins,
due to the smaller absolute voltage range, may raise the
faulty bit rate severely as feature size declines toward 22 nm
and downward. Processors implemented with ever decreas-
ing line width dimensions may lead to higher faulty bit rates
in structures with large number of ports, such as register
files. Thus, solutions for maintaining satisfactory register file
yield must be provided to enable timely implementation.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are understood by
referring to the figures 1n the attached drawings, as provided
below.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 illustrates an operative computing environment
according to one embodiment.

FIG. 2 illustrates a core processor architecture according
to one embodiment.

FIG. 3 illustrates the layout of a register file system
according to one embodiment.

FIG. 4A illustrates a split register file (SRF) system
according to one embodiment.

FIG. 4B illustrates an exemplary progression of values
stored 1n a SRF 1n response to execution of an exemplary
istruction, 1 accordance with one embodiment.

FIG. 5A illustrates a redundant register file (RRF) system
according to one embodiment.

FIG. 5B illustrates an exemplary progression of values
stored 1n a RRF 1n response to execution of an exemplary
istruction, in accordance with one embodiment.

Features, elements, and aspects of the invention that are
referenced by the same numerals in diflerent figures repre-
sent the same, equivalent, or similar features, elements, or
aspects, 1 accordance with one or more embodiments.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Methods and systems are proposed to increase the yield of
a register file having faulty bits.

For purposes of summarizing, certain aspects, advantages,
and novel features of the invention have been described
herein. It 1s to be understood that not all such advantages
may be achieved in accordance with any one particular
embodiment of the invention. Thus, the mvention may be
embodied or carried out 1n a manner that achieves or
optimizes one advantage or group ol advantages without
achieving all advantages as may be taught or suggested
herein.

A redundant register file for storing X-bit digitized data,
in accordance with one embodiment, comprises a plurality
of registers each register configured for storing X bits. Each
register 1s partitioned mnto Y sub-registers such that each
sub-register stores X/Y bits. At least one extra sub-register
of at least X/Y bits 1s incorporated in each register to provide
redundancy in the number of sub-registers for a total of at
least Y+1 sub-registers per register, so that it a first sub-
register 1n a first register includes faulty bits, data destined
for storage in the first sub-register i1s stored in a second
sub-register of the first register that does not include faulty
bits.

A first data structure stores values associated with each
sub-register 1n a register, wherein a first value indicates that
the sub-register includes faulty bits and a second value
indicates that the sub-register does not include faulty bits. A
second data structure stores a reference to each register
based on values 1n the first data structure to indicate whether
a register 1s available to support a data operation.

A split register file, 1n accordance with another embodi-
ment, 1s provided. The split register file comprises a plurality
of registers each register configured for storing X bits,
wherein each register 1s partitioned into Y sub-registers such
that each sub-register stores at least X/Y bits, and wherein 1
a lirst selected sub-register in a first register having faulty
bits 1s unavailable for supporting a data operation, data
destined for storage in the first sub-register 1s stored in a
second selected sub-register 1n a second register that does
not include faulty bits.

The split register file may comprise N registers, each
partitioned mnto Y sub-registers, such that each partition
includes sub-registers R, through R, respectively 1in one of

US 10,020,037 B2

3

said N registers, such that i1 a first selected sub-register 1n a
first partition 1s unavailable for supporting a data operation
due to faulty bits, data destined for storage in the first
selected sub-register 1s stored 1n a second selected sub-
register 1n the first partition that does not have faulty baits.

In certain embodiments, a first data structure stores values
associated with each sub-register 1n a register, wherein a first
value indicates that the sub-register includes faulty bits and
a second value indicates that the sub-register does not
include faulty bits. A second data structure stores a reference
to each register based on values 1n the first data structure to
indicate whether a register 1s available to support a data
operation.

In accordance with another embodiment, a system com-
prising one or more logic units 1s provided. The one or more
logic units are configured to perform the functions and
operations associated with the above-disclosed methods. In
accordance with yet another embodiment, a computer pro-
gram product comprising a computer useable medium hav-
ing a computer readable program 1s provided. The computer
readable program when executed on a computer causes the
computer to perform the functions and operations associated
with the above-disclosed methods.

One or more of the above-disclosed embodiments, 1n
addition to certain alternatives, are provided in further detail
below with reference to the attached figures. The mvention
1s not, however, limited to any particular embodiment
enclosed.

