12 United States Patent

Silberman et al.

US010019573B2

US 10,019,573 B2
*Jul. 10, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(63)

(51)

(52)

(58)

SYSTEM AND METHOD FOR DETECTING
EXECUTABLE MACHINE INSTRUCTIONS

IN A DATA STREAM
Applicant: FireEye, Inc., Milpitas, CA (US)

Inventors: Peter J. Silberman, Kensington, MD
(US); James R. Butler, Washington,
DC (US); Nick J. Harbour,
Alexandria, VA (US)

Assignee: FireEye, Inc., Milpitas, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 14/263,827

Filed: Apr. 28, 2014

Prior Publication Data

US 2014/02377600 Al Aug. 21, 2014

Related U.S. Application Data

Continuation of application No. 12/607,035, filed on
Oct. 27, 2009, now Pat. No. 8,713,681.

Int. CI.

GO6l 21/56 (2013.01)

U.S. CL

CPC GO6F 21/562 (2013.01); GO6L 21/56

(2013.01)

Field of Classification Search
CPC e, GO6F 21/562; GO6F 21/56

See application file for complete search history.

Cpen data
stream
200

:

inte input buffer
210

(56) References Cited
U.S. PATENT DOCUMENTS
5,752,257 A 5/1998 Rupoll et al.
7,937,387 B2 5/2011 Frazier et al.
8,069,484 B2* 11/2011 McMillan et al. 726/23
8,250,655 Bl 8/2012 Malanov et al.
8,549,624 B2* 10/2013 Alme GOO6F 21/56
713/188
8,566,476 B2 10/2013 Shifter et al.
8,713,681 B2* 4/2014 Silberman et al. 726/24
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2008/091785 A2 7/2008

OTHER PUBLICATTONS

Oberheide, Jon, Evan Cooke, and Farnam Jahanian. “Rethinking
Antivirus: Executable Analysis in the Network Cloud.” HotSec.

2007 .*
(Continued)

Primary Examiner — Saleh Nayjar

Assistant Examiner — Louis C Teng
(74) Attorney, Agent, or Firm — Rutan & Tucker, LLP

(57) ABSTRACT

Detecting executable machine instructions 1n a data stream
1s accomplished by accessing a plurality of values repre-
senting data contained within a memory of a computer
system and performing pre-processing on the plurality of
values to produce a candidate data subset. The pre-process-
ing may include determining whether the plurality of values
meets (a) a randomness condition, (b) a length condition,
and/or (¢) a string ratio condition. The candidate data subset
1s 1spected for computer mnstructions, characteristics of the
computer instructions are determined, and a predetermined
action 1s taken based on the characteristics of the computer
instructions.

20 Claims, 3 Drawing Sheets

Read next n bytes i‘
I

Calculate
Entropy of input
Luffer
220

Entropy is greater
than threshold x
230

ind large
string in input
buffer
24()

String 1s shorter than
threshold y
250

ind ratio g
string to non-
string data in
input buffer
260

Ratic of string o non=string is less

than threadhold z
Continue to Figure 3
270

v

Entropy is less
than threghold x
225

String is longer
than threshold v
245

Ratio of string to
nan-string is
greater than
threshold z

285

US 10,019,573 B2
Page 2

(56)

8,793,278
8,881,271
8,949,257
9,106,630
9,177,144
9,208,936
9,275,229
9,413,781
2003/0200239
2005/0188272
2006/0026685
2007/0152854

2007/0232909
2008/0040710
2008/0184367

2008/0201779
2008/0263659
2009/0013192
2009/0158430
2009/0198651
2009/0198670
2009/0198689
2009/0199274
2010/0030996
2010/0031359

2010/0115620

2010/0242101
2010/0281540

2011/0099635

2011/0173213
2012/0240231

2012/0278884

2013/0247186
2013/0318038
2013/0318073
2013/0325791
2013/0325792
2013/0325871
2013/0325872
2014/0032875
2014/0181131
2014/0189687
2014/0189866
2014/0189882

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2 *

AN A A NN A AN

7/201
11/201
2/201
8/201
11/201
2/201
3/201
8/201
10/2003
8/2005
2/2006
7/2007

CN Oy ON Lh b

10/2007
2/2008
7/2008

8/2008
10/2008
1/2009
6/2009
8/2009
8/2009
8/2009
8/2009
2/2010
2/2010

5/2010

9/2010
11/2010

4/2011

7/2011
9/2012

11/2012

9/201
11/201
11/201
12/201
12/201
12/201
12/201

1/201

6/201

7/201

7/201

7/201

§ LN LN L N LN LN D SR P R U [U0 RS B UR R S

Frazier et al.
Butler, 11

Shifter et al.
Frazier et al.

Almeoooevivinininn, GO6F 21/563

Butler

[.eMasters

Cunningham et al.

Hars

Bodorin et al. 714/38

SALO oo 726/23

Copley ... GOGF 21/562
341/51

Hughes et al.

Chiriaccooovvvvvvivinnnnen, 717/136

McMillan GO6F 21/563
726/23

Tahan et al.

Alme oo, 726/22

Chen et al.

Borders

Shifter et al.

