
P. N. MOORE.

FRICTION DRAFT RIGGING FOR RAILWAY CARS. APPLICATION FILED SEPT. 8, 1904.

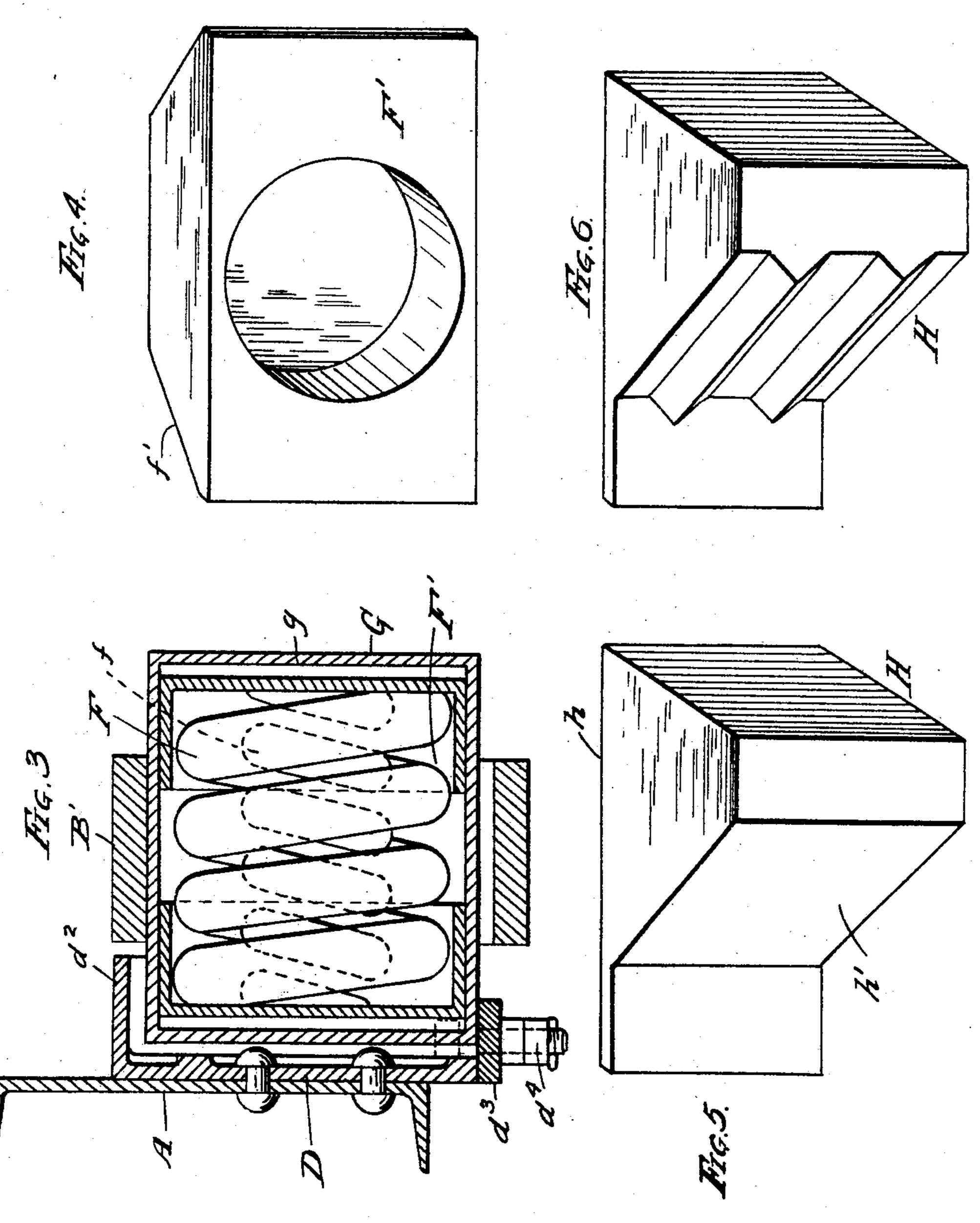
2 SHEETS-SHEET 1.

WITNESSES: F. B. Townsend Mm. Geiger

INVENTOR.

Peter N. Moore

BY Munday Evants


+ Arconce

his ATTORNEYS

P. N. MOORE.

FRICTION DRAFT RIGGING FOR RAILWAY CARS.

APPLICATION FILED SEPT. 8, 1904.

J. B. Townsend Mm. Geiger

INVENTOR.

Peter N. Moore

BY Munday, Evants

HAdeole

his ATTORNEYS

United States Patent Office.

PETER N. MOORE, OF MILWAUKEE, WISCONSIN.

FRICTION DRAFT-RIGGING FOR RAILWAY-CARS.

SPECIFICATION forming part of Letters Patent No. 782,794, dated February 14, 1905.

Application filed September 8, 1904. Serial No. 223,720.