FIG. 1 shows an operative computing environment 100,
which may include one or more processors 110-1 to 110-N,
and a memory 120 capable of communicating with each
other over a communication bus 130. Fach of the processors
110-1 to 110-N may vary in detailed structure, but 1n an
exemplary configuration, a processor 110-1 may include one
or more cores 115-1 to 115-M, a router 140, and a cache 150,
all of which are in communication over an internal processor
bus 160, wherein the internal processor bus 160 is further
capable of communication with the other components of the
operative computing environment 100, which may include
other processors, memory, connections to other networks,
etc.

A router 140 extracts the destination of a packet 1t
receives, selects the best path to that destination, and for-
wards data packets to the next device along this path. Cache
150 1s a temporary storage arca where frequently accessed
data can be stored for rapid access. Once the data 1s stored
in cache 150, future use can be made by accessing the
cached copy rather than re-fetching or re-computing the
original data, so that the average access time 1s shorter.
Cache 150, therefore, helps expedite data access that the
processor 110-1 would otherwise need to fetch from main
memory 120, for example. Processors 110 may have one or
more caches 150. Multiple caches in a processor may be
organized into levels, e.g. level 1 (LL1), level 2 (LL2), etc. and
the hierarchy may be based on size.

A processor may contain one or more cores 115. FIG. 2
illustrates an exemplary architecture 200 for a core 115,
according to one embodiment. Core 1135 may include a fetch
unit 210, a decode unit 220, a schedule unit 230, an
execution unit 240, a retirement umt 250, a level 1 (LL1)
cache 260, and a register file 270. Referring to FIGS. 1 and
2, fetch unit 210 fetches the mnstruction from a memory 120
(or equivalent) via internal processor bus 160, communica-
tion bus 130, or both, for decoding in decoder unit 220.
Fetch unit 210 causes the fetched instruction to be placed 1n
a special register (not shown) to be operated on by execution

unit 240.

10

15

20

25

30

35

40

45

50

55

60

65

4

Instruction decoder (1.e., decode unit 220) decodes an
instruction into signals (1.e., microcode) used by the execu-
tion unit 240 for performing an operation according to the
instruction being executed. Each instruction may have one
or more input operands and one or more output operands.
When an mstruction 1s scheduled for execution by schedule
umt 230, register file 270 1s accessed with 1dentifiers of its
input operands (1.e., tags, which may provide the location of
the register holding the operand). Data retrieved from reg-
ister file 270 1s operated on 1n execution unit 240 as provided
by the instruction, and the one or more output operands are
stored back to the register file 270 in the entry location
indicated by the instruction (1.e., destination tag). Core 115
may be 1n communication with other cores, higher level
cache, and other processors via a communications bus
architecture, for example.

FIG. 3 1illustrates the layout of a register file system 300
(e.g., corresponding to register file 270 above) according to
one embodiment. Register file system 300 may include a
register file 310 to hold one or more operands, address
locations, data, etc. in each of a plurality of register lines
(R1, R2, R3, etc.) that may be read out vertically, for
example. In an exemplary embodiment, a tag 1s associated
with each data block 1n a register line of register file 310.

A data structure (e.g., a data table, not shown) may keep
track of the data by renaming each register line according to
the tag associated with the data block. This 1s often termed
a tag-indexed register file, where there 1s one large register
file for data values contained 1n register lines, such that for
every register line one tag i1s designated. For example, i1 a
computing system comprises 80 physical registers lines,
then seven-bit tags may be utilized, since a seven-bit tag can
accommodate up to 128 (i.e., 27) tag values for 128 register
lines.

Referring to FIG. 2 again, when an instruction 1s 1ssued to
an execution unit 240, the tags associated with register lines
that hold the target data are sent to the physical register file
270, where the values contained 1n the register lines corre-
sponding to those tags are read and sent to execution unit
240. For example, 1n FIG. 3, 1n a register file 270, target data
(e.g., d3, d2, d1, d0) may be read from register R2, resulting,
in the target data being fetched and provided to execution
umt 240, as shown 1n FIG. 2. Similarly, data may be written
to different register lines 1n register file 310 as i1dentified by
a designated tag.

As shown in FIGS. 2 and 3, register file 270 may be
associated with a data structure (e.g., a register free list 320),
which may be used to identily available registers mn a
computing system. Pointers (e.g., tags) in the register free
list 320 are associated with entries in register file 270 to
indicate whether a corresponding register 1s available (unal-
located) or unavailable (allocated).

Data 1n a register, in some embodiments, may be accessed
by referring to values stored in an independent data structure
(c.g., a tag table as illustrated 1n FIGS. 4A and 5A) that may
be associated with the register free list 320. In some embodi-
ments, a tag table may not be implemented and the respec-
tive values may be stored in the register free list 320 1n
correspondence with entries in register file 270.

