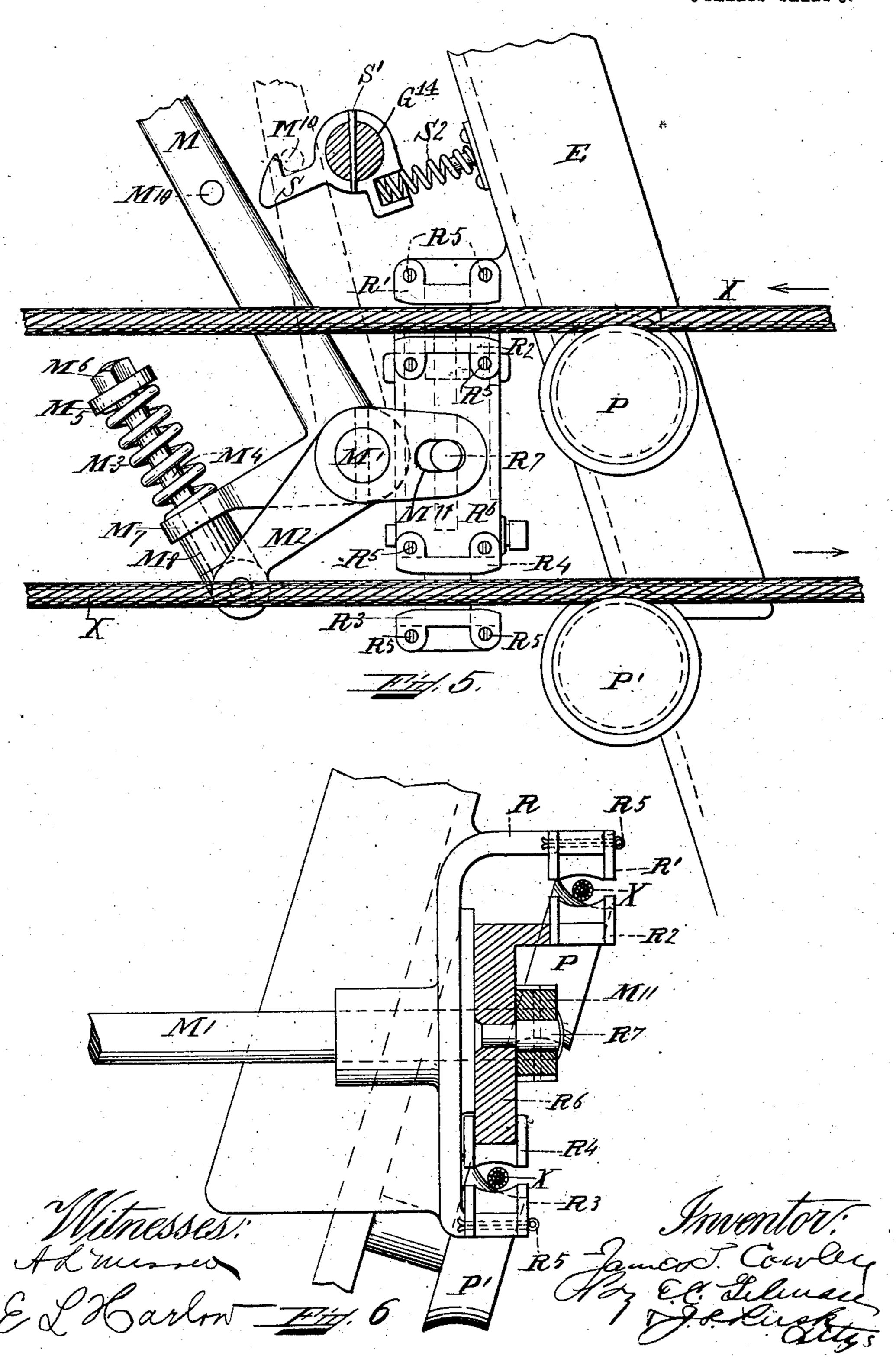

J. T. COWLEY.
CONVEYING APPARATUS.
APPLICATION FILED JUNE 22, 1905.

J. T. COWLEY. CONVEYING APPARATUS. APPLICATION FILED JUNE 22, 1805.

3 SHEETS-SHEET 2.



J. T. COWLEY.

CONVEYING APPARATUS.

