
H. MEYER.
SELF PLAYING PIANO.

H. MEYER. SELF PLAYING PIANO. APPLICATION FILED APR. 27, 1904.

NO MODEL.

7 SHEETS-SHEET 2.

H. MEYER. SELF PLAYING PIANO.

APPLICATION FILED APR. 27, 1904.

NO MODEL.

7 SHEETS—SHEET 3.

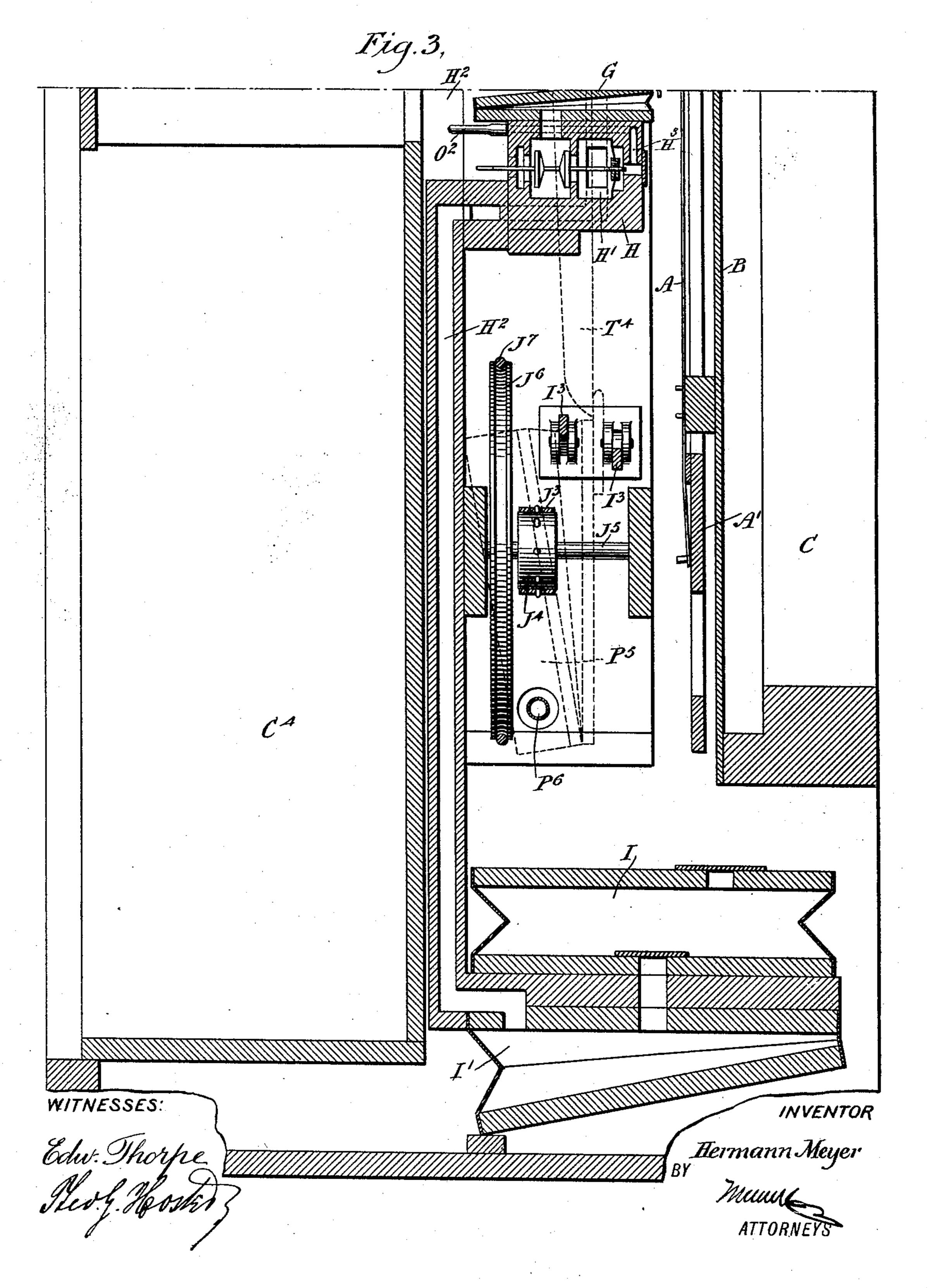
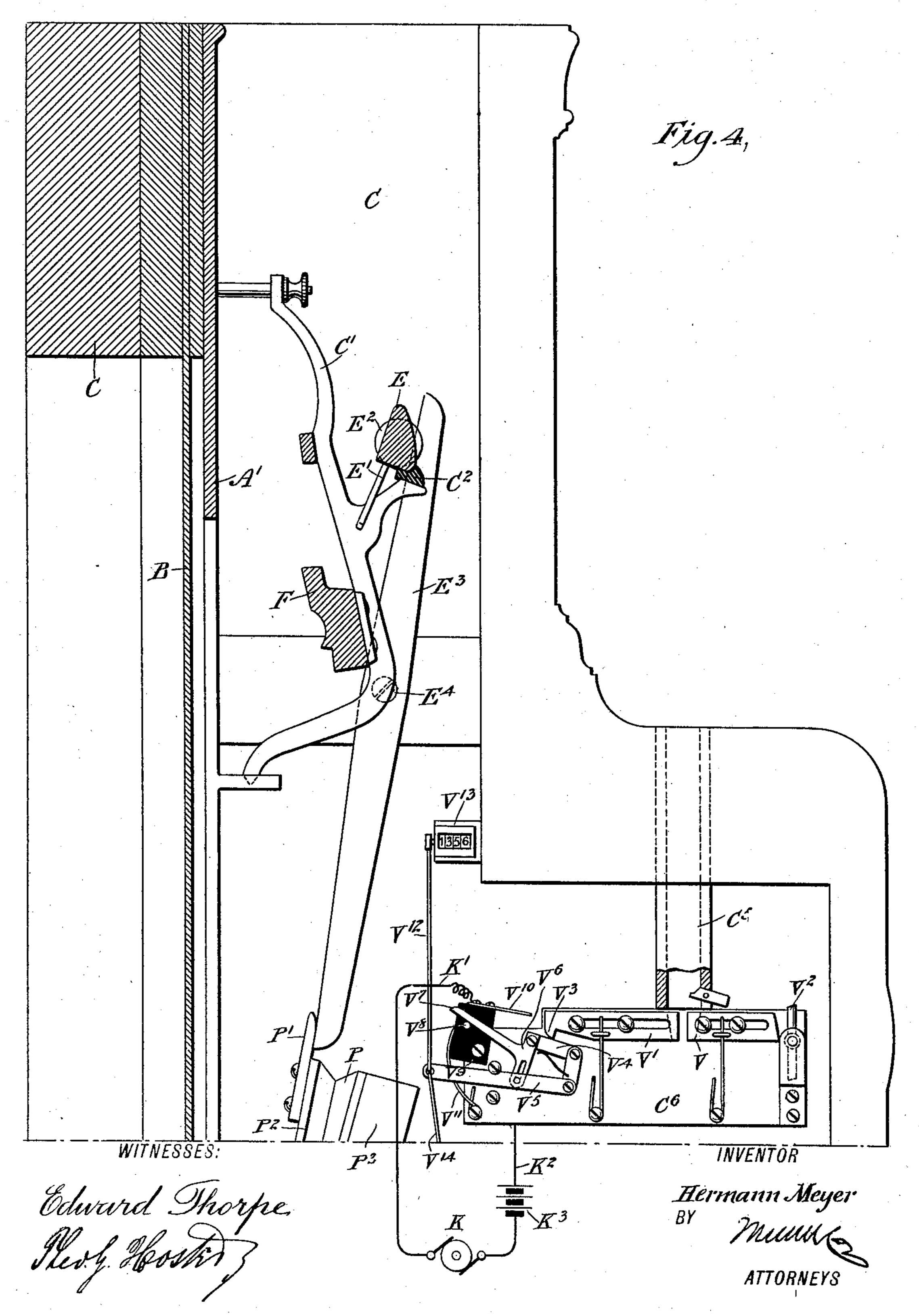
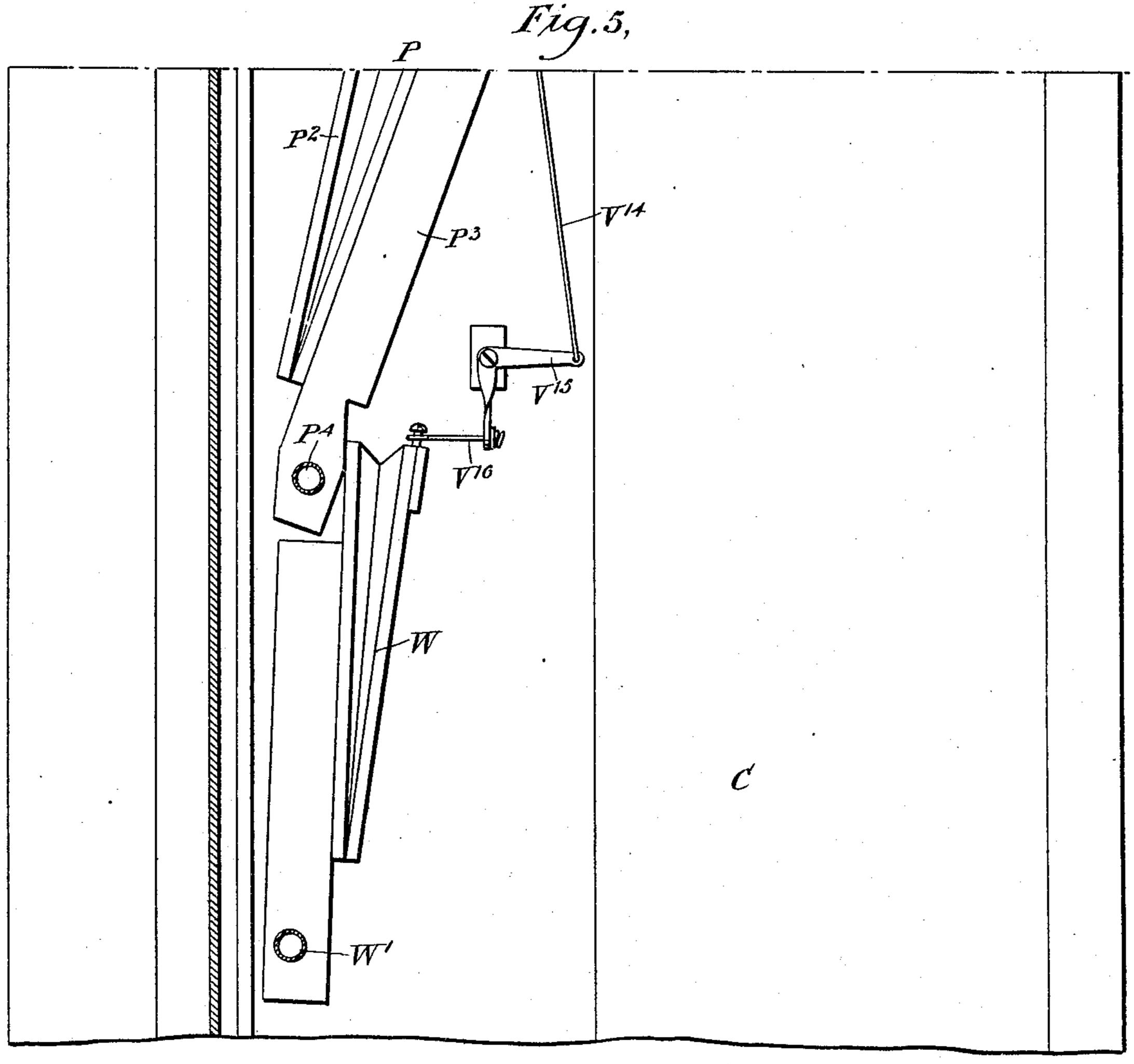



