
J. SCHMITZ.

TURBINE FOR WATER METERS.

(Application filed Nov. 19, 1897.)

(No Model.)

UNITED STATES PATENT OFFICE.

JOSEPH SCHMITZ, OF COLOGNE, GERMANY, ASSIGNOR TO EMIL ZAUM, OF COLOGNE, GERMANY.

TURBINE FOR WATER-METERS.

SPECIFICATION forming part of Letters Patent No. 693,807, dated February 18, 1902.

Application filed November 19, 1897. Serial No. 659, 197. (No model.)

To all whom it may concern:

Be it known that I, Joseph Schmitz, a subject of the King of Prussia, Emperor of Germany, residing at Cologne-on-the-Rhine, Prus-5 sia, Germany, have invented new and useful Improvements in Turbines for Water-Meters and Similar Purposes, of which the following is a specification.

This invention relates to an improved con-10 struction of turbines for water-meters and

similar purposes.

The accompanying drawings show the construction of a water-meter discharging five

cubic meters of water per hour.

Figure 1 is a vertical longitudinal section of the meter; Fig. 2, a plan; Fig. 3, a cross-section taken through worm l²; Fig. 3^a, a similar section taken through worm l'. Figs. 4, 5, and 6 are details of one of the turbines.

The letters a' a^2 represent a pair of turbines each composed of a body having longitudinal guide-channels c and a helicoidal head e. The turbines are fixed on the spindle d in such a way that the channels c face each other 25 and communicate with opposite sides of a common inlet-chamber g, which is formed intermediate the turbines.

The water entering chamber g through inlet b flows in two streams in opposite direc-30 tions through the channels c, and striking the helicoidal heads e effect the rotation of the turbines to actuate through worm f the mechanism by which the quantity of water passing through the meter is accurately measured. 35 By causing the water to first enter the chamber g intermediate the turbines and to then flow in two diverging streams through the latter the turbines will float freely under the pressure of the water, so that friction is avoid-40 ed and a very perfect registering action is obtained.

If by closing the cock of the water-pipe (not shown) by which the water is admitted to the nozzle b of the meter the turbines are 45 set at rest, they fall by their own weight upon a pivot h, consisting of a hard stone, so that in starting the apparatus friction is avoided.

From the inlet-nozzle b of the casing the water passes through a disk valve i, provided 50 with a hollow shaft m', that terminates in a small outlet-nozzle m. Against the valve iis held by spring i' a collar i^2 , sliding on shaft m' and adapted to open and close the valve. On the shaft m' are furthermore mounted a

pair of perforated disks k' and k^2 , of which 55 the disk k^2 , by means of worm l', may be so turned while the meter is in operation that the cross-section of the water-passages may be regulated to correspond to the water-pressure, the size of the passages being increased 60 as the pressure is diminished, and vice versa. The water passes from inlet b through valve i and disks k' k^2 into the body of the casing to actuate the turbines $a' a^2$ and to thus operate the indicator.

If by partly closing the outlet-cock the counter-pressure of the water in the meter becomes so high that the collar i^2 closes against its seat i and shuts off the main supply, a small jet of increased pressure will still 70 pass through hollow shaft m' and the nozzle m to actuate the turbines. To adjust the force of this jet, the disk i may during the operation of the meter be rotated by means of a worm l^2 , so as to change the direction of 75 the nozzle m in relation to the upper turbine a', and to correspondingly change the effect of the jet upon such turbine. The position of the nozzle m is similar to the position of the disks $k' k^2$, adjusted to correspond to the 80 water-pressure, so that the power of the jet will not cause too violent a motion of the turbine.

What I claim is—

1. The combination in a meter of a casing 85 having an inlet, with a pair of perforated disks, a worm for adjusting said disks during the operation of the meter, a pair of perforated helicoidal turbines having each a channeled body and a helicoidal head, a shaft on 90 which the turbines are mounted, and an intermediate inlet-chamber with which the channeled bodies of the turbines communicate, substantially as specified.

2. The combination in a meter of a casing 95 with a rotatable valve having a hollow shaft, a pair of adjustable perforated disks mounted upon said shaft, and a pair of perforated helicoidal turbines within the casing, substantially as specified.

In testimony whereof I have signed my name to this specification in the presence of two subscribing witnesses.

JOSEPH SCHMITZ.

100

Witnesses:

WILLIAM H. MADDEN, FRITZ STENZ.