12 United States Patent

US010019451B2

(10) Patent No.: US 10,019,451 B2

Preslan 45) Date of Patent: Jul. 10, 2018
(54) PATH LOOKUP IN A HIERARCHICAL FILE 8,266,136 B1* 9/2012 Pogde et al. 707/711
SYSTEM 8,510,510 B1* 82013 Patil GO6F 17/301
711/136
(75) Inventor: Kenneth William Preslan, 8,875,222 B1* 10/2014 Chang HO’%@? ???
Minneapohs, MN (US) 2003/0009484 Al* 1/2003 Hamanaka et al. 707/200
: : 2003/0182312 Al* 9/2003 Chenetal. 707/200
(73) Assignee: Quantum Corporation, San Jose, CA 2007/0011139 Al* 1/2007 Burnett ... 707/1
(US) 2007/0061279 Al* 3/2007 Christiansen et al. 707/1
2008/0215663 Al* 9/2008 Ushiyama GO6F 17/30094
(*) Notice: Subject to any disclaimer, the term of this 709/201
patent 1s extended or adjusted under 35 2008/0243773 A1* 10/2008 Patel et al. ..., 707/2
U.S.C. 154(b) by 1201 days. 2010/0057755 Al* 3/2010 Schneidercc...... 707/100
. .
(21) Appl. No.: 13/248,084 cited by examiner
(22) Filed: Sep. 29, 2011 Primary Examiner — Neveen Abel Jalil
: N Assistant Examiner — Dawaune Conyers
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Eschweiler & Potashnik,
US 2013/0086121 Al Apr. 4, 2013 LLC
(51) Imnt. CL
GO6F 12/00 (2006.01) (57) ABSTRACT
GO6F 17/30 (2006.01) _ _
Apparatus and methods are provided herein for path lookup
(52) U.S. CL . b hical fil t An inod - od with
CPC oo GO6F 17/30091 (2013.01) 1 & MCTAILIlcdl e SySICI. Al MOUC dssucldicd Wit a
_ : _ requested object 1s 1dentified. The inode may be organized in
(58) gl;(l:d of Claés(l)g;a?g/l(l)zi?ré% 6F 2912/7907: GOGE an 1node table and identitied in the table using an inode
""""" ’ " number. Ancestry information and size constraint informa-
17/30067, GO6F 11/1435; GO6F 17/30091
USPC 707/279 tion may also be available for the inode. An inode chain
Q lt """ ﬁlf """"""" lthht associated with the pathway 1s 1dentified based, at least 1n
~& dpplEAtion e J0L COMPILEE Stattll SOty part, on ancestry imformation associated with the mnode for
(56) References Cited the requested object. A size constraint analysis 1s performed

6,230,200 B1*
7,752,226 Bl *

U.S. PATENT DOCUMENTS

5/2001 Forecastetal. 709/226
7/2010 Harmer et al. 707/796

for the requested object. The size altering operation 1is
selectively performed based on the size constraint analysis.

15 Claims, 6 Drawing Sheets

Hierarchical File System

100
VSR .
Root Directory
110
- ™ ™ ™y
Subdirectory A Subdirectory Subdirectory
120 B C
130 140
/f\“ -, \ e
Subdirectory Subdirectory E Subdirectory F
b 160 170
150
.;_._’___Lw 1
File | File E(n)
E(1) 180
180

U.S. Patent Jul. 10, 2018 Sheet 1 of 6 US 10,019,451 B2

Hierarchical File System
100

/%

Root Directory
110

"""\,1

/T . \ . S

- Subdirectory A Subdirectory Subdirectory

120 B C
130 14

[T FTEEIIE T PP TS P ETOORIT Y PO

e S

/ \ /N /S
| Subdirectory | Subdirectory E | Subdirectory F
D 160 170

| 150

TR A bbbl Ak Al

File File E(n)
E(1) ~ 190
180

Figure 1

U.S. Patent

Jul. 10, 2018

First Inode Table 200

' Subdirectory F Inode 270

e

Root Directory Inode 210 i

| Subdirectory A inode 220

' | Subdirectory C Inode 240

Subdirectory E inode 260

PHAACRMLTY PR

File E(1) Inode 280

e @

File E(n) Inode 280

Sheet 2 of 6

US 10,019,451 B2

Second Inode Table 205

| Subdirectory D Inode 250

eyl

n Subdirectory B Inode 23

Figure 2

U.S. Patent

Jul. 10, 2018

Sheet 3 of 6

US 10,019,451 B2

inode

sl

inode Table 300

e —— e

Ancestry Information

Root Directory inode 310

.