Shifter et al.

Frazier et al.

Frazier et al.

Butler, II

Alme ..ooovvviiiiiniin, GO6F 21/56
726/24

Alme ...oooovvivininnnn, GO6F 21/563
726/24

Reese, Jr.

Almeoooevviiiin, GO6F 21/563
726/23

Silberman GO6F 21/56
726/24

Frazier et al.

Sohnoovvvvivininnn, GO6F 21/564
726/24

Menoher GO6F 21/564
726/22

[.emasters

Shiffer et al.

Shiffer et al.

Shiffer et al.

Shiffer et al.

Shiffer et al.

Shiffer et al.

Butler

Ross

Jung et al.

Shifter et al.
Jung et al.

2014/0237600 Al 8/2014 Silberman et al.

2014/0280245 Al 9/2014 Wilson

2014/0283037 Al 9/2014 Sikorski et al.

2014/0283063 Al 9/2014 Thompson et al.

2014/0289848 Al* 9/2014 Leeccooovvvvvinnnnn, GOG6F 21/566
726/22

2014/0344926 Al 11/2014 Cunningham et al.

2016/0044000 Al 2/2016 Cunningham

2016/0099967 Al* 4/2016 Stemm HO4L 63/1483

726/1

2016/0119366 Al1* 4/2016 Alme GOG6F 21/563
726/23

2016/0205125 Al1* 7/2016 Kim HO4L 63/1416
726/23

OTHER PUBLICATTONS

Vigna, Giovanni. “Static disassembly and code analysis.” Malware

Detection. Springer US, 2007. 19-41.%
Carvey, Harlan. “Malware analysis for windows administrators.”

Digital Investigation 2.1 (2005): 19-22.*
Likarish et al., Obfuscated malicious javascript detection using

classification techniques, Oct. 13-14, 2009, Malicious and
Unwanted Software (Malware), 2009 4th International Conference

on, pp. 47-54.*

European Search Report for EP Patent Application No. 108274275,
dated May 26, 2015, four pages.

International Search Report corresponding to PCT/US2010/054262
dated Dec. 22, 2010.

Al Dahoud, et al., “Computer virus strategies and detection meth-
ods,” Journal of Open Problems Computational Math, vol. 1, No. 2,
Sep. 2008, pp. 29-30.

Beaucamps, P., “Advanced polymorphic techniques,” World Acad-
emy of Science, Engineering & Technology, vol. 34, pp. 253-264,
Oct. 31, 2007.

Al Dahoud, et al.; “Computer Virus Strategies and Detection
Methods”, Journal of Open Problems Computational Math, vol. 1,
No. 2, Sep. 2008; pp. 29-36.

Beaucamps, P.; “Advanced Polymorphic Techniques”, World Acad-
emy of Science, Engineering & Technology. vol. 34, pp. 253-264,
Oct. 31, 2007.

Citation establishing publication date for Beaucamps, P., Advanced
Polymorphic Techniques, World Academy of Science, Engineering
& Technology, vol. 34, pp. 253-264, Oct. 31, 2007.
PCT/US10/54262 filed Oct. 27, 2010, International Search Report
and Written Opinion dated Dec. 22, 2010.

U.S. Appl. No. 12/607,055, filed Oct. 27, 2009 Final Office Action
dated May 17, 2012.

U.S. Appl. No. 12/607,055, filed Oct. 27, 2009 Non-Final Office
Action dated Jan. 4, 2012.

* cited by examiner

U.S. Patent Jul. 10, 2018 Sheet 1 of 3 US 10,019,573 B2

Data Stream (e.g. File) 100

Non-executable data
110

Machine executable instructions (malware)
120

Non-executable data
130

U.S. Patent Jul. 10, 2018 Sheet 2 of 3 US 10,019,573 B2

Open data
sfream

200

Read next n bytes

Into Input buffer
210

Entropy Is less
than threshold x
225

Calculate
Entropy of input
buffer
220

Entropy is greater String Is longer

than threshold x than threshold y

Ind larges
string In input

buffer . .
Ratio of string to

240 o
non-string Is
String is shorter than greater than
threshold y threshold z
25 265

string to non-
string data In
iInput buffer

Ratio of string to non-string is less
than threadhold z

Continue to Figure 3
270

v

Fig. 2

U.S. Patent Jul. 10, 2018 Sheet 3 of 3 US 10,019,573 B2

|
From Figure 2, 270

Test offset set to O
300

Begin disassembly at
test offset inside of input

buffer

Test offset < n byte
length of input
buffer

335

instructions and record
for this test offset

320

Increment tes
offset

330

Test offset > n byte length of input
buffer
340

with greatest number of

PPMJXC instructions

Discard input buffer,
Nno executable code
found

365

PPMJXC >
threshold a?

NO

Nofify user
executable code
found in data stream

Fig. 3

Additional disassembly

validation and cleanup
370

US 10,019,573 B2

1

SYSTEM AND METHOD FOR DETECTING
EXECUTABLE MACHINE INSTRUCTIONS
IN A DATA STREAM

CROSS REFERENCE TO RELATED
APPLICATION

This patent application claims priority to and 1s a con-
tinuation of U.S. patent application Ser. No. 12/607,055
titled System And Method For Detecting Executable
Machine Instructions In A Data Stream and filed Oct. 27,
2009, the entire contents of which 1s herein incorporated by
reference 1n its entirety.