APPLICATION FILED JUNE 22, 1905.

3 SHEETS-SHEET 3.

UNITED STATES PATENT OFFICE.

JAMES T. COWLEY, OF BOSTON, MASSACHUSETTS, ASSIGNOR TO LAMSON CONSOLIDATED STORE SERVICE COMPANY, OF NEWARK, NEW JERSEY, A CORPORATION OF NEW JERSEY.

CONVEYING APPARATUS.

No. 869,296.

Specification of Letters Patent.

Patented Oct. 29, 1907.

75

Application filed June 22, 1905. Serial No. 266,394.

· To all whom it may concern:

Be it known that I, JAMES T. COWLEY, of Boston, in the county of Suffolk and State of Massachusetts, have invented certain new and useful Improvements in Conveying Apparatus, of which the following is a specification.

My invention relates to improvements in that class of conveying apparatus wherein an endless traveling cable is utilized to actuate a car or carrier traveling 10 upon tracks or guide rails, and is so constructed and combined as to enable a car or carrier to be loaded at a main or despatching station with several separate loads or consignments, and automatically deliver any of the said loads or consignments independently to any of a 15 series of stations located along the system.

This invention also provides for the automatic return of the empty carrier after delivering the last consignment.

In the accompanying drawings which illustrate a 20 construction embodying my invention, Figure 1 is a plan view of the machine. Fig. 2 is a side elevation of same. Fig. 3 is a side elevation of the carrier. Fig. 4 is an end view in elevation of the carrier. Fig. 5 is an enlarged side elevation of cable-gripping mechanism. 25 Fig. 6 is an enlarged section of same. Fig. 7 is an end elevation showing door-closing and cable-reversing cams. Fig. 8 is an enlarged side elevation of cablereversing cam.

Like letters of reference refer to like parts throughout 30 the several views.

The tracks A are fixed to the supports A' which also carry the longitudinally mounted rails A4, and the standards A³ and diagonal braces A² fixed upon the said rails A⁴ support the tracks A. The hoppers B, C 35 and D are fixed to the rails A⁴ and each hopper is divided into three compartments. The tables B4, C4 and D⁴ mounted on the supports A' are located under the hoppers B C and D respectively. The endless cable X is mounted on the pulleys X' and is driven, 40 by the motor X². The carrier E (Fig. 3) carries the shaft G¹⁴ fixed in the extensions E⁴ upon which shaft are mounted the flanged wheels E⁵ adapted to travel on the tracks A. The rods E⁶ are longitudinally mounted in the brackets E7 hung under each side of the car-45 rier E. The carrier is divided into three compartments E' E² and E³ by the partitions E⁸. The bottom of each compartment is divided into two swinging doors E9 and E^{10} which swing on the pivots E^{12} , the doors E^{10} overlapping the doors E^9 . The rods E^6 prevent the said doors 50 from swinging outward too far and the force of contact therewith is checked by the springs E11. The catch F (Figs. 3 & 7) is fixed to the rod F' which is pivoted in the bearings F^2 fixed to the under side of the doors E^{10} . The said catch F engages the latch F³ holding the swing-55 ing doors closed.