When an instruction needs to access a register (1.., a
target register 1n a read operation or a destination register in
a write operation), for example, a rename table (e.g., the one
identified as RAT in FIGS. 4B and 5B) and free list 320
provide the tag values corresponding to a register and/or
sub-registers that store or are designated for storing the
respective data on which the operation designated by the
instruction 1s performed. A register allocated to storing data

US 10,020,037 B2

S

for an 1nstruction being executed 1s released when the
instruction retires in the retirement unit 230.

A register may be deemed as unavailable 11 a sub-portion
(e.g., a block or a sub-register) of the register 1s faulty. In one
or more embodiments, overall yield and availability of
register file space may be improved by confining errors to
smaller blocks or sub-registers of the register, such that the
blocks or sub-registers containing faulty bits are deemed
unavailable, rather than the entire register when fabrication
limitations result 1n high faulty bit rates in the register space.

FIG. 4A illustrates a split register file (SRF) 400 archi-
tecture that helps improve eflicient use of register file space,
in accordance with one embodiment. As shown, a register
line may be divided to include a plurality of sub-registers

(e.g. R1-bank 3, R1-bank 2, R1-bank 1, and R1-bank 0). In

one embodiment, the register file 270 may be split, for
example vertically, in such a way that multiple portions of
the data line are respectively allocated to multiple sub-
registers 1n a register. In this manner, 11 a register includes a
faulty bit, the faulty bit may render a sub-register unavail-
able rather than the whole register.

In one embodiment, register allocation may be performed
by allocating each sub-register individually, for example, by
referring to the free list or sub-lists. That 1s, a sub-register
may be treated as an independent register for the purpose of
data access. A sub-register having faulty bits may be deemed
unavailable (1.e., discarded from use) by referencing (or
removing a reference to) the sub-register’s respective loca-
tion (e.g., as 1dentified by a tag and a bank reference) in
register Iree list 320.

For example, each bank may be associated with a register
free list (e.g., banks 0 through 3 free lists) and, in some
embodiments, a tag table, as shown 1n FIG. 4A. In one
embodiment, a register 1s deemed available 1f at least one
sub-register 1n each bank associated with that register 1s
available. For example, a register may be allocated so that
data segments 1 a data line [d3, d2, d1, d0] are stored 1n

sub-registers referenced by R2-bank 3, R1-bank 2, R3-bank
1 and R3-bank 0, respectively, as shown in FIG. 4A.
Accordingly, each sub-register 1s 1dentified by a tag (e.g.,

R1, R2, R3, etc.) and a bank (e.g., bank 0, bank 1, bank 2,
etc.).

Reading the data stored in a register R may be accom-
plished, for example, by associating a tag with a register line
(c.g., a tag for each sub-register 1n a register line) so that
register file banks can be accessed 1n parallel. The tags may
be stored 1n a data structure which may be stored 1n schedule
unit 230 or 1n a data structure (herealiter referred to as “tag
table” by way of example), as provided in further detail
below.

In one embodiment, no tag table 1s implemented. In such
embodiment, instructions are associated with a tag before
reaching schedule unit 230. For instance, an exemplary
instruction may be associated with mput tag <R3,R3.,R5,
R1> for source operand 1, mput tag <R4,R7,R2,R4> for
source operand 2, and mput tag <R1,R2,R1,R5> for output
operand destination as shown 1n the example in FIG. 4B.
Source tags may be obtained through a renaming process.

The destination register may be determined based on
values stored in one or more bank free lists. One or more
tags may be stored in schedule unit 230 together with
remaining information of the instruction. When an 1nstruc-
tion 1s sent to execution unit 240, execution unit 240 uses the
tags to access register file 270 and fetch the respective data.
Similarly, when execution unit 240 finishes execution of an

5

10

15

20

25

30

35

40

45

50

55

60

65

6

instruction, execution unit 240 uses a destination tag to
update the proper register (1.e., each one of the sub-registers
in each one of the banks).

In one embodiment, an instruction may keep the tag of the
entry in the first bank (e.g., bank 0). That tag (e.g., short tag)
may be used to access another tag (e.g., full tag) stored in the
tag table, which 1s used later to access banks of the SRF and
assemble the linked sub-registers, thereby enabling the full
data entry or instruction to be assembled.

In accordance with another embodiment a tag table may
be implemented. In this embodiment 1nstead of storing tags
in schedule unit 230, the tags are stored 1n a tag table. For
example, row 3 may hold <R3,R3,R5,R1>, row 4 may hold
<R4,R7,R2,R4>, and so on. Execution of an instruction in
schedule unit 230 may result 1n storing <R1,R2,R1,R5> as
the destination register in row 1.