BACKGROUND OF THE INVENTION

The present invention generally relates to malware detec-
tion and more specifically relates to using a determination of
data entropy, ratio of string data to non-string data, and
computer instruction disassembly to detect malware nside
of data files that should not contain executable code.

A common problem facing information security personnel
1s the need to identily suspicious or outright malicious
software or data on a computer system. This problem
typically arises when an attacker uses a malicious piece of
solftware to compromise a computer system. Initial steps
taken 1n response to this kind of situation mclude attempts
to locate and identily malicious software (also known as
“malware”, comprised of machine instructions) or data,
followed by attempts to classify that malicious software so
that its capabilities may better be understood. Investigators
and response personnel use a variety of techniques to locate
and 1dentily suspicious software, such as temporal analysis,
filtering of known entities, and Live Response.

Temporal analysis mvolves a review of all activity on a
system according to date and time so that events occurring
on or around a time window of suspected compromise may
be more closely examined. Such items might imnclude event
log entries; files created, deleted, accessed, or modified;
processes that were started or terminated; network ports
opened or closed, and similar 1tems.

Additionally a comparison of files on the system being
examined against known file patterns may be performed. In
this situation, all files on the system may be reviewed and
compared against a database of known, previously encoun-
tered files. Such comparisons are usually accomplished
through use of a cryptographic hash algorithm—a well
known mathematical function that takes the data from a file
and turns it mnto a compact numerical representation known
as a hash value. A fundamental property of hash functions 1s
that if two hash values generated using the same algorithm
are different, then the data used to generate those hashes
must also be different. The corollary 1s that hashes found to
match were generated from data that was i1dentical. While
the corollary 1s not always true, hash collisions (1dentical
hashes generated from different input data) for crypto-
graphic hash algorithms are rare such that a hash comparison
may be used to determine file equivalence.

An alternative to reviewing static historical data such as
files and event logs 1s Live Response. This technique exam-
Ines running programs, system memory contents, network
port activity, and other system metadata while the computer
system 1s still on and in a compromised state 1n order to
identify how 1t may have been modified by an attacker.

There are many other techniques that may be employed to
identily suspicious activity on a potentially compromised
computer system. These techniques often generate a rather

10

15

20

25

30

35

40

45

50

55

60

65

2

large amount of data, all of which must be reviewed and
interpreted 1n order to reach any conclusions. Further com-

plicating this technique 1s the fact that attackers typically
have a good understanding of the techniques used to identify
compromised systems. They employ various methods to
hide their presence, making the job of an investigator that
much more diflicult. Some of these techniques include
deleting indicators of their entry to a system once it’s
compromised, such as log file entries, file modification/
access dates, and system processes. Attackers may also
obfuscate running malware by changing 1ts name or execu-
tion profile such that 1t appears to be something benign. In
order to better hide malware or other data stored on disk,
attackers may make use of a “packed” storage format.
Packing 1s a techmique by which data 1s obfuscated or
encrypted and encapsulated along with a program to perform
a decryption/de-obtuscation, and then stored somewhere on
a system. For example, a “Packed Executable” 1s a piece of
software that contains an “unpacking” program and a pay-
load of encrypted data. That payload 1s often malicious
soltware, such as a virus or Trojan Horse. Attackers may also
embed malware inside of files that otherwise would not
contain executable machine instructions. This packaging
serves two purposes—it attempts to hide the attacker’s
malware 1n a location that may be easily overlooked by an
ivestigator. It also may be used to dupe a computer user into
inadvertently executing the malware, thus compromising
theirr computer system.

One of the fundamental properties of a data set consisting,
of machine instructions, when compared to human readable
data set, 1s that the randomness, or “entropy” of the data
tends to be higher. Techniques for determining data entropy
to 1dentily malware are described 1n U.S. patent application
Ser. No. 11/657,541, published as US Pat. Pub.2008-
0184367/, the disclosure of which 1s hereby incorporated by
reference 1n 1ts entirety ito the present application. While
an examination ol entropy may provide a useful filter, a
measure ol entropy alone 1s not a guaranteed method for
identifving executable machine instructions. Moreover,
there are drawbacks to using entropy across a block of data.
For example, entropy 1s a global measurement across a data
set, returning a single value across that set. This means that
a data block may return a low entropy measurement when 1n
fact small sections of that same data may contain very high
entropy. This scenario may be true even 1f the majority of the
data block has low entropy.

Thus, there 1s a need 1n the art for a technique to derive
a robust measurement of entropy in order to detect the
presence of malware 1 a computer system that has been
hidden by an attacker immside of data streams that do not
normally contain executable machine instructions.

SUMMARY

The present inventors have developed techniques that
derive a robust measurement of entropy combined with
analysis of string-based data in order to detect the presence
ol executable machine instructions 1n a data stream.