The pin F⁴ is fixed to the rod F⁵ which is longitudinally movable in the support F⁶ which is fixed to the carrier E. The spring F⁷, mounted between the said support F⁶ and the pin F⁴, holds the rod F⁵ in an inward position. The outer end of the rod F⁵ is pivoted 60 to the lower end of the bell crank lever F⁸ which is pivoted to the extension F^9 on the carrier E. The other end of the bell crank lever F⁸ is pivoted to the rod F¹⁰. The upper or bifurcated end of said rod F¹⁰ is pivoted to the extension G' on the notched bar G 65 which is pivoted in the bearings G³. The spring clutch G⁴ is adapted to engage any notch on the bar G, each notch designating a correspondingly numbered hopper. The projecting finger G⁵ on the clutch G⁴ is adapted to engage a trip finger H' fixed to the cross bar 70 H. The finger G⁵ controls the discharging of the contents of the compartment E' into any of the nine hoppers. The finger J⁵ controls similar mechanism for discharging compartment E³, and the finger K⁵ controls the discharging of compartment E².

Cross bars H are located over each compartment and fingers H' H² and H³ are consecutively staggered thereon to engage any of the fingers G⁵, K⁵ or J⁵ respectively, designating stations represented by said staggered fingers. The rolls L are journaled in bearings 80 on each swinging door E9 and E10 and are adapted to engage the door-closing cams L' which are fixed to the supports A'.

The hand lever M (Fig. 5) is pivoted on the bar M' and works in the yoke M² which is pinned to the said 85 bar M'. The spring M³ mounted on the spindle M⁴ and held thereon by the collar M⁵ and the nut M⁶ acts upon the extension M⁷ of the lever M¹, which forms an eye through which the spindle M⁴ is mounted. The shoulder M⁸ into which the lower end of the spindle M⁴ is 90 fixed, is pivoted in the yoke M² and forms a backing for the extension M⁷ of the hand lever M. The rod M' is pivoted in the bearings M9 which are mounted on the blocks N attached to the car E. The lever N' (Fig. 8) is fixed upon the end of the rod M' at the side of the car 95 E and carries the shoe N² thereon. The finger N⁴ on the lever N' is connected with the spring N⁵ fastened to the side of the car E and which spring N5 acts upon the said finger N⁴. The latch S is pinned to the shaft G¹⁴ by the pin S' and is held outward by means of the 100 spring S² fastened to the carrier E. The slotted extension M¹¹ is fixed to the rod M' and carries movably mounted therein the pin R⁷ fixed to the sliding grip R⁶. The stationary member R carries the grooved jaw R' fastened to the upper portion thereof by the cotter pins 105 R⁵, and the grooved jaw R³ fastened to the lower portion thereof by the cotter pins R⁵. The grooved jaw R² is fixed to the upper portion of the sliding grip R⁶ and the grooved jaw R4 is fixed to the lower portion of the said sliding grip R⁶ by the cotter pins R⁵. The grooved 110 rolls P and P' are mounted upon the side of the car E and support the cable X centrally between the jaws R' and R² and R³ and R⁴ preventing the cable from wearing when the carrier is idle.

· The operation is as follows: The operator standing at the main or despatching station Z loads the carrier E, filling as many of the compartments E', E2 and E3 as desired, each with a separate consignment for any of the department stations located along the line. The oper-10 ator then adjusts the clutch G4 (Fig. 4) which clutch controls the discharging of the contents of the compartment E' of the carrier E into the notch representing the department station for which said contents are consigned. The clutch K⁵ controlling the discharge of the 15 contents of the compartment, E² is then adjusted into the notch on the bar G⁷ representing the department station to which said contents of compartment E2 are consigned. The clutch J⁵ controlling the discharge of the contents of compartment E³ is then adjusted into 20 the notch on the bar G⁸ representing the department station to which the contents of compartment E3 are consigned. The hand lever M is then pushed up until the pin M¹⁰ engages the latch S and is held in the position indicated by dotted lines Fig. 5. The extension 25 M⁷ of the hand lever M in this position is forcing the spring M³ against the collar M⁵ forcing the yoke M² upwards by means of the rod M⁴ fastened thereto. The yoke M² being fixed to the bar M' causes the slotted extension M¹¹ fixed to said bar M' to force the pin R⁷ 30 mounted in the sliding grip R⁶ down, causing the grooved jaw R4 fixed to said sliding grip R6 to close the lower portion of the cable X between said grooved jaw R⁴ and the grooved jaw R³. The spring M³ furnishes the required tension by the grip upon the cable. The 35 lower portion of the cable traveling in the direction indicated by the arrow impels the car E upon the tracks in the same direction. If the contents of compartment E' are consigned to the department station C2, the projecting finger H' mounted upon the cross bar H di-40 rectly over said station C² engages the clutch G⁴ causing the pivoted bar G to partly turn in the bearings G3, the extension G' mounted thereon forcing the rod F¹⁰ down and throwing the rod F⁵ back against the spring F⁷ by means of the bell crank lever F⁸. The finger F⁴ fixed 45 to the rod F⁵ now throws the catch F out of the latch F³ causing the swinging doors E⁹ and E¹⁰ (Fig. 7) of the compartments E' to swing outward in the direction indicated by the dotted lines until they are checked by the buffer spring E^{11} hitting against the rods E^6 . The 50 contents of said compartment are discharged through the hopper C² and out upon the table C⁴ directly under said hopper. The car continuing in the same direction,