When the 1nstruction 1s sent to execution unit 240, execu-
tion unit 240 accesses the tag table with tags (R3 and R4)
and gets tags from rows 3 and 4 respectively. A similar
process happens to write the output operand to destination
register R1, and a similar process happens 1n retirement unit
250 to release registers. The benefit of such a tag table is to
reduce the amount of space devoted to tags because each
individual tag may be used by different instructions, and
hence, by keeping tags 1n a tag table the amount of total
space required 1s advantageously reduced.

It may be appreciated that 1n accordance with the above
implementation, the failure of a single bit 1n a line register
does not result in the entire line register being disabled.
Rather, since the line register 1s divided into multiple 1nde-
pendently accessible sub-registers, the sub-registers contain-
ing the faulty bit are discarded, while advantageously the
remaining sub-registers may be utilized. FIG. 4B illustrates
in more detail an exemplary progression of values stored 1n
a SRF 1in response to execution of an exemplary instruction,
in accordance with one embodiment.

In accordance with another embodiment, FIG. 5A illus-
trates a redundant register file (RRF) system 500 which
increases the yield of the register file 510 when fabrication
limitations result 1n high faulty bit rates in register space.
The redundant register file 1s based on splitting the register
file 510 1nto banks of sub-registers (e.g., bank 3 to bank 0)
as noted earlier so that the existence of a faulty bit in one row
aflects a single block i the line register rather than the
whole register. In one exemplary implementation, one or
more extra sub-register banks may be added to provide some
redundancy 1n the number of sub-registers 1n a register line,
In case one or more sub-registers 1 a register line include
faulty bits.

In the exemplary embodiment shown in FIG. 5A, a 72 bit
register may be split into 4 blocks each having 18 bits to
produce four sub-register files with 18-bit registers. One or
more extra banks with the same bit width (e.g., 18 bits) may
be added to provide an additional bank. Depending on
implementation, at the testing stage of fabrication, blocks
with faulty bits are 1dentified and such blocks are discarded
from future. When a faulty bit 1s detected, for example, 1n
one 18-bit block of a line register, that block 1s deemed
disabled.

A register Iree list may be maintained to identify available
or faulty blocks for each sub-register bank, for example.
Each register free list entry may have some additional
information indicating which blocks may be used. For
example, in FIG. 5 the register free list indicates that R2 may
use the blocks 1mn row 2 with the exception of the block
corresponding to bank 1 (the bank 1n the middle marked with
xxx). During fabrication testing, registers with fewer sub-

US 10,020,037 B2

7

registers available than needed (e.g., 11 three or fewer 18-bit
sub-registers are available, as 1n the exemplary embodiment
of FIG. SA), are deemed unavailable and removed from the
register free list.

Referring to exemplary implementation 1n FIG. 5A, with
one redundant bank of sub-registers, a 72 bit register may
not be deemed disabled if one sub-register of the register
lines contains faulty bits, because four sub-registers (e.g.,
including the additional sub-register) remain available. The
additional sub-register may be 1n the same row as the other
sub-registers of a line register. In an alternative embodiment,
the additional sub-register may be also implemented to be in
another row. FIG. 5B illustrates, in more detail, an exem-
plary progression of values stored 1n a RRF in response to
execution of an exemplary instruction, 1n accordance with
one embodiment.

Depending on implementation, 1t 1s possible that the
present invention can take the form of an entirely hardware
embodiment, an enfirely solftware embodiment or an
embodiment containing both hardware and software ele-
ments. A software embodiment may include firmware, resi-
dent software, microcode, etc., without limitation.

Furthermore, the invention can take the form of a com-
puter program product accessible from a computer-usable or
computer-readable medium providing program code for use
by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any
apparatus that can contain, store, communicate, propagate,
or transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide
temporary storage of at least some program code 1n order to
reduce the number of times code must be retrieved from bulk
storage during execution.

Other components may be coupled to the system. Input/
output or I/O devices (including but not limited to key-
boards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O con-
trollers. Network adapters (e.g., modem, cable modem,
Ethernet cards) may also be coupled to the system to enable
the data processing system to become coupled to other data
processing systems or remote printers or storage devices
through intervening private or public networks.

It should be understood that the logic code, programs,
modules, processes, methods, and the order in which the
respective elements of each method are performed are
purely exemplary. Depending on the implementation, they
may be performed 1n any order or in parallel, unless indi-
cated otherwise 1n the present disclosure. Further, the logic
code 1s not related, or limited to any particular programming
language, and may comprise one or more modules that
execute on one or more processors 1n a distributed, non-
distributed, or multiprocessing environment.