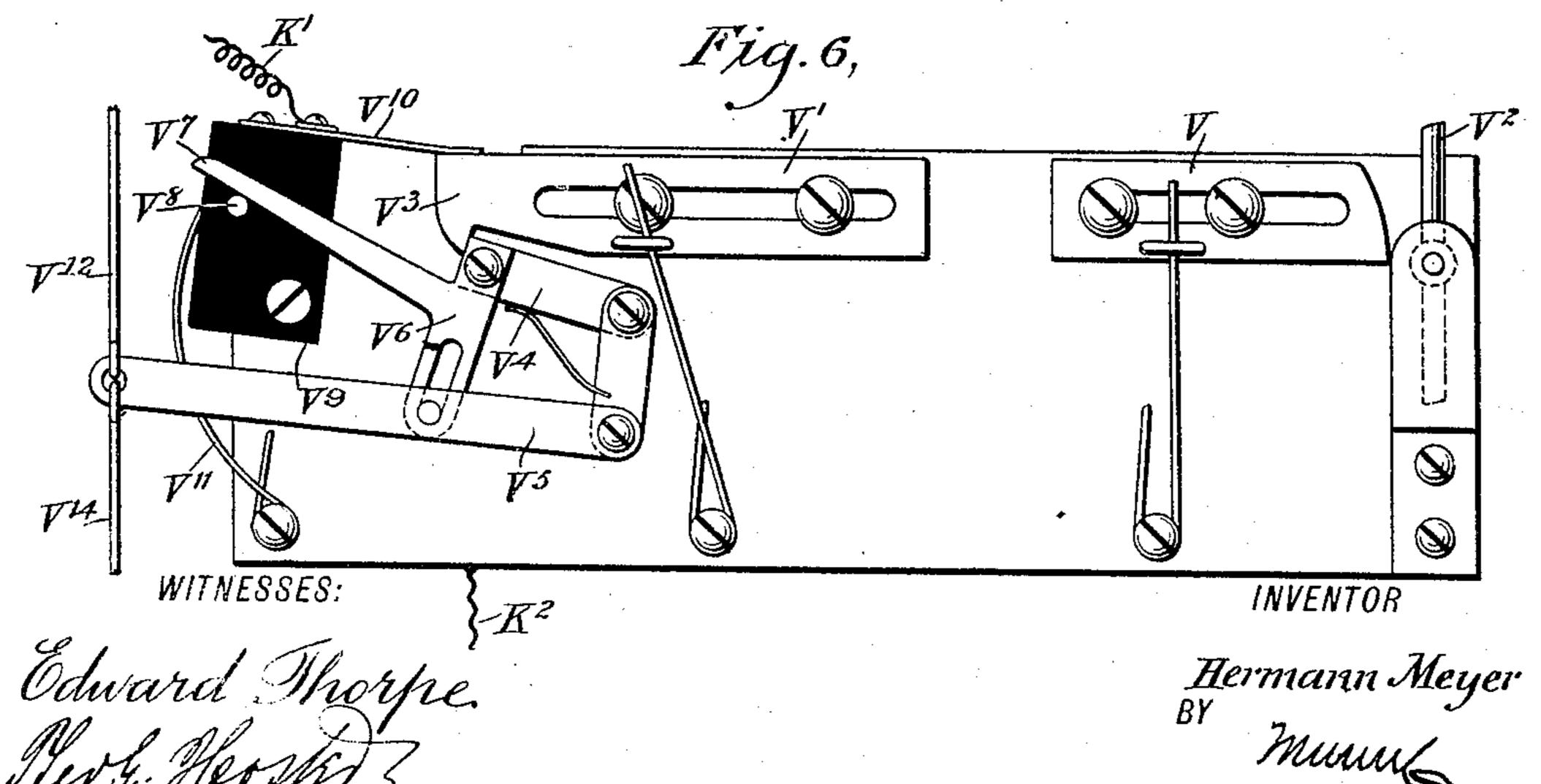
PHOTO-LITHOGRAPHED BY SACKETT & WILHELMS LITHO, & PTG. CO. NEW YORK.