In addition to entropy, string ratios may be examined to
identify whether a block of data 1s more likely to be
executable machine instructions. A string 1s a sequence of
characters that may be represented, for example, 1n either the
American Standard Code {for Information Interchange
(ASCII) or Unicode—both of which are industry standard
methods for representing human readable information in a
computer system. The presence of a large number of strings,
or the presence of a large contiguous string 1n a data block,

US 10,019,573 B2

3

are mdicators that a block of data 1s less likely to be machine
readable 1nstructions and more likely to be human readable
text.

Blocks of information may also be “brute force™ disas-
sembled—that 1s, a given block of information may be
assumed to contain a set ol machine instructions and
attempts may be made to interpret that data as instructions
to 1dentity 1f they are valid. A data block may contain
instructions in combination with other data. The challenge 1n
this circumstance 1s 1dentifying what subset of information
within the block are machine mstructions versus other types
of information. To overcome this, disassembly may be
attempted at each offset within the data block and the results
examined to i1dentily ratios of valid versus invalid instruc-
tion sequences.

Thus, a block of data may be analyzed by measuring the
rat1o of string to non-string information 1n a data block and
identifying the presence of long, contiguous strings, 1n
addition to applying entropy measurements. A resulting filter
may eflectively i1dentily the presence of potential machine
instructions in an arbitrary data stream. Combination of such
filters with a “brute force” disassembly method results 1n a
reliable system for identifying machine instructions 1n a data
stream.

In an embodiment, analyzing whether executable code
exists within data may include accessing a plurality of
values representing data contained within a memory of a
computer system and performing pre-processing on the
plurality of values to produce a candidate data subset. The
pre-processing may be performed by a computer and consist
of determining whether the plurality of values meets at least
one of (a) a randomness condition, (b) a length condition,
and (c) a string ratio condition. Analyzing whether execut-
able code exists within data may further include: inspecting,
with the computer, the candidate data subset for computer
instructions and determining one or more characteristics of
the computer 1nstructions. A predetermined action based on
the characteristics of the computer instructions may be
taken.

In a further embodiment, accessing a plurality of values
may further include retrieving data directly from at least one
memory component contained within the computer system.

In another embodiment, accessing a plurality of values
may further include reading an mput stream from a persis-
tent storage device. Reading the mput stream may include
reading a file from a hard drive of a computer system.

In yet a further embodiment, determiming whether the
plurality of values meets the randomness condition may
include performing an entropy calculation, and the entropy
calculation may include computation of a value for Shannon
entropy.

In an embodiment, the length condition may include a
mimmum threshold value. The threshold value may be
smaller than the candidate data subset.

In another embodiment, inspecting the candidate data set
may include a brute force disassembly of the candidate data
subset. The brute force disassembly may include determin-
ing 1t any PPMIXC instruction sequences exist in the
candidate data set, determining if any other instruction
sequences exist in the candidate data subset, and/or deter-
mimng ii an struction sequence exists in the plurality of
values that indicates an end of the 1nstruction sequence.

In a further embodiment, taking a predetermined action
may 1nclude providing notification to a user and/or execut-
ing an automated process.

In an embodiment, a tangible computer readable media
has 1nstructions which enable a machine to access a plurality

10

15

20

25

30

35

40

45

50

55

60

65

4

of values representing data contained within a memory of a
computer system and perform pre-processing on the plural-
ity of values to produce a candidate data subset. The
pre-processing may be performed by a computer and consist
of determining whether the plurality of values meets at least
one of (a) a randomness condition, (b) a length condition,
and (c) a string ratio condition. The mstructions may further
ecnable the machine to inspect, with the computer, the
candidate data subset for computer instructions and deter-
mine one or more characteristics of the computer nstruc-
tions, and take a predetermined action based on the charac-
teristics ol the computer instructions.

In a yet further embodiment, a distributed method of
analyzing whether executable code exists within data may
include accessing, at a first location, a plurality of values
representing data contained within a memory of a computer
system and performing pre-processing on the plurality of
values to produce a candidate data subset. The pre-process-
ing may be performed by a first computer and consist of
determining whether the plurality of values meets at least
one of (a) a randomness condition, (b) a length condition,
and (c) a string ratio condition. The candidate data subset
may be transmitted to a second location. Analyzing whether
executable code exists within data may further include:
ispecting, at the second location, with a second computer,
the candidate data subset for computer instructions and
determining one or more characteristics of the computer
instructions. A predetermined action based on the charac-
teristics of the computer instructions may be taken.

In an embodiment, the first computer may be a computer
of a user; the second computer may be a remote service,
which may be a cloud computing based remote service.

Other systems, methods, features, and advantages consis-
tent with the present invention will become apparent to one
with skill in the art upon examination of the following
figures and detailed description. It 1s intended that such
additional systems, methods, features, and advantages be
included within this description and be within the scope of
the 1nvention.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of this specification, 1illustrate an
implementation of methods and systems consistent with the
present invention and, together with the description, serve to
explain advantages and principles consistent with the inven-
tion. In the drawings,

FIG. 1 1llustrates how executable machine instructions
may be embedded 1n a data stream that contains non-
machine instruction (or “non-executable™) data;

FIG. 2 illustrates a detailed flowchart of a method of
detecting malware by finding executable code 1n an arbitrary
data stream using an entropy calculation and string analysis
consistent with the present invention;

FIG. 3 continues the flowchart started in FIG. 2 and
completes the description of a method of detecting malware
by finding executable code in an arbitrary data stream
through use of brute force disassembly, and disassembly
validation consistent with the present mvention.

