L. S. CHADWICK. AUTOMOBILE GEAR. APPLICATION FILED AUG. 4, 1903.

4 SHEETS-SHEET 1.

Jusse B. Steller M.M. Hamilton

-1/EZ/

Jee S. Clear week BY

Naving H Navdie ATTORNEYS

L. S. CHADWICK. AUTOMOBILE GEAR.

APPLICATION FILED AUG. 4, 1903.

4 SHEETS-SHEET 2.

WITNESSES: Jesse B. Nellev. M. M. Hamilton

Lee S. Cleadweek

BY

Nawing 21/2 and ear

ATTORNEY

L. S. CHADWICK. AUTOMOBILE GEAR.

APPLICATION FILED AUG. 4, 1903.

4 SHEETS-SHEET 3.

WITHESSES: Jesse B. Oleller, mm 2/- 1-

Lee S. Chadreak

BY

Varding ANdarring

ATTORNEY.

L. S. CHADWICK. AUTOMOBILE GEAR.

APPLICATION FILED AUG. 4, 1903.

4 SHEETS-SHEET 4.

United States Patent Office.

LEE S. CHADWICK, OF RIDLEY PARK, PENNSYLVANIA.

AUTOMOBILE-GEAR.

SPECIFICATION forming part of Letters Patent No. 782,898, dated February 21, 1905.

Application filed August 4, 1903. Serial No. 168,138.

To all whom it may concern:

Be it known that I, Lee S. Chadwick, a citizen of the United States, residing at Ridley Park, county of Delaware, and State of Pennsylvania, have invented a new and useful Improvement in Automobile-Gears, of which the following is a full, clear, and exact description, reference being had to the accompanying drawings, which form a part of this specification.

I will first describe the embodiment of my invention illustrated in the accompanying drawings and then point out the invention in the claims.

In the drawings, Figure 1 is a plan view of a portion of the running-gear of an automobile with the transmission-case in position. Fig. 2 is an end view of the transmission-case. Fig. 3 is a section on the line 3 3 of Fig 6.

20 Fig. 4 is a section on the line 4 4 of Fig. 6.

Fig. 5 is a section on the line 5 5 of Fig. 2.

Fig. 6 is a section on the line 6 6 of Fig. 2.

A is the frame of the automobile.

B is the driving-shaft, having the sprocketwheel B', driving the rear driving-wheel B'
by the sprocket-chain B'. Upon the shaft B
is the bevel-gear C, having the gear-faces
c c' and the compensating gear C'. Between
the compensating gear C' and the bevel-gear
C is the operating-shaft D.

E is the gear-casing.

E' is a hollow bearing having the serrations e.

F is a bevel-gear having the hub f, pro35 vided with an annular opening. The hub
f is provided with projecting rings f'. The
bevel-gear F surrounds the bearing E', and
the hub f enters the hollow bearing, the rings
entering the serrations on the hub. The op40 erating-shaft D has its seat in the hollow hub f.

f² is an orifice partially in the bearing E' and partially in the casing E, and a key e' holds the bevel-gear F from lateral movement in the bearing. The bevel F meshes with gear-face c of bevel C. Upon the shaft D, which is rectangular, is the rectangular sleeve G, having the gears H H' H² and the shifting collar H³.

The shaft D is operated by the vehicle-mo-5° tor, and by means of a clutch (not shown)

is engaged and disengaged from driving connection with the motor. Upon the face of gear F are the clutch projections f^3 , and on the face of gear H are corresponding projections n^3 . By shifting the sleeve G so that 55 the clutch projections f^3 the shaft D directly drives the bevel C.

D' is a second shaft. Upon this shaft D' is the bevel D2, meshing with the gear-face c' of 60 gear C. Upon this shaft D' are the gears h $h' h^2$, fixed to the shaft. The position of gears h h' h2 and gears H, H', and H2 are such that when the sleeve G is moved along the shaft D either gear H meshes with gear h, 65 gear H' with h', or gear H² with gear h^2 , and the gear C and vehicle are driven at different speeds. There is a position on the shaft of sleeve G that gears H and H' have passed beyond gear h and h', but before gear H² has 70 reached gear h², gear H² and h² producing the slow speed. There is the neutral position at which the vehicle is at rest. In order to produce at this point a reversal of movement of the vehicle, I provide the following mech- 75 anism: Through the motor-casing is an orifice I.

J is a gear upon the shaft j, the outside diameter of gear J being the same size as the bore of the orifice I. The face of this gear J 80 upon the shaft or spindle j is not cut the full width, thereby leaving the blank space J² of size substantially that of the bore of the orifice I. To the other end of shaft or spindle j is loosely connected one end of the bell-85 crank lever K, operated by link K'. When the gears H, H', and H² are in the position last spoken of and the gear J moved through the orifice, the teeth of gear J will mesh with both gears H² and h², thereby reversing the 90 train of gears, (see Fig. 6,) the length of gear J being sufficient to accomplish this.

The constructions described have many advantages. Among others, by using the hub of gear F as a bearing for the shaft D, I am en-95 abled to make the casing smaller and the shaft shorter. By placing the compensating or differential gear beyond the shaft D and gear F the gears C and F may be made smaller and the casing narrower. By using a supplemen-100

tal casing O for the compensating gear I also provide a practical device for reversing the car at slow speed only.

Having now fully described my invention, what I claim, and desire to protect by Letters

Patent, is--

1. The combination with the driving-shaft of an automobile and a gear thereon, of a hollow bearing, a gear surrounding said bearing and meshing with the driving-shaft gear, said gear having a hollow hub entering the opening in said bearing and an operating-shaft having in said bearing and an operating-shaft hav-

ing a seat or bearing in said hub.

2. The combination with the driving-shaft of an automobile and a gear thereon, of a hollow bearing, a gear surrounding said bearing and meshing with the driving-shaft gear, said gear having a hollow hub entering the opening in said bearing and an operating-shaft having a seat or bearing in said hub, and a clutch adapted to make engagement between the operating-shaft and the gear meshing with the driving-shaft gear.

3. In an automobile, in combination, an idler-gear, a bearing in which said idler-gear 25 slidably fits, a shaft to which said gear is secured, a guiding-collar, making a slidable fit with said bearing, upon said shaft, an operating-lever and connection between said operating lever and shaft.

4. In an automobile, in combination, a gear-case, an idler-gear, there being an orifice in said casing in which said gear slidably fits, a shaft to which said gear is secured, a sliding collar, making a slidable fit with said orifice 35 in said casing, upon said shaft, an operating-lever and connection between said operating

lever and shaft.

In testimony of which invention I have hereunto set my hand on this 28th day of 4° July, 1903.

LEE S. CHADWICK.

Witnesses:

N. B. RINGLE, Geo. B. Harvey.