H. MEYER. SELF PLAYING PIANO. APPLICATION FILED APR. 27, 1904.

NO MODEL.

7 SHEETS-SHEET 4.


H. MEYER.


SELF PLAYING PIANO.

APPLICATION FILED APR. 27, 1904.

NO MODEL.

7 SHEETS-SHEET 5.

H. MEYER. SELF PLAYING PIANO.

APPLICATION FILED APR. 27, 1904.

7 SHEETS-SHEET 6. NO MODEL. WITNESSES: **INVENTOR** Hermann Meyer

H. MEYER. SELF PLAYING PIANO. APPLICATION FILED APR. 27, 1904.

NO MODEL.

7 SHEETS-SHEET 7.

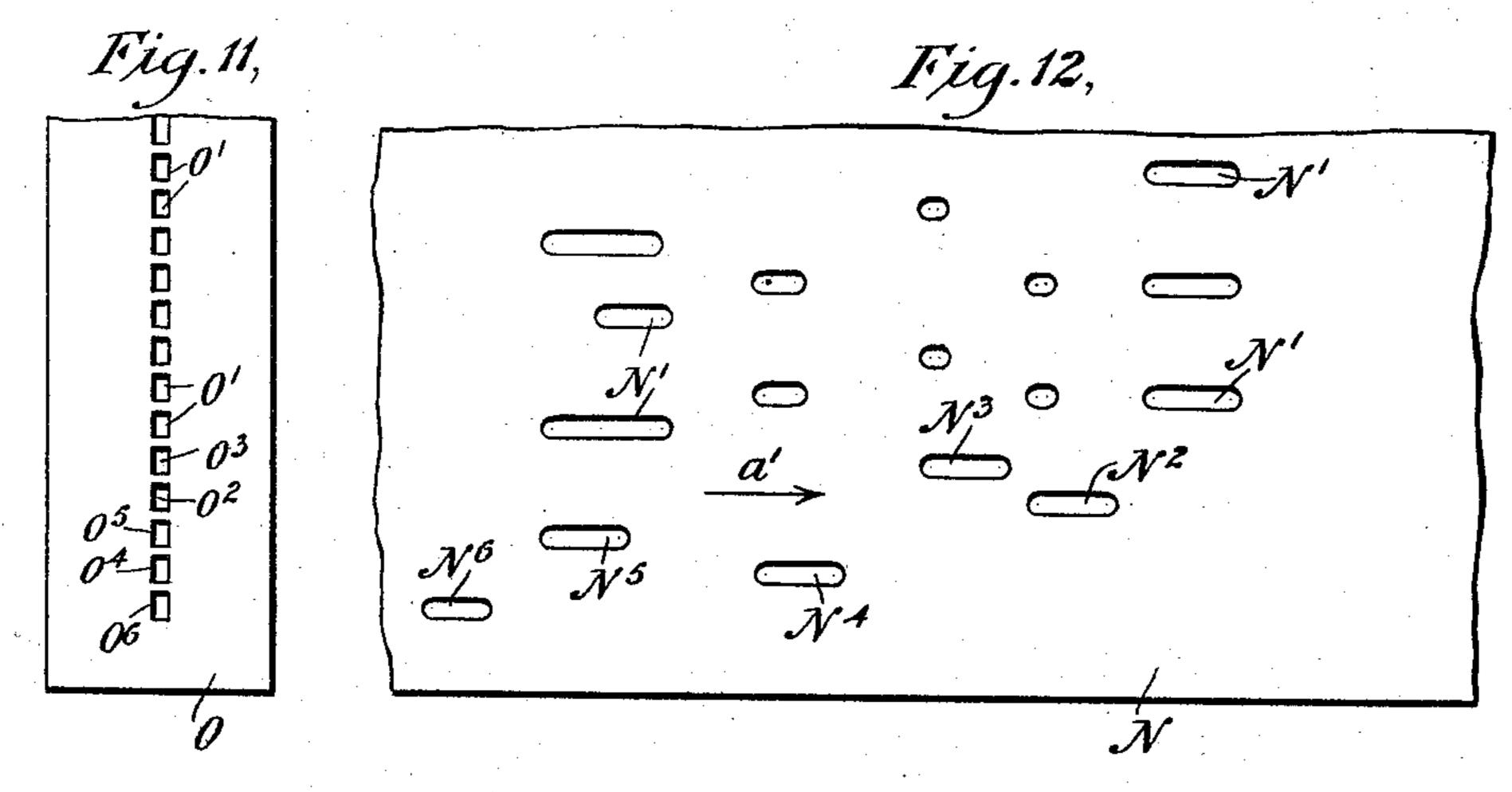
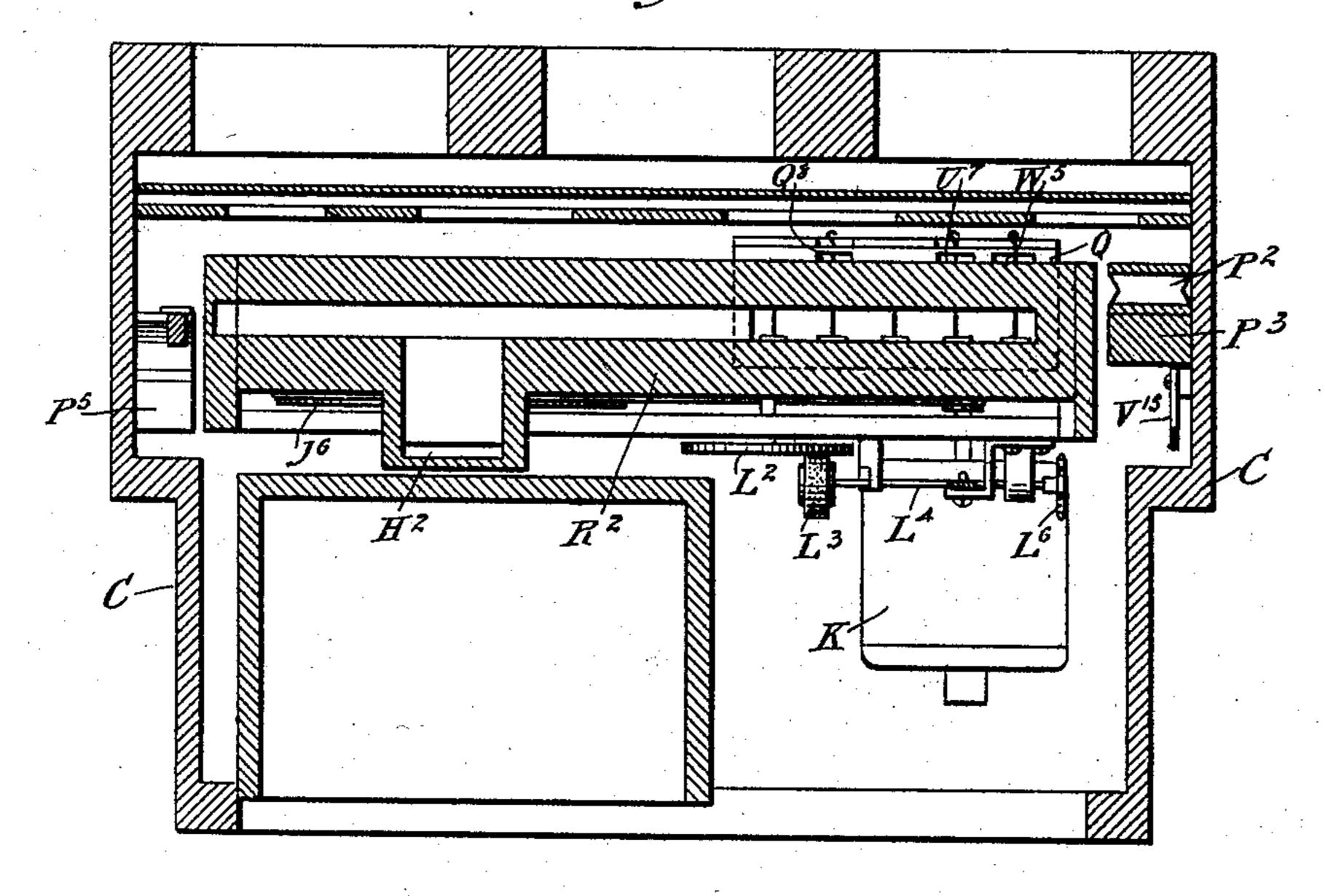
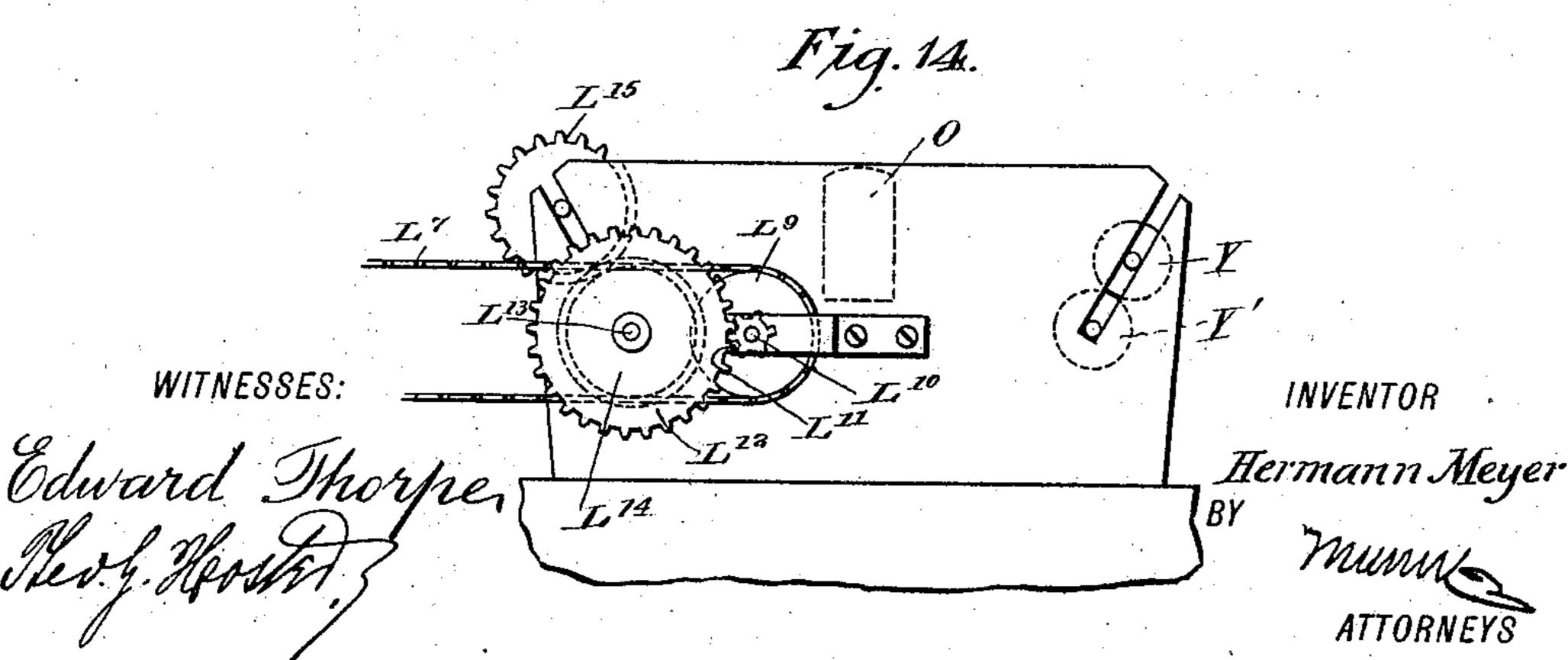