311

Subdirectory A Inode 32

Subdirectory B Inode 330

Constraint

Root Directory Inode 321

m

Yes 322

Size

No 312

Root Directory Inode 331 '

Subdirectory C Inode 340

Subdirectory D Inode 350

Root Directory Inode 341

No 332

Subdirectory A Inode, |
Root Directory Inode 351

e

S

Subdirectory £ Inode 360

Subdirectory A inode,
Root Directory Inode 361

lideblmpicbplulplppepepejepelp—
oA il ialalk ke -

Subdirectory F inode 370

Subdirectory C inode,

File E{1) Inode 380

&
@&
&

Root Directory Inode 371 No 372
Subdirectory E Inode,
Subdirectory A Iinode, Yes 382
Root Directory Inode 381

& @

@ &
Subdirectory E Inode, Yes 392 -

File E(n) Inode 390

Subdirectory A Inode,
Root Directory lnode 391

Figure 3

U.S. Patent

410

Jul. 10, 2018 Sheet 4 of 6

= S

Y

\J

Receive Request

420

I

\.

ldentify Inode

430

L

-

ldentify Inode Chain using
Ancestry Information

L

440
o

Perform Size Constraint Analysis |

A 4

450
N

Selectively Perform Request

l
(_End)

Figure 4

US 10,019,451 B2

U.S. Patent Jul. 10, 2018 Sheet 5 of 6 US 10,019,451 B2

L " LA Y o~ ikl alruidd — Ay oy kel

Apparatus
500
Processor
510
l Cache Memory
520
| 3 r -
. Inodes Ancestry S1ze Constraint
522 Information Information
525 527
Interface
530
Inode Logic Path Lookup Logic
540 350
Receiving Logic l Performance Logic
560 | 570

| -

P

Figure 5

U.S. Patent Jul. 10, 2018 Sheet 6 of 6 US 10,019,451 B2

rlﬂi-u

B Ancestry Table bonstraint Table
| 600 | 610

!

Inode Table 300

i

Figure 6

US 10,019,451 B2

1

PATH LOOKUP IN A HIERARCHICAL FILE
SYSTEM

BACKGROUND

File systems store and organize collections of data and
information about the data (e.g., metadata). Discrete collec-
tions of data are referred to as objects. One familiar object
1s a file. File systems are generally arranged in a hierarchy.
Arranging the objects 1n a hierarchy allows users to organize
the objects. A hierarchical file system 1ncludes a root direc-
tory. A root directory may be the parent of a set of subdi-
rectories. The subdirectories associated with the root direc-
tory may include further subdirectories. In this manner,
subdirectories extend from the root directory to varying
levels 1n the hierarchical file structure.

A pathway 1s defined by a series of subdirectories that are
passed through from the root directory to arrive at an object
(e.g., a subdirectory, file). Therefore, the pathway 1s a map
through the hierarchical file system from the root directory
to the object. The hierarchical file system may be used 1n a
single system (e.g., a computer, node, data stream) or a
system distributed over multiple nodes (e.g., network).

As computing systems become more robust, more objects
can be stored 1n the hierarchical file system. Technological
advances have made 1t possible for personal computers to
have hundreds of gigabytes of storage and handheld devices
(e.g., cellular phones, music playback devices, cameras) to
have gigabytes of storage. Thus, the ability to store hundreds
of thousands of objects 1s no longer limited to sophisticated
entities. However, hierarchical file systems may succumb to
the realities of limited storage, despite being able to store
vast amounts of data due to, for example, limitations or
inefliciencies associated with conventional file system data
structures.

In addition to storing objects, metadata associated with
the objects 1s stored. Objects may not automatically store
data about themselves. Therefore, a file system may store the
metadata for objects 1n 1nodes. When an object 1s created, a
corresponding inode may be created by the file system. The
inode stores metadata (e.g., author data, size data, time-
stamp) about the object. To determine the relationship
between objects and nodes, an object 1s associated with a
specific mnode using an inode number. Inodes may be orga-
nized in an 1mode table. An 1node number may represent an
inode’s location 1n the 1node table.

An mode 1s used by the hierarchical file system to support
requested operations pertaining to the object. Some opera-
tions cause the size of objects to change. For example, a save
command may change the size of an object 1f the object has
been altered. Changing the size of an object may have
ramifications for other objects on the pathway. Thus, mnodes
for different objects on the pathway may need to change as
the metadata associated with the object changes due to size
altering operations. Conventionally, mnodes are stored in the
hierarchical file system. As inodes are changed, reads are
executed on the computer storage medium. This can be
inefhicient and time consummg The 1nodes may be distrib-
uted at different locations in the hierarchical file system,
increasing the time and processing power needed to 1dentify
and locate them.

While the metadata of an inode may be relevant to
performing an operation associated with an object, the
information available mm an inode may be inadequate to
identify and locate additional inodes in the computer storage
medium. The mode may contain metadata regarding one
specific object but not other objects 1n the hierarchical file

10

15

20

25

30

35

40

45

50

55

60

65

2

system. Furthermore, identitying and locating inodes stored
in the hierarchical file system may be mnethcient and slow.

A file system may have a large number of files and thus
may have a large number of modes. Just like some files may
be in memory and other files may not be 1n memory (e.g., on
disk, on disk), some 1nodes may be in memory while others
are stored on relatively slower devices. Eviction, replace-
ment, and pre-fetch processes may be tasked with determin-

ing which files and/or inodes should be stored 1n the limited
memory available and which should be stored elsewhere.

BRIEF DESCRIPTION OF THE

DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of the specification, illustrate various
example systems, methods, and other example embodiments
of various aspects of the invention. It will be appreciated that
the illustrated element boundaries (e.g., boxes, groups of
boxes, or other shapes) 1n the figures represent one example
of the boundaries. One of ordinary skill in the art will
appreciate that 1 some examples one element may be
designed as multiple elements or that multiple elements may
be designed as one element. In some examples, an element
shown as an internal component of another element may be
implemented as an external component and vice versa.
Furthermore, elements may not be drawn to scale.

FIG. 1 1llustrates an example of a hierarchical file system.