To all whom it may concern:

Be it known that I, Peter N. Moore, a citizen of the United States, residing in Milwaukee, in the county of Milwaukee and State of 5 Wisconsin, have invented a new and useful Improvement in Friction Draft-Rigging for Railway - Cars, of which the following is a specification.

My invention relates to improvements in 10 friction draft-rigging for railway-cars.

The object of my invention is to provide a friction draft-rigging of a simple, strong, efficient, and durable construction capable of exerting a great frictional resistance and which 15 may be arranged between the ordinary followers and stop-castings customarily employed in railway draft-rigging.

My invention consists in the means I employ to practically accomplish this object or re-20 sult—that is to say, it consists, in connection with the draw-bar, draw-bar strap or extension, side plates or stop-castings, and front and rear followers, of a sliding friction-shell, preferably rectangular in cross-section, a trans-25 versely-arranged spring inside the shell, spring-caps or bearing-blocks for the spring having oppositely-inclined or wedging faces, and two pairs of friction-slides having longitudinal friction-faces engaging the interior 30 longitudinal friction-faces of the shell and provided with inclined or wedging faces engaging the inclined or wedging faces of the springcaps or bearing-blocks.

My invention also consists in the novel con-35 struction of parts and devices and in the novel combinations of parts and devices herein shown or described.

In the accompanying drawings, forming a part of this specification, Figure 1 is a central 40 vertical longitudinal section of a friction draft-rigging embodying my invention. Fig. 2 is a horizontal section. Fig. 3 is a partial cross-section on line 3 3 of Fig. 2. Fig. 4 is a detail perspective view of one of the spring-45 caps or bearing-blocks. Figs. 5 and 6 are detail perspective views of the sliding frictionblocks.

In the drawings, A represents the draft or center sills of a car; A', the front or cross sill;

draw-bar strap or extension, secured to the draw-bar by bolts or rivets b.

D D are the side plates or stop-castings, having front stops d and rear stops d' for the front and rear followers E and E' to abut 55 against and upper and lower guides $d^2 d^3$ for the followers to reciprocate on or between. The upper guide d^2 is preferably integral with the side plate or stop-casting D, and the lower guide d^3 is preferably a separate bar or plate 60 secured in place by bolts d^4 to permit the ready insertion and removal of the draft-rigging.

F and f are transversely-arranged springs abutting at their ends against the spring-caps 65 or bearing-blocks F' F', each of which is furnished with oppositely-inclined wedgingfaces f'.

G is a sliding friction-shell, preferably rectangular in cross-section, having interior lon- 70 gitudinal friction-faces g.

H H and H' H' are two pair of sliding friction-blocks, each having an exterior longitudinal friction-face h in sliding frictional engagement with the interior friction-surface of 75 the friction-shell G. Each of the sliding friction-blocks H H' is also furnished with an inclined or wedging face h', engaging the correspondingly inclined or wedging face f' of the spring-cap or bearing-block F'.

The operation is as follows: In buffing the front follower E and front pair of sliding friction-blocks H H move with the draw-bar, while the rear follower E' and rear pair of friction-blocks H' H' are held stationary by the 85 rear stops on the side plates or stop-castings D, thus causing the transversely-arranged spring to be compressed by reason of the interengaging or inclined wedging-faces on the sliding friction-blocks HH' and on the spring- 90 caps or bearing-blocks F', and thereby produce powerful frictional resistance between the interengaging frictional surfaces on the friction-blocks and friction-shell G, the friction-shell G moving backward in respect to 95 the rear friction-blocks H' H' to a less extent than the front pair of friction-blocks H H. In pulling the operation is the same, but the reverse, the front follower and front pair of 5° C, the coupler; B, the draw-bar; and B', the I friction-blocks H H being now held station- 100 ary, while the rear follower and rear pair of friction-blocks H' H' move with the draw-bar, and the friction-shell G also moving forward with the draw-bar, but only to half the extent of the forward movement of the rear follower E' and rear pair of sliding friction-blocks H' H'.

I claim---

1. In a friction draft-rigging, the combination with the draw-bar, draw-bar extension, side plates or stop-castings, and followers, of a sliding friction-shell having interior longitudinal friction-surfaces, two pair of sliding friction-blocks having longitudinal frictional surfaces in frictional engagement with said shell, each of said sliding friction-blocks being provided with an inclined or wedging face, a transversely-arranged spring inside said shell, and a pair of spring-caps or bearing-blocks for the

spring, having inclined or wedging faces en- 20 gaging the inclined or wedging faces on said sliding friction-blocks, substantially as specified.

2. In a friction draft-rigging, the combination with the draw-bar, draw-bar extension, 25 side plates or stop-castings and followers, of a sliding friction-shell, a pair of sliding friction-blocks having longitudinally-extending friction-faces engaging said shell, a transversely-arranged spring and caps or bearing-blocks for said spring, having inclined or wedging faces engaging correspondingly inclined or wedging faces on said sliding friction-blocks, substantially as specified.

PETER N. MOORE.

Witnesses:

PEARL ABRAMS,
WILLIAM A. GEIGER.