Theretore, 1t should be understood that the invention can
be practiced with modification and alteration within the
spirit and scope of the appended claims. The description 1s
not intended to be exhaustive or to limit the invention to the
precise form disclosed. These and various other adaptations
and combinations of the embodiments disclosed are within
the scope of the mvention and are further defined by the
claims and their full scope of equivalents.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The mnvention claimed 1s:
1. An apparatus for storing X-bit digitized data, the
apparatus comprising:
a plurality of registers each register configured for storing
X bits,

wherein each register 1s partitioned mto Y sub-registers
such that each sub-register stores X/Y bits, and

wherein at least one extra sub-register of at least X/Y bits
1s 1ncorporated in each register to provide redundancy
in the number of sub-registers for a total of at least Y+1
sub-registers per register, so that 11 a first sub-register 1n
a first register includes faulty bits, data destined for
storage 1n the first sub-register 1s stored 1n a second
sub-register of the first register that does not include
faulty bits.
2. The apparatus of claim 1, wherein a first data structure
stores values associated with each sub-register 1n a register,
wherein a first value 1ndicates that the sub-register includes
faulty bits and a second value indicates that the sub-register
does not include faulty bits.
3. The apparatus of claim 2, wherein a second data
structure stores a reference to each register based on values
in the first data structure to indicate whether a register 1s
available to support a data operation.
4. The apparatus of claim 3, wherein a register 1s deter-
mined to be available if total number of sub-registers, in that
register, that do not include faulty bits 1s equal to or greater
than Y.
5. The apparatus of claim 3, wherein a register 1s deter-
mined to be unavailable i1 total number of sub-registers in
that register 1s equal to Z, and number of sub-registers that
include faulty bits 1s greater than Z-Y.
6. The apparatus of claim 3, wherein the data operation 1s
a read or a write operation.
7. An apparatus for storing X-bit digitized data, the
apparatus comprising:
a plurality of registers each register configured for storing
X bits,

wherein each register 1s partitioned mnto Y sub-registers
such that each sub-register stores at least X/Y bits, and

wherein 11 a first selected sub-register 1n a first register
having faulty bits 1s unavailable for supporting a data
operation, data destined for storage in the first sub-
register 1s stored 1n a second selected sub-register 1n a
second register that does not include faulty baits.

8. The apparatus of claim 7 comprising N registers, each
partitioned mto Y sub-registers, such that each partition
includes sub-registers R, through R, respectively 1n one of
said N registers, such that 11 a first selected sub-register 1n a
first partition 1s unavailable for supporting a data operation
due to faulty bits, data destined for storage in the first
selected sub-register 1s stored 1 a second selected sub-
register in the first partition that does not have faulty baits.

9. The apparatus of claim 8, wherein a first data structure
stores values associated with each sub-register 1n a register,
wherein a first value indicates that the sub-register includes
faulty bits and a second value indicates that the sub-register
does not include faulty bits.

10. The apparatus of claim 9, wherein a second data
structure stores a reference to a partition based on values 1n
the first data structure to indicate whether any sub-registers
in said partition 1s available to support a data operation.

11. The apparatus of claim 10, wherein a sub-register 1s
determined to be available 1f the sub-register does not
include faulty baits.

12. The apparatus of claim 10, wherein the data operation
1s a read or a write operation.

US 10,020,037 B2
9

13. A system comprising a register file for storing X-bit
digitized data, the register file comprising;:

a plurality of registers each register configured for storing

X bits,

wherein each register 1s partitioned into Y sub-registers 5

such that each sub-register stores X/Y bits, and

wherein at least one extra sub-register of at least X/Y baits

1s 1ncorporated in each register to provide redundancy

in the number of sub-registers for a total of at least Y+1
sub-registers per register, so that 1f a first sub-register in 10
a first register includes faulty bits, data destined for
storage 1n the first sub-register 1s stored i a second
sub-register of the first register that does not include
faulty bits.

14. The system of claim 13 wherein a first data structure 15
stores values associated with each sub-register 1n a register,
wherein a first value 1ndicates that the sub-register includes
faulty bits and a second value indicates that the sub-register
does not include faulty bits.

15. The system of claim 13 wherein a second data 20
structure stores a reference to each register based on values
in the first data structure to indicate whether a register is
available to support a data operation.

% ex *H & o

	Front Page
	Drawings
	Specification
	Claims