FIG. 2 illustrates a prior art example of inode tables used
in a hierarchical file system.

FIG. 3 illustrates an example of an inode table used 1n
path lookup 1n a hierarchical file system.

FIG. 4 1llustrates an example method associated with an
inode table used in path lookup 1n a hierarchical file system.

FIG. 5 illustrates an example apparatus associated with
path lookup 1n a hierarchical file system.

FIG. 6 illustrates an 1mnode table, an ancestry table, and a
constraint table.

DETAILED DESCRIPTION

Example apparatus and methods perform path lookups
associated with an inode table related to a hierarchical file
system. In one embodiment, unlike conventional systems,
example enhanced 1nodes may store more information about
other inodes. In another embodiment, additional information
about mmodes may be stored in additional data structures
(e.g., ancestry table, size constraint table). Example systems
and methods may store reverse path lookup (RPL) informa-
tion for inodes. Thus an 1node may know what directories
contain the imnode and what names are in those directories.
Or, information about an inode may be available where the
information concerns what directories contain the 1node. In
one embodiment, the enhanced inodes and/or the additional
information may be stored 1n a relatively faster (e.g., cache
memory) to facilitate more efl

icient access. It 1s possible that
the relatively faster location may only be able to hold a
subset of the enhanced 1mnodes or a subset of the additional
information. File systems are typically arranged as a hier-
archy of subdirectories used to organize objects stored, for
example, 1n devices that include, but are not limited to disk,
optical disk, shared disk, database, network, tape.

A hierarchical file system 1s an organizational approach to
data storage. Conventionally, inodes have been stored 1n the
hierarchical file system. To retrieve conventional inodes
from the hierarchical file system, the inodes were retrieved
from the one or more storage locations on the one or more
storage devices. This can be slow and require additional

US 10,019,451 B2

3

processing time and processing power. Example apparatus
and methods store enhanced 1nodes 1n cache memory. The
enhanced modes may be organized 1n an 1mnode table located
in the cache memory. Inodes are retrieved from the cache
memory with a read that 1s comparatively faster than locat-
ing a conventional mode from the one or more storage
locations on the one or more storage devices. Therelore,
storing an 1node table 1n a cache memory increases the speed
of path lookups 1n a hierarchical file system. Since the cache
may be too small to hold all the enhanced inodes, example
systems and methods may employ eviction, replacement,
and/or pre-fetch strategies to keep relevant enhanced inodes
in memory or in a cache. In different embodiments, the root
inode may be held more often or even permanently 1n
memory or cache. Similarly, some 1nodes (e.g., those with
limits) may be held more often or even permanently in the
cache. When the additional information 1s stored 1n separate
data structures, portions of those data structures may also be
moved between relatively faster devices (e.g., memory,
cache) and relatively slower devices (e.g., disk, tape).

Storing enhanced modes 1n a cache memory allows a user
to quickly retrieve an inode associated with a requested
object. An object may be requested so that a size altering
operation can be performed. A size altering operation may
include, but 1s not limited to, a save command, a create
command, a write command, a write append command, a
move command, a relocate command, and a delete com-
mand. These commands not only aflect the object that they
are performed on, but also may aflect the subdirectories 1n
which they are stored. Specifically, when the size of the
object 1s changed, the sizes of the subdirectories along the
pathway from the root directory to the object also change in
size. Additionally, one or more subdirectories 1n the path
may be associated with a size constraint.

Conventionally, inodes describe a relationship between an
object and its metadata. However, conventional mnodes do
not offer information about the object’s relationship with
other objects 1n the hierarchical file system. For example, an
inode may include the size of the object that that 1t 1s
assoclated with, but not a size constraint on the size of the
object. The limited nature of storage space may necessitate
that size constraints be placed on the objects. Because
changing an object can have ramifications for objects along
the pathway, 1t would be desirable for an 1node to 1dentify
inodes along the pathway that may be aflected by the size
altering operation to facilitate, for example, preventing the
violation of size constraints. Furthermore, 1t would be desir-
able for an ode to 1dentily size constraints placed on the
objects 1n the pathway as the objects on the pathway may be
allected by the size altering operation. In one embodiment,
enhanced 1nodes may store size constraint information thems-
selves. However, 1n another embodiment, an inode may not
store size constraint information itself but may have size
constraint information stored on its behalf. The size con-
straint information may be stored in, for example, a quota
file, a quota information object, a quota information repre-
sentation, and so on. The size constraint information may
include, for example, both constraint information and cur-
rent usage information. Ancestry information may also be
stored separately on behall of an mnode rather than being
stored 1n an enhanced 1node.

At times including when a file system, volume, or other
collection of files 1s accessed (e.g., mounted), the size
constraint information may also be accessed. In one
example, when the size constraint information 1s accessed an
RPL entry may be manipulated (e.g., created, loaded) for a
directory that has a constraint. In this embodiment, an

10

15

20

25

30

35

40

45

50

55

60

65

4

on-disk 1node may not have information about its own
constraints but the representation of the mode in the RPL
cache entry will. This embodiment facilitates avoiding the
onerous task of manipulating (e.g., changing) conventional
on-disk inodes into enhanced inodes that work with the
constraint system. In one embodiment the size constraint
information (e.g., quota limit, current values) may be orga-
nized as a b-tree that 1s keyed by the mnode number of the
directory that 1s the root of the namespace. The b-tree, or
other size constraint information holding entity may be
accessed (e.g., queried) when quota limit and/or current
usage iformation 1s desired.