Fig. 13,

United States Patent Office.

HERMANN MEYER, OF NEW YORK, N. Y.

SELF-PLAYING PIANO.

SPECIFICATION forming part of Letters Patent No. 773,406, dated October 25, 1904.

Application filed April 27, 1904. Serial No. 205,126. (No model.)

To all whom it may concern:

Be it known that I, HERMANN MEYER, a citizen of the United States, and a resident of the city of New York, borough of Manhattan, in 5 the county and State of New York, have invented a new and Improved Self-Playing Piano, of which the following is a full, clear, and exact description.

The invention relates to self-playing mu-10 sical instruments in which a note-sheet con-

trols the sounding devices.

The object of the invention is to provide a new and improved self-playing piano arranged for the note-sheet to automatically control 15 pneumatic devices for moving either the hammer-rail or the damper-rail into an active position, to hold the same therein the desired length of time, and to then release the rail for the latter to assume its normal position.

The invention consists of novel features and parts and combinations of the same, as will be more fully described hereinafter and then

pointed out in the claims.

A practical embodiment of the invention is 25 represented in the accompanying drawings, forming a part of this specification, in which similar characters of reference indicate corre-

sponding parts in all the views.

Figure 1 is a front elevation of the improve-30 ment, parts being in section. Fig. 2 is an enlarged transverse section of the upper portion of the improvement, the section being on the line 2 2 of Fig. 1. Fig. 3 is a like view of the lower part of the improvement, the section being on the line 33 of Fig. 1. Fig. 4 is a cross-section of the upper portion of the improvement on the line 4 4 of Fig. 1. Fig. 5 is a similar view of the lower portion of the improvement on the line 55 of Fig. 1. Fig. 40 6 is an enlarged face view of the coin-controlled mechanism. Fig. 7 is an enlarged sectional plan view of the pneumatic valve mechanism for controlling the hammer-rail, the damper-rail, and the stopping mechanism. 45 Fig. 8 is a rear end elevation of the same. Fig. 9 is a cross-section of the same on the line 9 9 of Fig. 7. Fig. 10 is a similar view of the same on the line 10 10 of Fig. 7. Fig. 11 is a plan view of part of the tracker-board.

Fig. 12 is a face view of part of the note- 50 sheet. Fig. 13 is a sectional plan view of the improvement on the line 1313 of Fig. 1, and Fig. 14 is a rear face view of part of the driving mechanism for the note-sheet-draw-

ing rollers.

The strings A of the self-playing instrument are stretched on a string-frame A', extending in the front of a sounding-board B and held with the latter in the usual manner on the piano-frame C. The piano-action for sound- 60 ing the strings A may be of any approved construction. It preferably, however, consists of hammers D, normally resting in an inactive position on a hammer-rail E, mounted near its ends on links E', fulcrumed at 65 their lower ends on brackets C', fixed on the piano-frame C. The hammer-rail E normally rests on felted stops C², attached to the brackets C', as plainly indicated in Figs. 2 and 4.

The hammers D are fulcrumed at the usual 70 flanges attached to a center or flanged rail F, and the said hammers are actuated by hammer-jacks D', held on jack-rockers D', engaged by key-levers D³, connected by rods D⁴ with the movable members of pneumatics G, pref- 75 erably arranged in tiers to economize in space. The key-levers D³ are fulcrumed on suitable flanges attached on a fixed rail D⁵, as plainly

shown in Fig. 2.