time, having resumed its normal position by means of the spring F⁷ acting thereon after the finger G⁵ of the 60 clutch G⁴ has passed the trip H'. The load in compartment E² may be similarly discharged by the clutch K⁵ engaging the finger H² at the designated station, and the operation repeated, as heretofore described. The contents of the compartment E³ being consigned to de-65 partment station D', the clutch J⁵ engages the trip H³

the rolls L mounted upon said doors E⁹ and E¹⁰ engage

the cams L' said rolls riding upon said cams, the roll on

the doors are closed and the catch F' engages the latch

F³ holding the said doors closed, the pin F⁴ in the mean-

55 the door E^9 in advance of the roll on the door E^{10} until

mounted on the bar H over said station, causing the pivoted bar G8 to turn, forcing the rod G9 downward and releasing the doors E^9 and E^{10} of the compartment E^3 by means of the bell crank lever F^8 acting upon the rod G^{12} throwing the pin G¹³ fixed thereto against the catch F 70 releasing the same. The collar G11 fixed to the rod G9 throws the collar G10 fixed to the shaft G14 down releasing the latch S from the pin M10 forcing the hand lever M acted upon by the spring N⁵ downwards. The slotted extension M^{11} acting upon the pin \mathbb{R}^7 throws the jaw 75 R4 releasing the lower part of the cable X until the upper grooved jaw R² grips the upper portion of the cable X between said grooved jaw R² and the grooved jaw R'. The car E now returns with the upper portion of the cable X in the direction indicated by the arrow until it 80 reaches the main or despatching station. The shoe N² on the lever N' fixed on the rod M' at the side of the car E now engages the cam N³ forcing the lever N' down until the rod M' throws the hand lever M upward and the slotted extension M¹¹ acting upon the pin R⁷ causes 85 the grooved jaw to release the cable and the said pin R to assume a central position between the upper and lower portion of the cable. The car E now comes to a standstill and the operation may be repeated.

Having thus described the nature of my invention 90 and set forth a construction embodying the same, what I claim as new and desire to secure by Letters Patent of the United States is:

1. In a conveying apparatus, a framework, tracks mounted in said framework, a carrier adapted to travel on 95 said tracks, an endless cable mounted in said framework and adapted to actuate said carrier, means for driving said cable, a despatching station, a receiving station, means for automatically discharging the contents of said carrier into said receiving station, and means for auto- 100 matically reversing said carrier upon said tracks and returning it to said despatching station after discharging said contents.

2. In a conveying apparatus, a framework, tracks mounted in said framework, a carrier adapted to travel on 105 said tracks, an endless cable mounted in said framework and adapted to actuate said carrier, means for driving said cable, a despatching station, a series of receiving stations, means for automatically discharging the contents of said carrier into any one of said receiving stations, and 110 means for automatically reversing said carrier upon said tracks and returning it to said despatching station after discharging said contents.