Example apparatus and methods include ancestry infor-
mation in the mode table or in separate locations (e.g.,
ancestry table, size table). Ancestry information 1s informa-
tion about 1nodes associated with objects on the pathway.
Specifically, ancestry information identifies inodes 1n an
inode chain that corresponds with the pathway. Therefore,
when an 1node 1s identified 1n the mode table, the parent
information for the imnode can also be identified. The ancestry
information may include the parent information for the
requested 1node. The ancestry information may also include
the ancestry information for the inodes 1n an inode chain
associated with the pathway from the requested 1node to the
root directory. An mnode chain may identify the parents of
successive 1nodes associated with the pathway to the root
directory. The organization of the inode chain corresponds to
the pathway. Thus, the 1nodes can be identified using a
pathway lookup to navigate up an mnode chain. Compared to
conventional apparatus where mmodes do not store ancestry
information and the conventional inodes may be distributed
across one or more data stores on one or more data storage
devices. In one embodiment, a single mode table with
enhanced 1nodes supports completing the path lookup more
quickly. In another embodiment, an inode table and other
data structures or files support completing the path lookup
more quickly.

In one example, the ancestry mformation 1s not merely
location data stored in the inode or an ancestry repository
(c.g., RPL table) for the requested object. The ancestry
information may be specific to mnodes. The ancestry data
identifies at least the parent of the mnode associated with the
requested file. Therefore, once a first 1node 1s 1dentified, the
first 1node’s parent, a second 1node, can be 1dentified. The
second 1ode’s parent, a third inode, can be identified from
ancestry mformation stored in conjunction with the second
inode. Alternatively, the first mmode may store ancestry
information with respect to both the second 1node and the
third inode. Theretore, the first inode, the second 1node, and
the third mnode can be identified by walking up an inode
chain starting with the mnode associated with the requested
object. When RPL information 1s available in relatively
faster storage (e.g., cache, memory) then following the
ancestry information may be performed more quickly than
in conventional systems where the ancestry information may
not be available or, 11 1t 1s available, may only be available
on slower devices.

It may also be desirable to walk down an inode chain. For
example, once a first 1node associated with a requested
object 1s 1dentified, the inode may include data that identifies
a child mode. Therefore, 1n addition to ancestry information,
the 1node or other location may include progeny (e.g., child)
information. Information about an mmode child may be rel-
evant because the child mnode may be aflected by a change
in the first mode associated with the requested object.
Accordingly, 1n addition to walking up an inode chain,

US 10,019,451 B2

S

inodes or related structures may include information that
enables walking down the mode chain.

In example apparatus and methods, size constraint infor-
mation 1s also stored 1n association with the inodes. The size
constraint information i1s not merely size data stored in the
inode for the requested object. The size constraints 1dentily
s1ze limitations that may be placed on the requested object
(e.g., directory, subdirectory, file). Size constraints may also
identify size limitations placed on objects along the pathway.
For example, size constraints may dictate the maximum size
for an object. Alternatively, a size constraint may identify the
amount by which an object 1s allowed to change 1n a given
transaction. Size constraint information may also describe
the maximum total file size for all files 1n a directory and/or
the maximum total file size for all files 1n a directory and its
subdirectories. The size constraint information may be
stored 1n an RPL repository entry associated with an mode.
Si1ze constraint information may take the form of an indi-
cator (e.g., flag, alert, error message). The indicator may
indicate that the maximum size for an object would be
violated if the size altering operation was performed. These
are examples of how the size constraint information may be
displayed and used. One of ordinary skill in the art will
recognize that there are other ways that the size constraint
information can be displayed and used.

When an object 1n the hierarchical file system 1s requested
for a size altering operation, the associated inode 1s 1denti-
fied from the inode table. Ancestry information for the 1node
1s 1dentified. The ancestry information can be retrieved from
an RPL repository entry. The ancestry information 1dentifies
at least a portion of an inode chain associated with the
pathway for the requested object. Using the ancestry infor-
mation, a size constraint analysis can be performed for the
object and the at least a portion of the inode chain. If the size
constraint analysis determines that the size altering opera-
tion would violate the size constraint of the 1dentified inode
or a size constraint associated with the imodes on the 1mode
chain, the size altering operation may not be performed.

FIG. 1 illustrates an example hierarchical file system 100
associated with path lookup. Hierarchical file system 100
includes a root directory 110, a number of subdirectories,
and objects. The root directory 110, subdirectories, and files
are examples of objects. Subdirectory A 120, subdirectory B
130, and subdirectory C 140 are subdirectories of the root
directory 110. Therefore, a user may access the root direc-
tory 110 to locate subdirectory A 120, subdirectory B 130, or
subdirectory C 140. Both subdirectory D 150 and subdirec-
tory E 160 are subdirectories of subdirectory A 120. Files
E(1) 180 through E(n) 190, where n 1s an integer greater than
1, are located 1n subdirectory E 160. Therelore, the pathway
for file E(1) 180 extends from root directory 110, to subdi-
rectory A 120, to subdirectory E 160, to file E(1) 180.
Subdirectory B 130 does not have subdirectories. Subdirec-
tory F 170 1s a subdirectory of Subdirectory C 140.