The pneumatics G in each tier are secured 80 by their fixed member to the top of a pneumatic valve-chest H, having a suction-chamber H' extending from one end of the chest to the other, and each suction-chamber H' for the several valve-chests H is closed at one end 85 and opens at the other end into a duct H2, arranged on the side of the frame C and connected with the suction-chamber I' of a suction-bellows I, operated by an actuating mechanism J, driven from a motor K, preferably 90 of the electrical type, held in the lower portion of the piano-frame C, as plainly indicated in Fig. 1. The actuating mechanism J also drives a pair of drawing-rollers LL', between which passes a note-sheet N, to cause the lat- 95 ter to travel over a transversely-disposed. tracker-board O, fixed to an auxiliary frame C³, forming part of the main frame C, the

said auxiliary frame being provided with a receptable C¹ for containing the note-sheet N.

(See Figs. 1 and 3.)

The note-sheet N is provided with note-ap-5 ertures N', adapted to register with openings O' in the tracker-board O, which openings O' are connected by flexible tubes O² with inletchambers H^{*}, formed in the valve-chests H, provided with pneumatic valve mechanisms, 10 preferably of the construction shown and described in Letters Patent of the United States No. 756,674, granted to me April 5, the said valve mechanism is not deemed nec-15 essary, it being deemed sufficient to state that when the instrument is in action and a notesheet aperture N' registers with a trackerboard opening O' then the corresponding valve mechanism in a valve-chest H is actuated to 20 connect the corresponding pneumatic G with the exhaust-chamber H' to cause the pneumatic G to collapse. When this takes place, the movable member of the collapsing pneumatic G pulls the rod D downward to impart 25 a swinging motion to the key-lever D³ and cause the corresponding hammer D to swing in contact with its string to sound the same. As soon as the note-sheet aperture N' has passed out of register with its tracker-board 30 opening O' then the air previously allowed to pass into the inlet-chamber H³ by way of the tube O² is now permitted to escape or leak out to allow the valve mechanism to return to its previous position, so that atmospheric 35 air passes into the pneumatic D to again inflate the same. When this takes place, the rod · D⁴ of this pneumatic moves upward to allow the hammer D to swing back to its normal position of rest against the rail E.

When the music calls for pianissimo playing, then the hammer-rail E is automatically moved rearwardly to bring the hammers D into their usual half-stroke positions, the same as if the soft-pedal on an ordinary piano 45 were pressed. For this purpose the following device is provided: On one end of the hammer-rail E (see Fig. 4) is journaled a flanged friction-roller E², engaged at its forward face by the upper end of a lever E³, ful-5° cramed at E⁴ on the frame C to swing transversely, and the lower end of the said lever E's is engaged by a projection P', attached to the free end of the movable member P² of a pneumatic P, secured with its stationary mem-55 ber P³ to the frame C. A flexible tube P⁴ connects the pneumatic P with an exhaustchamber Q' in a valve-chest Q, secured to the rear face of a wind-chest R, attached to the frame C. (See Figs. 1, 7, 8, 9, and 10.) The

60 wind-chest R has its main chamber R' con-

nected by a duct R²(see Fig. 1) with the duct

H², leading to the suction-chamber I' to ex-

haust the air from the wind-chest chamber

R' during the time the instrument is in action.

65

The wind-chest chamber R' is separated by

diaphragms S and S' (see Figs. 7, 9, and 10) from air-chambers R^3 and R^4 , connected by flexible tubes R⁵ R⁶ with tracker-board openings O² O³, (see Fig. 11,) adapted to be successively opened by openings Nº Nº in the 70 note-sheet N (see Fig. 12) to admit atmospheric air to the chambers R³ R⁴. On the diaphragms SS' are adjustably secured the forward ends of valve-stems S² S³, of which the valve-stem S^2 extends through the ex- 75 haust-chamber Q', and the valve-stem S^3 extends through a similar chamber Q², formed 1904, so that further detailed description of | in the valve-chest Q, adjacent to the chamber Q', as plainly shown in Fig. 7. On the valvestem S² and within the chamber Q' are se- 80 cured valves S⁴ S⁵, and similar valves S⁶ S⁷ are fastened on the valve-stem S³, the valves S⁶ S⁷ extending within the chamber Q². The valves S⁴ S⁶ control ports Q³ Q⁴ for connecting the chambers $Q' Q^2$ with the chamber R', 85 and the valves S⁵ S⁷ control ports Q⁵ Q⁶ for connecting the chambers $Q'Q^2$ with chambers Q^{r} Q^{s} , formed in the valve-chest Q. The chamber Q⁷ contains a diaphragm S⁸, on which the rear end of the valve-stem S² is secured, 9° the diaphragm separating the chamber Q^7 from a chamber Q⁹, connected by a port Q¹⁰ with the chamber Q'. A port Q'' connects the chamber Q² with the chamber Q⁷, and the chamber Q⁸ leads to the atmosphere. The 95 diaphragms S S' are provided with pin-holes or leak-openings S⁹ to allow the air in the chambers $R^3 R^4$ to leak into the chamber R'. The port Q^a is very small (see Fig. 7) and is mainly intended as a passage for the valve- 100 stem S² into the chamber Q'. The valve S⁵ closes the port Q⁵ whenever the valve S⁴ moves into an open position. Normally the valves S⁴ S⁶ are in a closed position while the valves S⁵ S⁷ are open, as indicated in Fig. 7. 105 The chamber Q^2 is connected by a port Q^{12} (see Fig. 10) with a pneumatic Q¹³, secured to the under side of the valve-chest Q, and the movable member of this pneumatic Q¹³ is provided with a valve Q¹⁴, (see Figs. 8 and 9,) 110 controlling a port Q¹⁵, leading into the chamber Q'. The pneumatic Q^{13} is normally held in an extended position by a spring Q¹⁶ for the valve Q^{14} to normally close the port Q^{15} .

The note-sheet opening N^2 is arranged in 115 the note-sheet N at the beginning of a pianissimo portion called for by the music, and the opening N^3 is located at the end of the pianissimo portion. When the note-sheet opening N² uncovers its tracker-board opening O², then 120 air passes by the flexible tube R⁵ into the chamber R³ to press the diaphragm S rearward, thereby moving the valve-stem S² and the valves S⁴ S⁵ in a like direction for the valve S^{4} to open the port Q^{3} and the valve S^{5} to close 125 the port Q⁵. When this takes place, air is sucked out of the pneumatic P by way of the tube P^{i} , chamber Q', port Q^{3} , and exhaustchamber R', so that the said pneumatic P collapses and imparts a swinging motion to the 130 lever E³, which now swings the hammer-rail E rearwardly, to limit the swinging of the hammers, and thus cause the hammers to sound the strings pianissimo whenever the hammers are actuated by the corresponding note-sheet openings N', uncovering the corresponding tracker-board openings O', as previously explained.