. 3. In a conveying apparatus, a framework, tracks mounted in said framework, a carrier adapted to travel on 115 said tracks, a plurality of compartments in said carrier, an endless cable mounted in said framework and adapted to actuate said carrier, means for driving said cable, a despatching station, a series of receiving stations, means for automatically discharging the contents of any one of 120 said compartments into any one of said receiving stations, and means for automatically returning said carrier to said despatching station after discharging the contents of said compartments.

4. In a conveying apparatus, a track, a carrier adapted 125 to travel on said track, an endless cable adapted to actuate said carrier, a despatching station, a receiving station, hand operated gripping means located on said carrier for gripping the forward moving portion of said endless cable, means for locking said hand operated gripping means in 130 position, means for automatically discharging the contents of said carrier into said receiving station, means for automatically releasing said locking means after discharging said contents, spring actuated means for gripping the returning portion of said endless cable, and means located 135 at said despatching station adapted to engage said spring actuated means for releasing the grip on said cable and stopping said carrier.

5. In a conveying apparatus, a track, a carrier adapted to travel on said track, an endless cable adapted to actuate said carrier, a despatching station, a series of receiving stations, a plurality of compartments in said carrier, means for predetermining the receiving station at which the contents of any one of said compartments shall be discharged, hand-operated gripping means located on said carrier for gripping the forward-moving portion of said endless cable, means for locking said hand-operated grip-10 ping means in position, means for automatically discharging the contents of said compartments into their predetermined receiving stations, means for automatically releasing said locking means after discharging the contents of the last compartment, spring-actuated means for grip-15 ping the returning portion of said endless cable, and means located at said despatching station adapted to engage said spring-actuated means for releasing the grip on said cable and stopping said carrier.

6. In a conveying apparatus, a way, a carrier adapted to travel on said way, an endless cable for actuating said carrier, means for driving said cable, gripping means located on said carrier for engaging said cable, means for unlocking said gripping means whereby said cable is released from said gripping means and for gripping the returning portion of said cable whereby the travel of the carrier is reversed upon the way.

7. In a conveying apparatus, a way, a carrier adapted to travel on said way, an endless cable for actuating said carrier, means for driving said cable, gripping means located on said carrier for engaging said cable, manually-operated means for locking said gripping means, and means for automatically releasing said locking means whereby said cable is released from said gripping means and for gripping the returning portion of said cable whereby the travel of the carrier is reversed upon the way.

8. In a conveying apparatus, a framework, tracks mounted on said framework, a carrier adapted to travel on said tracks, an endless cable mounted in said framework

and adapted to actuate said carrier, means for driving said cable, gripping means located on said carrier for engaging 40 the forward-moving portion of said cable, means for locking said gripping means, and means located at the terminus of said tracks for automatically releasing the forward-moving portion of said cable and for gripping the returning portion of said cable whereby the travel of said 45 carrier is reversed upon said tracks.

9. In a conveying apparatus, a framework, tracks mounted on said framework, a carrier adapted to travel on said tracks, an endless cable mounted in said framework and adapted to actuate said carrier, means for driving said cable, gripping means located on said carrier for engaging the forward-moving portion of said cable, means for locking said gripping means, means located at the terminus of said tracks for automatically releasing the forward moving portion of said cable and for gripping the returning portion of said cable whereby the travel of said carrier is reversed upon said tracks, and means for automatically disengaging said gripping means from the returning portion of said cable when a carrier has arrived at the opposite end of the track.

10. In a conveying apparatus, a track, a carrier adapted to travel on said track, an endless cable adapted to actuate said carrier, means for driving said cable, gripping means located on said carrier for engaging the forward-moving portion of said cable, manually-operated means for locking said gripping means, and means located at the terminus of said track for automatically releasing the forward-moving portion of said cable and for gripping the returning portion of said cable whereby said carrier is reversed upon said tracks.

In testimony whereof, I have signed my name to this specification in the presence of two subscribing witnesses.

JAMES T. COWLEY.

Witnesses:

WILLIAM WILCOX, WILLARD A. MARCY.