The hierarchical file system 100 1s a simplified file system
intended to highlight the organizational structure of a hier-
archical file system. Hierarchical file systems may have
more or fewer subdirectories or more or fewer objects. The
subdirectories may have pathways that terminate at more or
tewer levels. Some hierarchical file systems may have
hundreds of thousands of subdirectories with millions of
objects. Attempting to organize immense amounts ol data
may cause imodes to be stored in multiple mmode tables
located 1n one or more storage locations on one or more
storage devices. Storing mnodes 1n such an metlicient manner
makes 1t increasingly dificult and time consuming to per-

10

15

20

25

30

35

40

45

50

55

60

65

6

form path lookups. Alternatively some file systems may be
on the same scale as hierarchical file system 100.

FIG. 2 illustrates an example embodiment of prior art
inode tables. The prior art inode tables include a first inode
table 200 and a second inode table 205. Conventionally, the
inode tables store only the inodes. As described above, as file
systems grow to include immense amounts of data, an mnode
table may be transiformed into multiple imnode tables located
in one or more storage locations on one or more storage
devices. As the inode tables attempt to store inodes 1n one or
more storage locations over one or more storage devices, the
organization of the inodes breaks down making 1t potentially
difficult to follow a path. For example, the first inode table
200 stores root directory node 210, subdirectory A inode
220, subdirectory F 1mode 270, subdirectory C mmode 240,
subdirectory E 1node 260, file E(1) mnode 280, and file E(n)
inode 290, where n 1s an integer greater than 1. The second
inode table stores subdirectory D inode 250 and subdirectory
B inode 230.

An object, regardless of type, may be associated with an
inode. For example, root directory imnode 210 corresponds to
root directory 110 of FIG. 1 and File E(n) mode 290
corresponds to the file E(n) 190 of FIG. 1. Root directory
inode 210 contains metadata about the root directory 110.
Root directory mode 210 may contain metadata including
the current size of the root directory and the location of the
root directory. Therefore, the metadata associated with root
directory 1node 210 1s specific to the root directory 110. The
inode table 200 does not include ancestry information for the
inodes. Theretfore, to determine how the 1nodes 1n the table
are related to one another a lhierarchical file system request
may be performed. Furthermore, the conventional inode
table does not include size constraint information. There-
fore, locating an mmode does not provide mformation about
the size limitations on the corresponding object.

FIG. 3 illustrates an example of an 1node table used 1n a
path lookup 1n a lhierarchical file system by example systems
and methods. Inode table 300 includes enhanced inodes. The
inode table 300 contains root directory imnode 310, subdirec-
tory A mode 320, subdirectory B inode 330, subdirectory C
inode 340, subdirectory D 1node 350, subdirectory E 1node
360, subdirectory F mnode 370, file E(1) inode 380, and file
E(n) inode 390, where n 1s an integer greater than 1. While
the 1node table 300 1s illustrated as a table, one of ordinary
skill 1n the art will recognize that the 1nodes may be stored
in other organizational structures. For example, the modes
may be organized 1n an node tree. In one embodiment, the
organizational structure may be stored in a cache memory.

In addition to storing the inodes, inode table 300 stores
ancestry information and size constraints. FIG. 6 illustrates
an alternative embodiment where the ancestry information
and size constraints are not stored in the inode table 300.
Ancestry mformation may include a listing of inode parents.
For example, subdirectory D mmode 350 1s associated with
inode D ancestry information 351. Inode D ancestry infor-
mation 351 includes the list of parent inodes in the mode
chain. Here, the parent of subdirectory D iode 350 is
subdirectory A mmode 320. The relationship between subdi-
rectory D 1node 350 and subdirectory A inode 320 1s
illustrated 1n FIG. 1 1n the relationship between subdirectory
D 150 and subdirectory A 120. It can be seen that the inode
chain corresponds with the pathway.

With the ancestry information that the parent of subdi-
rectory D mode 350 1s subdirectory A inode 320, subdirec-
tory A mode 320 can be located 1n the mode table 300.
Subdirectory A mode 320 includes inode A ancestry infor-
mation 321. Inode A ancestry information 321 includes a list

US 10,019,451 B2

7

of parent inodes on the inode chain. Here, the parent of
subdirectory A mode 320 1s root directory inode 310. There-
fore, with the information that subdirectory A mmode 320 1s
the parent of the subdirectory D inode 350, 1t 1s possible to
walk up the 1node chain to the root directory without having
to perform a hierarchical file system request for ancestry
information. The root directory inode 310 does not have
ancestry mnformation listed in root directory ancestry infor-
mation 311. A lack of ancestry information may be used to
indicate the top level of the hierarchical file system.

While only an immediate parent may be stored in the
ancestry information, more of the parent modes may be
stored. For example, inode D ancestry information 351 also
includes the root directory inode 310 as a parent. Because
the 1node chain corresponds with the pathway, it 1s shown 1n
FIG. 1 that the root directory 110 1s not the direct parent of
subdirectory D 150. However, root directory 110 1s on the
pathway of subdirectory D 150 as the parent of subdirectory
A 120. Therefore, ancestry information may include objects
along the pathway in addition to the immediate parent of an
object.