When the suction in the chamber Q' takes place, then air is sucked out of the chamber Q⁹ by way of the port Q¹⁰, so that the diaphragm S⁸ is held in a rearmost position to cause the valve S⁴ to remain in an open position even after the note-sheet opening N² has ⁵ passed its tracker-board opening O²—that is, the hammer-rail E is held by air-pressure in the half-stroke position until the end of the pianissimo portion called for in the music is reached. When this takes place, the note-20 sheet opening N³ moves in register with the tracker-board opening O³, so that air now passes by way of the flexible tube R⁶ into the chamber R* to press the diaphragm S' rearwardly, thereby moving the valve-stem S³ and 25 its valves S⁶ S⁷ in a like direction. The valve S⁶ now opens the port Q⁴, while the valve S⁷ closes the port Q⁶. The chamber Q² is now connected with the exhaust-chamber R', and as the said chamber Q² is also connected by 30 way of the port Q11 with the chamber Q7 it is evident that air is exhausted from this chamber Q', and consequently the pressure on the front side of the diaphragm S⁸ is reduced to cause the diaphragm S⁸ to swing forwardly, 35 so as to move the valve S⁴ into a closed position over its port Q³ to disconnect the chamber Q' from the chamber R', air having been admitted to the chamber Q⁹, for when the air is drawn out of the chamber Q², as before mentioned, air is exhausted by way of the port Q¹² from the pneumatic Q¹³, so that the said pneumatic Q¹³ collapses and its valve Q¹⁴ opens the port Q15 to allow atmospheric air to pass by way of the said port Q15 into the cham-45 ber Q', from which the atmospheric air can now pass by way of the tube P* into the pneumatic P to inflate the same, thus allowing the hammer-rail E and the lever E³ to swing back to their normal front positions. (Shown in

It is understood that after the aperture N² has passed its tracker-board opening O² and air is cut off from the chamber R³ then the air contained in this chamber R³ leaks by way of the pin-hole S⁹ into the suction-chamber R' to permit an immediate closing of the valve S⁴, as previously explained, whenever the valve S⁶ opens the port Q⁴ and air is drawn from the chamber Q⁷ by way of the port Q¹¹ and the chamber Q².

5° Fig. 4.)

When the aperture N³ in the note-sheet N has passed its tracker-board opening O³ and air is cut off from the chamber R⁴, then the air in this chamber can leak by way of the pin-hole S³ in the diaphragm S′ into the ex-

haust-chamber R' to allow the valve S⁶ to close by preponderance of pressure on the valve S⁷ from the chamber Q⁸, connected with the atmosphere.

When the valve S⁶ moves into a closed position, then atmospheric air can pass by way of the chamber Q⁸ and port Q⁶ into the chamber Q² and by way of the port Q¹² into the pneumatic Q¹³ to allow the latter to inflate or open quickly to move the valve Q¹⁴ into a 75 closed position over its port Q¹⁵. It is understood that when the valves S⁴ and S⁶ are in the closed position (shown in Fig. 7) then the pneumatic P is practically connected with the atmosphere by way of the tube P⁴, chamber Q⁷, port Q⁵, chamber Q⁷, port Q¹¹, chamber Q², port Q⁶, and chamber Q⁸, opening to the atmosphere, so that there is no danger of the pneumatic P becoming accidentally deflated.

From the foregoing it will be readily un- 85 derstood that the hammer-rail E and the hammers D are held in the half-stroke position as long as the pneumatic P is deflated, and the said pneumatic is retained in this deflated condition by pneumatic means, and hence me- 90 chanical locking devices for holding the pneumatic closed are entirely dispensed with.

In order to throw the usual dampers T of the piano-action simultaneously out of engagement with the strings A, the damper- 95 rail T' (see Fig. 2) for engaging the lower ends of the damper-levers T² receives a rearward swinging motion, and for this purpose a pneumatic device is employed, similar to the one above described in reference to the 100 hammer-rail E. The damper-rail T' is hung on arms T³, fulcrumed on the center rail F. and one end of the said damper-rail T' is engaged at its front face by the upper end of a lever T⁴, fulcrumed at T⁵ on the frame C. 105 (See Fig. 2.) The lower end of the lever T⁴ is engaged by the free end of the movable member of a pneumatic P⁵, (see dotted lines Fig. 3,) connected by a flexible tube P⁶ with a chamber U, formed in the valve-chest Q and 110 connected by a port U' with the suction-chamber R' of the wind-chest R. A port U² (see Fig. 7) connects the chamber R' with a chamber U³, similar to the chamber Q², the chamber U corresponding to the chamber Q', pre- 115 viously mentioned. The wind-chest chamber R' is separated by diaphragms S¹⁰ and S¹¹ from air-chambers R⁷R⁸, connected by flexible tubes R⁹ R¹⁰ with tracker-board openings O⁴ O⁵, adapted to be successively opened by open- 120 ings N⁴ N⁵ in the note-sheet N (see Figs. 11 and 12) to admit atmospheric air to the chambers R⁷ R⁸. On the diaphragms S¹⁰ S¹¹ are secured valve-stems S¹² S¹³, of which the valve-stem S¹² carries valves S14 S15, and the stem S13 carries 125 valves S¹⁶ S¹⁷. The valves S¹⁴ S¹⁶ normally close the ports U' U2, while the valves S15 S17 are normally open relative to the ports U4 U5, connecting the chambers U and U3 with chambers U⁶ U⁷, of which the latter chamber U⁷ opens to 130

diaphragm S¹⁸, on which the rear end of the valve-stem S¹² is secured, the diaphragm separating the chamber U⁶ from a chamber U⁸, 5 connected by a port U⁹ with the chamber U. The diaphragms S¹⁰ S¹¹ are provided with pinopenings S¹⁹ similar to the pin-holes S⁹ in the diaphragms S S'. The chamber U' is connected by a port U¹⁰ with the chamber U⁶, 10 and a port U¹¹ connects the chamber U³ with a pneumatic U¹², similar to the pneumatic Q¹³ and likewise provided with a valve U¹³ for controlling a port connecting the outer air with the interior of the chamber U. The op-15 eration of this valve mechanism is similar to the one above described relative to the pneumatic P and hammer-rail E, it being understood that when the instrument is in action and the note-sheet N travels in the direction 20 of the arrow a' and its aperture N^4 moves in register with the tracker-board opening O⁵ then air passes into the chamber R⁷ to push the diaphragm S¹⁰ rearwardly in order to move the valve S¹⁴ off its seat and the valve S¹⁵ into 25 a closed position, to connect the chamber U with the chamber R', to draw air by way of the flexible tube P⁶ out of the pneumatic P⁵, to impart a swinging motion to the lever T⁴, to swing the damper-rail T' rearwardly, thus 3° imparting a simultaneous swinging motion to the damper-levers T² to move the dampers T out of engagement with the strings A. When the hammers D are now actuated, they fully and loudly sound the strings A, as the dam-35 pers T are held out of engagement with the said strings. The valve S¹⁴ is held off the port U' by the suction action on the diaphragm S¹⁸, owing to the connection of the chamber U⁸ with the chamber U by way of the port U⁹. 4° The dampers T remain out of engagement with the strings A until the following notesheet aperture N° moves in register with the tracker-board opening O⁵, and when this takes place air passes by way of the tube R¹⁰ into 45 the chamber R^8 to cause the diaphragm S^n to move rearwardly, and thereby cause the valve S¹⁶ to open the port U² for connecting the chamber R' with the chamber U³. When this takes place, the valve S¹⁷ closes the port U⁵, 5° and suction is had in the chamber U⁶ by way of the port U¹⁰, chamber U³, and open port U², so that the valve S¹¹ is moved back into a closed position—that is, to close the port U' to disconnect the chambers U and R'. At the 55 same time that this takes place the suction in the chamber U³ causes a collapsing of the pneumatic U¹², so that the valve U¹³ establishes communication between the outer air and the chamber U for the outer air to pass by way 60 of the tube P^6 into the pneumatic P^5 to inflate the same, and thereby allow the lever T', damper-rail T', damper-levers T², and dampers T to return to their former normal positions—that is, to allow the dampers T to move

the atmosphere. The chamber U^6 contains a back in contact with the strings A to damp 65 diaphragm S^{18} , on which the rear end of the the same.