DETAILED DESCRIPTION

The presently disclosed techmques provide for analysis of
arbitrary blocks of data from a computer system. The
analysis may include quantification of the data’s entropic
characteristics so as to reach conclusions about how suspi-

US 10,019,573 B2

S

cious or interesting the data may be. The terms “suspicious”
and “interesting’”, as used herein, refer to data that might be
an indication of a compromised computer system, or related
directly to a compromising technique. Identifying execut-
able code inside of an arbitrary data stream may also be
interesting in circumstances other than computer security
incidents. For example, the presence of executable code 1n
data may be of interest in the mtelligence, law enforcement,
or policy compliance fields.

An entropy determination method may consist of a spe-
cific combination of techniques that may divide a segment of
data from a computer system into pieces and apply math-
ematical techniques for determining entropy across those
pieces. Subsequently, each segment data may be subjected to
additional analysis, or not, depending on whether 1t meets a
specified entropy threshold. For example, a data stream may
be divided into pieces, where each piece 1s 256 bytes 1n size,
before being analyzed for entropy.

If a data block meets a specified entropy threshold, 1t may
be analyzed for the presence of string information i a
number of ways. For example, the largest contiguous string,
may be 1dentified. In addition, or alternatively, the overall
rat1o of string to non-string iformation for that block may
be calculated. If the longest contiguous string i1s below a
specified threshold and the ratio of string to non-string data
1s also below a specified threshold, “brute force” disassem-
bly may be attempted.

Brute force disassembly may be used to interpret the data
segment as machine instructions at each oiffset within the
data segment. For example, if a data segment 1s 256 bytes
long, the disassembly would 1nvolve attempting to interpret
the data segment as machine instructions multiple times—
once starting at byte 0 and reading through byte 255, once
starting at byte 1 and reading through byte 255, and so on.
During each pass the number of each different type of
machine instruction encountered is recorded. A specified
heuristic may be applied to determine the “most valid”
disassembly from the data segment. In one embodiment
consistent with the invention, a heuristic called PPMIJXC
may be used. PPMIXC stands for Push Pop Mov IJmp Xor
Call. These are machine instructions that occur with very
high frequency in software. When analyzing a data segment
to determine 1f 1t 1s executable code, a higher ratio of
PPMIXC 1nstructions when compared to other instruction
types within a data segment may be indicative of such
executable code. When using PPMIXC, the data segment
with the highest number of these commands may be selected
as the “most valid” disassembly. In cases where there are
two disassemblies of a data segment with the same number
of PPMIXC i1nstructions, the disassembly with the lower
oflset 1s utilized to obtain the largest number of machine
instructions. The disassembly may be conducted 1n such a
way that the results must contain a minimum number of
PPMIXC instructions, for example, twenty, in order to be
considered valid.

Once disassembly has been completed, additional valida-
tion operations may be applied across the disassembly to
turther validate or refine the findings. For example, several
additional checks may be applied to the disassembled 1nfor-
mation: 1) the valid mstructions 1n the disassembly need to
belong to a set of well known, understood instructions (e.g.
“valid 1nstructions for the computer processor of the system
being examined”); and 11) the disassembly needs to end with
a valid instruction that signifies the end of a machine
instruction block—such blocks contain instructions that
return flow of control to some other region of a computer
system’s memory. A disassembly meeting all of the above

10

15

20

25

30

35

40

45

50

55

60

65

6

criteria may be positively 1dentified as executable code
embedded 1n a data stream. Both the data segment and the
overall data stream the data segment was a member of may
be marked in some fashion for review through a user
interface.

A malware detection method in a data processing system
may determine suspicious data based on identifying execut-
able machine instructions in data streams such as files or
memory. The method, for example, may include acquiring a
segment of data, calculating an entropy value for the seg-
ment of data, comparing the entropy value to a threshold
value, identifying string ratio and length characteristics,
performing a brute force disassembly, and validating that
disassembly. The data segment and parent data stream may
be marked as 1nteresting or suspicious 1 a valid disassembly
for machine instructions 1s identified. The method may
turther include reporting suspicious data to an administrator.

Retference will now be made 1n detail to an implementa-
tion consistent with the present invention as 1llustrated 1n the
accompanying drawings.

FIG. 1 1llustrates how executable machine instructions
may be embedded in a data stream that contains non-
machine instruction data. A data stream 100 (in this
example, a file stored on a computer system) may contain
non-machine instruction (or “non-executable™) data seg-
ments 110 and 130, for example.

The computer system 1n the present example may include
any computer system capable of executing the methods of
the described embodiments and may include one or more
processors and one or more memories. The computer system
may also include a network of two or more computers,
including computers accessible over the Internet and via
cloud computing-based services. The computer memory
may be capable of storing instructions executable by a
processor and such instructions may be stored 1n temporary
memory or persistent memory. Such persistent memory may
include a hard drive. The computer system may be enabled
to execute any of the processes described with reference to
FIG. 2 and FIG. 3.