Because parts of the inode table 300 can be stored 1n a
relatively faster location (e.g., cache, memory) the inode
chain may be able to be walked without having to access the
hierarchical file system on the computer storage medium to
locate and retrieve the inodes. If the eviction, replacement,
and/or pre-fetch strategies are working well, then accesses to
slower devices may be reduced even more. Therefore,
example methods and apparatus provide a faster way to walk
up the 1node chain. In addition to walking up the mnode chain
more quickly, the example apparatus and methods facilitate
navigation of the pathway in the hierarchical file system.
Ancestry information may reference objects 1n the pathway
in a stmilar manner as 1dentifying inodes in the 1node chain.
For example, objects of the hierarchical file system may be
listed 1n the ancestry information.

Inode table 300 also stores size constraints. FIG. 6 illus-
trates size constraints and ancestry mformation being stored
outside mmode table 300. The size constraints may i1dentily
whether the object associated with the inode has a size
constraint. For example, subdirectory A mode 320 stores a
subdirectory A size constraint 322 to indicate that subdirec-
tory A 120 (shown 1n FIG. 1) 1s subject to a size constraint.
Subdirectory A size constraint 322 1s 1illustrated as an
indicator, specifically a binary value “yes” to indicate that
subdirectory A 120 1s subject to a size constraint. An
indicator in the mode table 300 identifies that there are
limitations associated with the object. If more information
on a size constraint 1s needed, i1t can be easily located using
the 1node or the associated ancestry information. By making,
the size constraint information available the 1node table can
tacilitate determining whether a file size altering operation
should be performed.

In mode table 300, the size constraint information 1s
stored as a binary indicator. The size constraint information
may include additional or alternative information. For
example, size constraints may include numerical limitations
(e.g., 10 kilobytes (KB), 10 megabytes (MB), 10 gigabytes
(GB)) for objects. When a size altering operation 1s per-
formed, the current size of the object can be compared to the
s1ze constraint information. For example, the subdirectory A
size constraint 322 may list “1 GB” rather than “Yes.” If
subdirectory A 120 contains less than 1 GB a size altering
operation may be performed. However, 11 the subdirectory A
120 contains 1 GB or more, the size altering operation may
not be performed. Alternatively, the size constraint may
define a size range. If performing the size altering operation

10

15

20

25

30

35

40

45

50

55

60

65

8

would cause the object to fall below or exceed the size range
the size altering operation may not be performed. These are
examples of how the size constraint information may be
used. One of ordinary skill in the art will recognize that there
are other ways that the size constraint information may be
employed.

FIG. 4 illustrates an example method 400 associated with
an 1node table used in path lookup 1n a hierarchical file
system. At 410, a request for a size altering operation to be
performed on a requested object 1s recerved. A size altering
request 1s a request that causes the size of the requested
object to be changed or aflects the size of an object on a
pathway from the requested object to the root directory. For
example, a size altering operation may be a save command,
a create command, a write command, a write append com-
mand, a move command, a relocate command, and a delete
command. At 420, an 1node associated with the requested
object 1s 1dentified. The inodes may be organized 1n an 1node
table and 1identified 1n the table using an 1node number. Size
constraint and ancestry information may be stored in an
enhanced mode 1 an iode table or may be stored in
locations external to the inode table (e.g., ancestry table, size
constraint table).

At 430, an inode chain associated with the pathway 1s
identified based, at least in part, on ancestry information
associated with the inode for the requested object. The
ancestry information may provide the parent of the identified
inode. Alternatively, the ancestry information may provide
the parent of the requested object. At 440, a size constraint
analysis 1s performed for the requested object. In addition to
identifying size constraints for the requested object, the size
constraint analysis may 1dentily size constraints for objects
associated with the pathway. The size constraint analysis
may include calculating the resulting size of the requested
object if the size altering operation were to be performed.
The resulting si1ze of the requested object may be compared
to the size constraint of the requested object. This size
constraint analysis may be performed for other objects on
the pathway.

At 450, the size altering operation 1s selectively per-
formed. For example, if after a comparison of the resulting
s1ize ol the requested object to the size constraint of the
requested object i1t 1s determined that the size altering
operation would violate the size constraint, the size altering
operation would not be performed. Alternatively, 1f after a
comparison of the resulting size of the requested object to
the size constraint of the requested object 1t 1s determined
that the size altering operation would not violate the size
constraint, the size altering operation would be performed.

FIG. 5 illustrates an example apparatus 500 associated
with path lookup 1n a hierarchical file system. Apparatus 500
includes a processor 310, a cache memory 320, and an
interface 530 configured to connect the processor 510, the
cache memory 520, and a set of logics. The set of logics may
include an inode logic 540, a path lookup logic 3550, a
receiving logic 560, and a performance logic 570. The cache
memory 520 stores mmodes 522, ancestry information 525,
and size constraint information 527.

Apparatus 500 1includes an mode logic 540 configured to
identify an inode in a relatively faster storage location (e.g.,
cache memory 3520) for an object associated with the hier-
archical file system. The inode may be 1dentified based on an
inode number. In addition to locating the 1node, the mnode
logic 540 1dentifies ancestry information 325 and size con-
straint 1nformation 527 associated with the mmode. The
ancestry information 5235 and size constraint information
527 may be stored 1n a separate location. In one embodi-

US 10,019,451 B2

9

ment, a cache(s) may store size information and/or ancestry
information for more inodes than are currently stored in an
inode cache.

A path lookup logic 550 1s configured to use the ancestry
information to discover a pathway in the hierarchical file
system associated with the object. The pathway lookup logic
550 may use ancestry data 525 to identily an inode chain that
corresponds to the pathway. The path lookup logic 550 also
identifies size constraints associated with an mnode that affect
an object. The path lookup logic 550 may identily size
constraints for other objects on the pathway based, at least
in part, on the ancestry mformation 525 and the size con-
straint information 527 stored in the cache memory 520.