From the foregoing it is understood that the movable hammer-rail E and the movable damper-rail T' are each moved from a normal inactive position into and held in active positions by a corresponding special pneumatic actuating device controlled by a note-sheet aperture, and this pneumatic actuating device is released by a pneumatic releasing device controlled by another note-sheet aperture to 75 allow the hammer-rail E or the damper-rail T' to swing back into a normal inactive position at the proper time, as called for by the music.

In order to control the motor K for starting 80 the instrument, a coin-controlled mechanism is provided, which forms the subject-matter of the application for Letters Patent of the United States, Serial No. 201,639, filed by me April 5, 1904. The coin for the coin-con-85 trolled mechanism (shown in Figs. 4 and 6) passes down a suitable coin-chute C, arranged in the frame C for the coin to drop between two spring-pressed slides V and V', of which the slide V is adapted to be moved in the di- 9° rection of the other slide, V', by a key V^z under the control of the operator. The slide V' is provided with a hook V³, adapted to be engaged by a locking-link V⁴, pressed on by a spring and fulcrumed on one arm of a bell- 95 crank lever V⁵, connected at its other arm by a slotted link V⁶ with the link V⁴, the slotted link V⁶ having an arm V⁷ adapted to engage a pin V⁸ on the insulating-body V⁹ of a contact-plate V¹⁰, normally out of engagement 100 with the slide V', as shown in Fig. 4, but adapted to move into contact with the said slide, as shown in Fig. 6. The body V⁹ of the contact-plate V¹⁰ is fulcrumed on a support or frame C⁶ for the coin-controlled mech- 105 anism and is pressed on by a spring Vⁿ to hold the contact-plate V¹⁰ in firm engagement with the slide V', as shown in Fig. 6. The contact-plate V^{10} is connected by a wire K' with the motor K, the other wire, K', of which 110 contains a source of electrical supply K' and is connected with the support or frame C°.

When the several parts are in the normal position (shown in Fig. 4) and the coin drops down the chute C⁵ between the slides V and 115 V' and the operator turns the key V^z , then the slide V, coin, and slide V' are pushed from the right to the left against the tension of the springs of the slides, so that the hook V first imparts a downward-swinging motion to the 120 link V4 for the arm V7 to swing the contactplate V¹⁰ upward, the said hook V³ finally on passing the end of the link V⁴ being engaged and locked in place by the said link to prevent return movement of the slide V'. When 125 the link V⁴ snaps under the hook V³, the spring V¹¹ swings the contact-plate V¹⁰ downward to engage the contact-plate with the slide

V' to complete the circuit, and consequently to start the motor K. When this takes place, the motor K drives the actuating mechanism J, which in turn works the bellows I and ro-5 tates the drawing-rollers L L' to cause the note-sheet N to travel in the direction of the arrow a'. After the key V^2 has been turned and the slide V' locked in place by the link V⁴, as described, then the spring for the slide V 10 returns the latter to its right-hand position, so that the coin drops down into the coin-box held in the frame. The downward-swinging motion of the bell-crank lever V⁵ operates the register V¹³ by a link V¹², the register indicat-15 ing the number of coins dropped into the machine.

In order to stop the motor, it is necessary to break the circuit by unlocking the slide and allowing the same to return to its 20 right - hand position by the action of its spring, and for this purpose the following device is provided: The bell-crank lever V⁵ (see Figs. 4 and 6) is connected by a link V¹⁴ with a bell-crank lever V¹⁵, (see Fig. 5,) connected 25 by a rod V¹⁶ with the movable member of a pneumatic W, connected by a flexible tube W' with an exhaust-chamber W², formed in the valve-chest Q (see Fig. 7) and connected by a port W³ with the chamber R'. The 30 wind-chest chamber R is separated by a diaphragm X from an air-chamber R¹¹, connected by a flexible tube R¹² with a tracker-board opening O⁶, adapted to be opened by a stopaperture N⁶, formed in the note-sheet Na dis-35 tance beyond the terminal of the note-apertures N'—that is, at the end of the piece of music. On the diaphragm X is secured a valve-stem X', provided with valves $X^2 X^3$, of which the valve X² controls the port W³ 40 and the valve X³ controls a port W⁴, leading to a chamber W⁵, connected with the atmosphere. Normally the valve X² is closed, while the valve X^3 is open. When the stopaperture N⁶ moves in register with the tracker-45 board opening O⁶, then air passes by way of the tube R¹² into the chamber R¹¹ to press the diaphragm X rearwardly, thus moving the valve X² off its seat and the valve X³ onto its seat to disconnect the chamber W² from the 5° atmosphere and to connect the said chamber W' by the port W' with the chamber R'. The air is now exhausted from the pneumatic W by way of the tube W', chamber W², port W³, and main exhaust-chamber R' to cause 55 the pneumatic W to collapse, and thereby impart a swinging motion by the link V¹⁶ to the bell-crank lever V¹⁵, which by the link | V¹⁴ imparts a swinging motion to the bellcrank lever V⁵, and the latter by the link V⁶ 60 imparts a downward-swinging motion to the link V4 to move the free end thereof out of engagement with the hook V³. The slide V' is thus unlocked and now immediately slides to its right-hand position by the action of its

spring, and in doing so the slide moves out 65 of engagement with the contact-plate V¹⁰ for the latter to break the motor-circuit to stop the motor.

It is understood that when the stop-aperture N⁶ has passed the tracker-board opening 7° O⁶ then the air leaks out of the chamber R¹¹ by the pin-hole X⁴ in the diaphragm X to allow the valve X² to return to its seat by atmospheric pressure against the valve X³, the opening of the latter allowing air to pass by 75 way of the port W⁴, chamber W², and tube W' into the pneumatic W to again inflate the same for the corresponding parts of the coincontrolled mechanism to return to their normal positions. (Shown in Fig. 4.)

The actuating mechanism J is provided with a transverse shaft J', journaled in suitable bearings carried by the frame C, and on the said shaft is secured a pulley J², connected by a belt J³ with a pulley J⁴, held on a coun- 85 ter-shaft J⁵, connected by a pulley J⁶ and belt J' with a pulley on the shaft of the motor K, so that when the latter is actuated, as above described, a rotary motion is given to the counter-shaft J⁵, which in turn drives the shaft 90 J'. The actuating mechanism J operates the bellows I, which are preferably two in number, each being connected at its movable member by a link I² with a lever I³, fulcrumed at I on the main frame C. On the free end of 95 each lever I³ is arranged a friction-roller I⁴ in peripheral contact with a cam I⁵, secured on the shaft J', so that when the latter is rotated the cam I⁵ imparts an upward-swinging motion to the corresponding lever I3 for the 100 link I2 to swing the movable member of the bellows I into an open position. The movable member of each bellows I is pressed on by a spring I⁶ to cause the movable member to move into a closed position on the return 105 stroke of the lever I³—that is, at the time the cam I swings downward from the frictionroller I4 and after the latter has reached its uppermost position.

The drawing-rollers L and L' are driven 110 from the actuating mechanism J, and for this purpose the following device is provided: On the shaft J' is secured a friction-disk L^2 , engaged at its face by the peripheral face of a friction-pulley L³, fastened on a shaft L⁴, 115 mounted to slide in suitable bearings held on the frame C, the said shaft L4 being engaged by a shifting-lever L⁵, under the control of the operator for shifting the shaft L⁴, so as to move the friction-pulley L³ nearer to or 120 farther from the axis of the friction-disk L², so that a slower or faster motion is given to the shaft L⁴ without variation in the speed of the friction-disk L². On the shaft L⁴ is secured a sprocket-wheel L6, engaged by a 125 sprocket-chain L', passing over suitable guiderollers L⁸ to pass around a sprocket-wheel L⁹ (see Fig. 2) and secured on a counter-shaft

 L^{10} , carrying a pinion L^{11} in mesh with a gearwheel L^{12} , secured on a shaft L^{13} for the drawing-roller L. On the drawing-roller L is secured a gear-wheel L¹⁴ in mesh with a gear-5 wheel L^{15} on the drawing-roller L', so that the drawing-rollers L and L' rotate in unison to draw the note-sheet N forward over the tracker-board O at the desired rate of speed that is, according to the time in which the 10 music is to be played.