Embedded within the data stream 1n the computer system,

in-between non-executable data segments 110 and 130, for
example, an executable segment of machine instructions,
120, may exist. Embedding segment 120 may accomplish a
variety of purposes, including but not limited to, disguising
malware 1n order to evade detection or enhancing the
probability of compromising a computer system as the result
of a computer system user opening the data stream and
inadvertently executing the machine instructions contained
in the data stream.

FIG. 2 illustrates a detailed flowchart of a method of
detecting malware by finding executable code 1n an arbitrary
data stream using an entropy calculation and string analysis
consistent with the present invention. At step 200 a data
stream may be opened for reading. At step 210, n bytes may
be read into an input buifer. In one embodiment consistent
with the invention, n 1s 256.

At step 220 an entropy calculation 1s made across the
input bufler. There are several mathematical methods for
generating a numeric understanding of the entropy, or “ran-
domness”, of a block of data or signal. A description of one
example for calculating entropy 1s now provided. In one
embodiment consistent with the present invention, an
entropy determination method uses a calculation {irst
described by Claude Shannon that 1s now commonly
referred to as Shannon Entropy, as follows:

US 10,019,573 B2

7

)
p(x;)

where p(x) 1s the probability of x given the discrete random
variable X. Since X 1s discrete, an alphabet 1s chosen. Since
the data 1s binary digital data organized 1n bytes (or 8-bit
blocks), the alphabet should be the set {0 . .. 255}, or in
binary, ‘00000000 through ‘11111111°. This will require a
mimmum block of scanned data to be 256 bytes 1n length.
While this 1s not a requirement, the value H(X) will be
different depending on the alphabet used. The value 1is
normalized such that

HX)=) p(xf)lc-gz(
=1

PH(X)e0.0 . .. 1.0

where

PHX)=HX)/MAX(HX))

In short, the entropy value calculated through application of
this method 1s a number between 0 and 1, where values
closer to 1 indicate higher degrees of entropy in a given
block of data. For a more thorough discussion of Shannon

Entropy, see Shannon, C. E. “A Mathematical Theory of
Communication.” The Bell System Technical J. 277, 379-423

and 623-656, July and Oct. 1948, which 1s incorporated by
reference.

If the entropy calculated at step 220 1s determined at a step
225 to be less than a threshold x, the mput buller contents
may be discarded and the next set of n bytes may be read nto
the mput butler from the data stream (step 210). This process
may be repeated until the entropy calculated at step 220 is
greater than a specified randomness condition, such as
threshold x (step 230). If an 1nput buller has entropy greater
than x, 1t then may be reviewed for the presence of string
data (represented as either ASCII or Unicode) 1n step 240.
The longest string from the input buller may be 1dentified.
If 1t 1s longer than threshold y (step 245), 1.e., a first length
condition, the input buller may be discarded and the next set
of bytes may be read from the nput stream (step 210). The
entropy and string length process may be then repeated until
an mput bufler 1s found with entropy greater than x (step
230) and a “longest string” of length less than y (step 250),
1.¢. a second length condition. In an embodiment, X may be
equal to 3.5 for certain entropy algorithms other than the
Shannon algorithm and y may be equal to 100 bytes. Thus,
to meet the randomness condition where x 1s 3.3, the input
builer must have an entropy of at least 3. 6 i €., a minimum
threshold value, or no more than 3.4, a maximum
threshold value. Likewise, to meet the ﬁrst length condition
where v 1s 100 bytes, the string must be at least 101 bytes,
1.e., a mimimum threshold value, and to meet the second
length condition, the string must be no more than 99 bytes,
1.e., a maximum threshold value. At step 260 the ratio of
string to non-string data may be calculated for the input
bufler. If 1t 1s greater than threshold z (step 265) the input
builer may be discarded and the next set of bytes may be
read from the data stream (step 210). In an embodiment, z
may be equal to 60%. The entropy measurement (step 220),
string length identification (step 240), and string ratio (step
260) processes comprise the pre-processing that may be
performed on the data values in the input bufler to perform
a candidate data set. Those pre-processing steps may be
repeated until an input bufler 1s found that has entropy
greater than x, maximum string length less than y, and a
string to non-string ratio of less than z. in an embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

8

when an input bufler 1s 1dentified that meets all three criteria,
the process moves on to the next phase with that candidate
data set (step 270).