The apparatus 500 may also include a receiving logic 560
that 1s configured to receive a size altering operation for the
object. The apparatus 500 may further include a pertor-
mance logic 570 to selectively perform the size altering
operation based, at least in part, on the size constraint
information 527.

The {following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The
examples are not intended to be limiting. Both singular and
plural forms of terms may be within the definitions.

References to “one embodiment”, “an embodiment™, “one
example”, “an example”, and so on, indicate that the
embodiment(s) or example(s) so described may include a
particular feature, structure, characteristic, property, ele-
ment, or limitation, but that not every embodiment or
example necessarily includes that particular feature, struc-
ture, characteristic, property, element or limitation. Further-
more, repeated use of the phrase “in one embodiment™ does
not necessarily refer to the same embodiment, though 1t may.

“Computer-readable medium”, as used herein, refers to a
medium that stores instructions and/or data. A computer-
readable medium may take forms, including, but not limited
to, non-volatile media, and volatile media. Non-volatile
media may 1include, for example, optical disks, magnetic
disks, and so on. Volatile media may include, for example,
semiconductor memories, dynamic memory, and so on.
Common forms of a computer-readable medium may
include, but are not limited to, a floppy disk, a tlexible disk,
a hard disk, a magnetic tape, other magnetic medium, an
ASIC, a CD, other optical medium, a RAM, a ROM, a
memory chip or card, a memory stick, and other media from
which a computer, a processor or other electronic device can
read.

“Data store”, as used herein, refers to a physical and/or
logical entity that can store data. A data store may be, for
example, a database, a table, a file, a list, a queue, a heap, a
memory, a register, and so on. In different examples, a data
store may reside 1n one logical and/or physical entity and/or
may be distributed between two or more logical and/or
physical entities.

“Logic”, as used herein, includes but 1s not limited to
hardware, firmware, solftware in execution on a machine,
and/or combinations of each to perform a function(s) or an
action(s), and/or to cause a function or action from another
logic, method, and/or system. Logic may include a software
controlled microprocessor, a discrete logic (e.g., ASIC), an
analog circuit, a digital circuit, a programmed logic device,
a memory device containing instructions, and so on. Logic
may include one or more gates, combinations of gates, or
other circuit components. Where multiple logical logics are
described, 1t may be possible to mcorporate the multiple
logical logics 1into one physical logic. Similarly, where a

22 El:

10

15

20

25

30

35

40

45

50

55

60

65

10

single logical logic 1s described, 1t may be possible to
distribute that single logical logic between multiple physical
logics.

While example apparatus, methods, and computer-read-
able media have been illustrated by describing examples,
and while the examples have been described 1n considerable
detail, 1t 1s not the intention of the applicants to restrict or 1n
any way limit the scope of the appended claims to such
detail. It 1s, of course, not possible to describe every con-
ceivable combination of components or methodologies for
purposes of describing the systems, methods, and so on
described herein. Therefore, the invention 1s not limited to
the specific details, the representative apparatus, and 1llus-
trative examples shown and described. Thus, this application
1s intended to embrace alterations, modifications, and varia-
tions that fall within the scope of the appended claims.

To the extent that the term “includes” or “including” 1s
employed in the detailed description or the claims, it 1s
intended to be inclusive 1in a manner similar to the term
“comprising” as that term 1s interpreted when employed as
a transitional word 1n a claim.

To the extent that the term “or” 1s employed 1n the detailed
description or claims (e.g., A or B) it 1s intended to mean “A
or B or both”. When the applicants intend to indicate only
A or B but not both” then the term “only A or B but not both”
will be employed. Thus, use of the term “or” herein 1s the
inclusive, and not the exclusive use. See, Bryan A. Gamer,
A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995).

To the extent that the phrase “one or more of, A, B, and
C” 1s employed herein, (e.g., a data store configured to store
one or more of, A, B, and C) it 1s intended to convey the set
of possibilities A, B, C, AB, AC, BC, and/or ABC (e.g., the
data store may store only A, only B, only C, A&B, A&C,
B&C, and/or A&B&C). It 1s not itended to require one of
A, one of B, and one of C. When the applicants itend to
indicate ““at least one of A, at least one of B, and at least one
of C”, then the phrasing “‘at least one of A, at least one of B,
and at least one of C” will be employed.

What 1s claimed 1s:

1. A non-transitory computer-readable medium storing
computer-executable 1nstructions that when executed by an
apparatus control the apparatus to perform a method, the
method comprising:

identifying an 1node associated with an object located 1n

a hierarchical file system, where the hierarchical file
system has a root directory, where the hierarchical file
system has a subdirectory that branches out from the
root directory along a pathway, and where the object 1s
subject to a size altering operation;

identilying an inode chain that describes a pathway in the

hierarchical file system from the object through a
subdirectory based, at least 1n part, on ancestry infor-
mation associated with the inode, where 1dentifying the
inode chain includes walking up the mnode chain to the
root directory by identifying a parent of the inode or by
identilying a parent of the object;

performing a size constraint analysis for the subdirectory

on the pathway based, at least in part, on size constraint
information associated with the inodes on the inode
chain, by calculating a change 1n size of the object
based on a determination that the size altering operation
were to be performed and comparing the calculated
change 1n size of the object to a size constraint, where
the size constraint limits the amount by which the size
of the object 1s allowed to change 1n a transaction,
where the size constraint information 1s stored in a size