From the foregoing it will be seen that the motor K drives the actuating mechanism J, which in turn works the bellows I at the same rate of speed; but the drawing-rollers L and 15 L' for the note-sheet N are driven at a varying rate of speed from the said actuating mechanism J, according to the position given by the operator to the lever L⁵. Thus by the arrangement described the operator can shift 20 the lever L⁵ to cause the note-sheet N to travel faster or slower, according to the time called for by the music to be played, it being, however, expressly understood that the shifting of the lever L⁵ does not affect the working of 25 the bellows, notwithstanding the bellows and the note-sheet-driving mechanism are actuated from the same source.

As shown in Fig. 1, the drawing-rollers L and L' are located on one side of the tracker-30 board O and guide-rollers Y and Y' are located on the opposite side of the tracker-board, between which passes the note-sheet N to the tracker-board to give the desired tension to the note-sheet while in contact with the 35 tracker-board. The roller Y is preferably spring-pressed, as indicated in Fig. 1, to prevent slack in the note-sheet while the same passes over the tracker-board.

Having thus described my invention, I claim 40 as new and desire to secure by Letters Patent—

1. A self-playing piano provided with a rail, a pneumatic actuating device for throwing the said rail into an active position and holding it therein, and a pneumatic releasing device for 45 releasing the said pneumatic actuating device pneumatically to allow the said rail to return to a normal position.

2. A self-playing piano provided with a rail, a pneumatic actuating device for throwing the 50 said rail into an active position and holding it therein, a pneumatic releasing device for releasing the said pneumatic actuating device pneumatically to allow the said rail to return to a normal position, and a note-sheet having 55 sets of note-sheet openings of which one controls the said pneumatic actuating device and the other the said pneumatic releasing device.

3. A self-playing piano provided with a rail, a pneumatic actuating device for throwing the 60 said rail into an active position and holding it therein, a pneumatic releasing device for releasing the said pneumatic actuating device pneumatically to allow the said rail to return to a normal position, a tracker-board having 65 spaced tracker-board openings, of which one

is connected with the said pneumatic actuating device and the other with the said pneumatic releasing device, and a note-sheet having sets of note-sheet openings in alinement

with the said tracker-board openings.

4. A self-playing piano provided with a rail, a pneumatic actuating device for throwing the said rail into an active position, holding it there and releasing it, the said device comprising a lever for engaging the said rail, a pneu- 75 matic for the said lever, a pneumatic controlling valve, mechanism for controlling the said pneumatic, a pneumatic releasing-valve mechanism for releasing the said pneumatic controlling mechanism, a tracker-board having 80 separate connections with the said pneumatic valve mechanisms, and a note-sheet traveling over the tracker-board and having sets of notesheet openings in alinement with the said tracker-board openings.

5. A self-playing piano provided with a rail, a pneumatic actuating device for throwing the said rail into an active position and holding it therein, and a pneumatic releasing device for releasing the said pneumatic actuating device 90 pneumatically to allow the said rail to return to a normal position, the said pneumatic releasing device, when dormant, connecting the atmosphere with the said pneumatic actuating device when the latter is dormant, the said 95 pneumatic releasing device having a pneumatic valve for admitting air to the said pneumatic actuating device at the time both the said pneumatic actuating device and the said pneumatic releasing device are in action.

6. A self-playing piano provided with a rail, a pneumatic actuating device for the said rail, to move the latter into an active position, hold it there and finally release it, the said device having a pneumatic connected with the rail, a 105 pneumatic valve device provided with a windchest and two valves, one for connecting the wind-chest with the pneumatic, to deflate the same and thereby move the rail into an active position and hold it therein and the other valve 110 for connecting the pneumatic with the atmosphere, to inflate the pneumatic and release the rail, and a pneumatic releasing device for releasing the said pneumatic actuating device, the said pneumatic releasing device being pro- 115 vided with a pneumatic valve for admitting air to the said pneumatic actuating device at the time both devices are in active positions.

7. A self-playing piano provided with a rail, a pneumatic actuating device for throwing the 120 said rail into an active position and holding it therein, a pneumatic releasing device for releasing the said pneumatic actuating device pneumatically to allow the said rail to return to a normal position, the said pneumatic re- 125 leasing device, when dormant, connecting the atmosphere with the said pneumatic actuating device when the latter is dormant, the said pneumatic releasing device having a pneumatic valve for admitting air to the said pneu- 130

100

matic actuating device at the time both the said pneumatic actuating device and the said pneumatic releasing device are in action, a tracker-board having spaced tracker-board 5 openings, of which one is connected with the said pneumatic actuating device and the other with the said pneumatic releasing device, and a note-sheet having sets of note-sheet openings spaced lengthwise and transversely of the 10 note-sheet and in alinement with the said tracker-board openings.

8. In a self-playing piano, the combination with the movable hammer-rail, of a pneumatic actuating device for throwing the said ham-15 mer-rail into an active position and holding it pneumatically therein, and a pneumatic releasing device for releasing the said actuating device to allow the hammer-rail to return to

its normal inactive position.

9. In a self-playing piano, the combination with the movable damper-rail, of a pneumatic actuating device for throwing the said damper-rail into an active position and holding it pneumatically therein, and a pneumatic re-25 leasing device for releasing the said actuating device, to allow the damper-rail to return to

a normal inactive position.

10. In a self-playing piano, the combination with the movable hammer-rail, of a pneumatic 3° actuating device for throwing the said hammer-rail into an active position and holding it pneumatically therein, a pneumatic releasing device for releasing the said actuating device, to allow the hammer-rail to return to its 35 normal inactive position, a tracker-board connected with the said pneumatic actuating device and independently with the said pneumatic releasing device, and a note-sheet having apertures controlling the tracker-board 4° openings for the said devices.

11. In a self-playing piano, the combination with the movable damper-rail, of a pneumatic actuating device for throwing the said damper-rail into an active position and holding it

45 pneumatically therein, a pneumatic releasing

device for releasing the said actuating device, to allow the damper-rail to return to a normal inactive position, a tracker-board connected with the said pneumatic actuating device and independently with the said pneumatic releas- 50 ing device, and a note-sheet having apertures controlling the tracker-board openings for the said devices.

12. A pneumatic mechanism for controlling a pneumatic, comprising a pneumatic control- 55 ling valve mechanism for deflating the pneumatic and holding it deflated for a given time, a pneumatic releasing valve mechanism for releasing the said pneumatic controlling valve mechanism, to inflate the pneumatic, a tracker- 60 board having separate tracker-board openings connected with the said valve mechanisms, and a note-sheet having separate openings for separately registering with the said tracker-board openings.

13. In a self-playing piano, the combination with a movable part, such as a hammer-rail, a damper-rail and the like, of a lever for imparting movement to the said part, a pneumatic for imparting a swinging motion to the 70 said lever, a pneumatic controlling valve mechanism for deflating the said pneumatic and holding it deflated for a given time, a pneumatic releasing valve mechanism for releasing the said pneumatic controlling valve 75 mechanism, for the latter to allow the pneumatic to reinflate, a tracker-board having separate tracker-board openings connected with the said valve mechanisms, and a note-sheet having separate openings for separately and 80 successively registering with the said trackerboard openings.

Intestimony whereof I have signed my name to this specification in the presence of two sub-

scribing witnesses.

HERMANN MEYER.

Witnesses:

THEO. G. HOSTER, EVERARD BOLTON MARSHALL.