FIG. 3 continues the flowchart started in FIG. 2 and
completes the description of a method of detecting malware
by finding executable code in an arbitrary data stream
through use of brute force disassembly, and disassembly
validation consistent with the present invention. Once a
candidate data set 1s found to meet the criteria 1dentified 1n
FIG. 2, a series ol “brute force” disassemblies may be
attempted on the candidate data set in the mput buller to
identily the presence of machine executable istructions. In
step 300, a test oflset value may be set to 0, which measures
how far into the input bufler (1n bytes) to begin a disassem-
bly. In step 310, disassembly begins 1n the input butler at the
test offset. In step 320, all Push, Pop, Mov, Jmp, Xor, and
Call (PPMIXC) istructions may be counted during the
disassembly and recorded for that test oflset. The test oflset
may be then incremented by one (step 330). I1 the test oflset
1s less than the total number of bytes 1n the input butler (step
335), the process may be then repeated starting at the new
test oflset. If the test oflset 1s greater than the number of
bytes in the mput bufler (step 340), all possible disassem-
blies have been attempted for the input builer. At step 350
the test oflset/PPMIXC count information may be reviewed
and the earliest oflset with the greatest number of PPMIXC
instructions may be selected as the “most valid” disassembly
run. In step 360, the number of PPMIXC instructions may
be compared to a threshold a; 1f 1t does not exceed that
threshold, the mput bufler may be discarded and the entire
analysis process begins again (step 210 from FIG. 2). In an
embodiment, a may be equal to 20 1nstructions. I1 the count
of PPMIJIXC 1nstructions does exceed threshold a, additional
validation and disassembly “cleanup” procedures may be
attempted across the input bufler to further refine the 1den-
tification of executable code (step 370). In one embodiment
consistent with the invention, two additional validations
may be performed: 1) all mnstructions beyond PPMIXC in the
input butler may be verified as valid, and 11) the end of the
executable machine instructions 1n the input bufler may be
examined to ensure that the last instructions at the end of an
executable instruction sequence are consistent with the
computer architecture the executable code 1s targeted for.
Different computer processors may have different instruc-
tion sets, including different instructions for indicating the
end of an executable block of code. In one embodiment
consistent with the invention, an instruction for returning
flow control on Intel-branded “x86” computer processors 1s
identified. Once the optional validation steps are complete
(step 370) the user may be notified that the data stream and
input builer contain executable machine instructions (step
380).

One of ordinary skill 1n the art will recognize that any
number of metadata analyses may be exploited in order to
increase the accuracy and type of determinations that may be
made when coupled with an identification of machine
executable 1nstructions. The example explained above
describes the function of the invention when looking at files
stored on a system 1n order to 1dentify data files containing
machine executable mstructions. The same approach may be
applied against different elements of a file on disk, portions
of system or process memory, or any other stream of data
where the presence of machine executable nstructions may
be an indication of an anomaly or other state that a user
wishes to detect. Furthermore, various operations may be
performed in an embodiment 1n different locations. For
example, the preprocessing may be performed at a local

US 10,019,573 B2

9

computer, while the determination of executable code may
be performed at a remote location.

While there has been illustrated and described embodi-
ments consistent with the present invention, it will be
understood by those skilled in the art that various changes
and modifications may be made and equivalents may be
substituted for elements thereof without departing from the
true scope of the mnvention. Therefore, 1t 1s intended that this
invention not be limited to any particular embodiment
disclosed, but that the invention will include all embodi-
ments falling within the scope of the appended claims.

We claim:
1. A method of analyzing whether executable code exists
within data that signifies a presence of malware, the method
comprising:
accessing a plurality of values representing the data
contained within a memory of a first computer system
by (a) retrieving the data directly from at least one
memory component contained within the first computer
system, or (b) reading the data corresponding to an
input stream from a persistent storage device;

performing pre-processing on the plurality of values to
produce a candidate data subset, the performing of the
pre-processing 1ncludes (1) determining whether an
entropy of the plurality of values exceeds a first thresh-
old and (11) conducting an analysis of the plurality of
values for a presence of string data by determining
whether (a) a selected string of the string data satisfies
a string length condition and (b) data associated with
the plurality of values satisfies a string ratio condition;
and

responsive to performing the pre-processing on the plu-

rality of values, analyzing the candidate data subset to
determine 1f any executable code 1s present in the
plurality of values, wherein the analyzing of the can-
didate data subset comprises a disassembly of the
candidate data subset including a first pass of scanning
the candidate data subset at an offset and performing
additional passes by incrementing the oflset and scan-
ning a remaining portion of the candidate data subset
from the incremented offset, wherein the scanning
includes recording a number of different types of
machine 1nstructions detected such that a detected ratio
of Push, Pop, Mov, Imp, Xor or Call (PPMIXC)
istructions to non-PPMIXC 1nstructions greater than
or equal to a predefined threshold 1s indicative of a
presence ol executable code.

2. The method of claim 1, wherein the reading of the data
corresponding to the mput stream comprises reading a file
from a hard drive of the first computer system.

3. The method of claim 1, wherein the determiming
whether the entropy of the plurality of values exceeds the
first threshold comprises (a) determining whether the plu-
rality of values meets a randomness condition, and (b)
performing an entropy calculation.

4. The method of claim 3, wherein the entropy calculation
comprises computation of a value for Shannon entropy.

5. The method of claam 1, wherein the string length
condition 1s determined by evaluating whether the selected
string 1s less than a maximum number of bytes, and the
string ratio condition 1s determined by a ratio between string
data associated with the plurality of values to non-string data
associated with the plurality of values.

6. The method of claim 5, wherein the string length
condition 1ncludes (a) a first minimum threshold value, and
(b) a first maximum threshold value.