US 10,019,451 B2

11

constraint information data structure external to an
inode table, where the size constraint information data
structure 1s a b-tree; and

selectively performing the size altering operation associ-

ated with the object based, at least 1n part, on the size
constraint analysis,

wherein at least one of: an 1node associated with an object

subject to a size constraint 1s stored more frequently in
a cache memory 1n the apparatus than an inode that 1s
associated with an object that 1s not subject to a size
constraint, or the mode associated with an object sub-
ject to a size constraint 1s stored for a longer period of
time 1 the cache memory than the inode that 1s
associated with an object that 1s not subject to a size
constraint, or the mode associated with an object sub-
ject to a size constraint 1s stored permanently in the
cache memory.

2. The non-transitory computer-readable medium of claim
1, where the ancestry information 1s stored in an ancestry
information data structure external to the inode table, and
where the ancestry information data structure 1s a b-tree.

3. The non-transitory computer-readable medium of claim
2, where a portion of the ancestry information data structure
1s stored in the cache memory 1n the apparatus.

4. The non-transitory computer-readable medium of claim
1, where a portion of the size constraint information data
structure 1s stored 1n the cache memory in the apparatus.

5. The non-transitory computer-readable medium of claim
1, where the 1modes, ancestry information, and size con-
straint information are stored in the imnode table.

6. The non-transitory computer-readable medium of claim
5, where a portion of the mode table 1s stored 1n the cache
memory 1n the apparatus, where the portion of the inode
table includes a root 1node, where the root inode 1s stored
more frequently 1n the cache memory than a non-root 1node,
or where the root 1node 1s stored for a longer period of time
in the cache memory than a non-root mode.

7. The non-transitory computer-readable medium of claim
1, where performing a size constraint analysis comprises
detecting size constraint information for the subdirectory on
the pathway.

8. The non-transitory computer-readable medium of claim
1, where the size constraint information comprises a binary
size tlag to indicate that the object 1s subject to a size
constraint or that the object 1s not subject to a size constraint.

9. The non-transitory computer-readable medium of claim
1, where selectively performing the size altering operation
comprises performing one of:

performing the size altering operation upon determining

that performing the size altering operation would not
violate the size constraint; and

cancelling the size altering operation upon determining

that performing the size altering operation would vio-
late the size constraint.

10. The non-transitory computer-readable medium of
claim 1, where the size altering operation 1s one of, a save
command, a create command, a write command, a write
append command, a move command, a relocate command,
and a delete command.

11. An apparatus, comprising:

a Processor;

a memory configured to store a first data structure con-

figured to store mnodes and a second data structure
configured to store ancestry information and size con-

10

15

20

25

30

35

40

45

50

55

60

12

straint information for objects located 1n a hierarchical
file system and having entries 1n the first data structure,
where the hierarchical file system has a root directory,
and where the hierarchical file system organizes objects
in a pathway, where the first data structure stores a root
inode more frequently than a non-root inode, or where
the first data structure stores the root inode for a longer
period of time than a non-root mode, or where the first
data structure stores the root inode permanently, and
where the second data structure configured to store
ancestry imformation and size constraint information 1s
a b-tree;

a set of logics; and

an 1nterface configured to connect the processor, the

memory, and the set of logics,

the set of logics comprising:

an 1node logic configured to identily an inode for an
object, and to 1dentily ancestry information and size
constraint information associated with the inode; and

a path lookup logic configured to use the ancestry
information to discover a pathway, where the path-
way describes a path from the root directory to the
object through parent objects, and determine whether
an object associated with the 1node 1s subject to a size
limitation by 1dentifying size constraint information
for the parent objects on the pathway, where the size
limitation limits the amount by which the size of the
object 1s allowed to change in a transaction, or where
the path lookup logic 1s configured to discover the
pathway by walking up an i1node chain to the root
directory by i1dentifying a parent of the mmode or by
identifying a parent of the object,

wherein at least one of: an mmode associated with an
object subject to a size limitation 1s stored more
frequently 1n a cache memory in the apparatus than
an 1mnode that 1s associated with an object that 1s not
subject to a size limitation, or where the 1inode
associated with an object subject to a size limitation
1s stored for a longer period of time in the cache
memory than the inode that 1s associated with an
object that 1s not subject to a size limitation, or where
the mode associated with an object subject to a size
limitation 1s stored permanently in the cache
memory.

12. The apparatus of claim 11, comprising

a recerving logic configured to receive a size altering

operation request associated with the object; and

a performance logic configured to selectively perform the

size altering operation based, at least in part, on the
determination of the size constraint information of the
pathway.

13. The apparatus of claim 11, where the first data
structure 1s one of, an inode table, an 1node tree, and an 1node
ranking, and where the b-tree 1s keyed by an mmode number
of the root directory.

14. The apparatus of claim 11, where the mode logic 1s
configured to identily stored inodes in the memory using
inode numbers, where an inode number 1s a unique 1dentifier
and where the ancestry information and the size constraint
information for an object are associated with the object with
the 1node numbers.

15. The apparatus of claim 11, where the objects are one
or more of, a file, a subdirectory, and a root directory.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