10

15

20

25

30

35

40

45

50

55

60

65

10

7. The method of claim 6, wherein, 11 the selected string
meets the string length condition, the plurality of values are
processed to determine whether the plurality of values meets
the string ratio condition.

8. The method of claim 7, wherein the string ratio
condition 1ncludes (a) a second minimum threshold value,
and (b) a second maximum threshold value.

9. The method of claim 1, further comprising;:

determining 1f an instruction sequence exists i the plu-

rality of values that indicates an end of an executable

block of code.

10. The method of claim 1, wherein the analyzing of the
candidate data subset to determine 1f any executable code 1s
present 1n the plurality of values comprises

inspecting, via a second computer system, the candidate

data subset for computer instructions,

determining one or more characteristics of the computer

instructions, and

taking at least one of a plurality of predetermined actions

based on the characteristics of the computer instruc-
tions.
11. The method of claim 10, wheremn the plurality of
predetermined actions 1ncludes (a) executing an automated
process, and (b) providing a notification to a user.
12. The method of claim 1, wherein the analysis of the
plurality of values for the presence of string data 1s con-
ducted 1n response to the entropy of the plurality of values
exceeding the first threshold.
13. The method of claim 12, wherein the analysis of the
plurality of values for the presence of string data to deter-
mine whether the data associated with the plurality of values
satisly the string ratio condition comprises determining
whether a ratio of string data to non-string data exceeds a
threshold.
14. A non-transitory computer readable medium wherein
the computer readable medium includes instructions which
enable a computer system to perform the following opera-
tions:
access a plurality of values representing data contained
within a memory of a computer system by (a) retrieving
data directly from the memory of the computer system,
or (b) reading an 1put stream of the computer system;

perform pre-processing on the plurality of values to
produce a candidate data subset, the performing of the
pre-processing 1ncludes (1) determining whether an
entropy of the plurality of values exceeds a first thresh-
old and (11) conducting an analysis of the plurality of
values for a presence of string data by determiming
whether (a) a selected string of the string data satisfies
a string length condition, and (b) data associated with
the plurality of values satisfies a string ratio condition;

analyze, via the computer system, the candidate data
subset to determine 11 any executable code 1s present in
the plurality of values, wherein analyzing the candidate
data subset comprises a disassembly of the candidate
data subset including a first pass of scanning the
candidate data subset at an ofiset and performing
additional passes by incrementing the offset and scan-
ning a remaining portion of the candidate data subset
from the incremented oflset, wherein the scanning
includes recording a number of different types of
machine nstructions detected such that a detected ratio
of Push, Pop, Mov, Imp, Xor or Call (PPMIXC)
istructions to non-PPMIXC 1nstructions greater than
or equal to a predefined threshold 1s indicative of a
presence ol executable code; and

US 10,019,573 B2

11

take at least one of a plurality of predetermined actions
based on determining the detected ratio of PPMIXC
instructions to non-PPMIXC instructions 1s indicative
of the presence of executable code.

15. The computer readable medium of claim 14, wherein
the determining whether the entropy of the plurality of
values exceeds the first threshold comprises (a) determiming,
whether the plurality of values meets a randomness condi-

tion, and (b) performing an entropy calculation.

16. The computer readable medium of claim 14, wherein
the string length condition includes (a) a first minimum
threshold value, and (b) a first maximum threshold value.

17. A distributed method of analyzing whether executable
code exists within data comprising;:

at a first location:

accessing a plurality of values representing data con-
tained within a memory of a first computer system by
(a) retrieving data directly from the memory of the
first computer system, or (b) reading an input stream
of the first computer system,

performing pre-processing on the plurality of values to
produce a candidate data subset, the performing of
the pre-processing includes (1) determiming whether
an entropy of the plurality of values exceeds a first
threshold and (11) conducting an analysis of the
plurality of values for a presence of string data by
determining whether (a) a selected string of the
string data satisfies a string length condition, and (b)
data associated with the plurality of values satisfies
a string ratio condition, and

5

10

15

20

12

transmitting the candidate data subset to a second

location; and

at the second location:
analyzing, via a second computer system, the candidate

data subset to determine 1f any executable code 1s
present in the plurality of values, wherein analyzing
the candidate data subset comprises a disassembly of
the candidate data subset including a first pass of
scanning the candidate data subset at an offset and
performing additional passes by incrementing the
oflset and scanning a remaining portion of the can-
didate data subset from the incremented oflset,
wherein the scanning includes recording a number of
different types of machine mstructions detected such
that a detected ratio of Push, Pop, Mov, Jmp, Xor or
Call (PPMIXC) mstructions to non-PPMIXC
instructions greater than or equal to a predefined
threshold 1s indicative of a presence of executable

code, and

taking at least one of a plurality of predetermined

actions based on determiming the detected ratio of
PPMIXC instructions to non-PPMIXC 1nstructions
1s indicative of the presence of executable code.

18. The method of claim 17, wherein the first computer
25 system 1s a computer ol a user.
19. The method of claim 18, wherein the second computer
system comprises a remote service.
20. The method of claim 19, wherein the remote service
comprises a cloud computing based service.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

