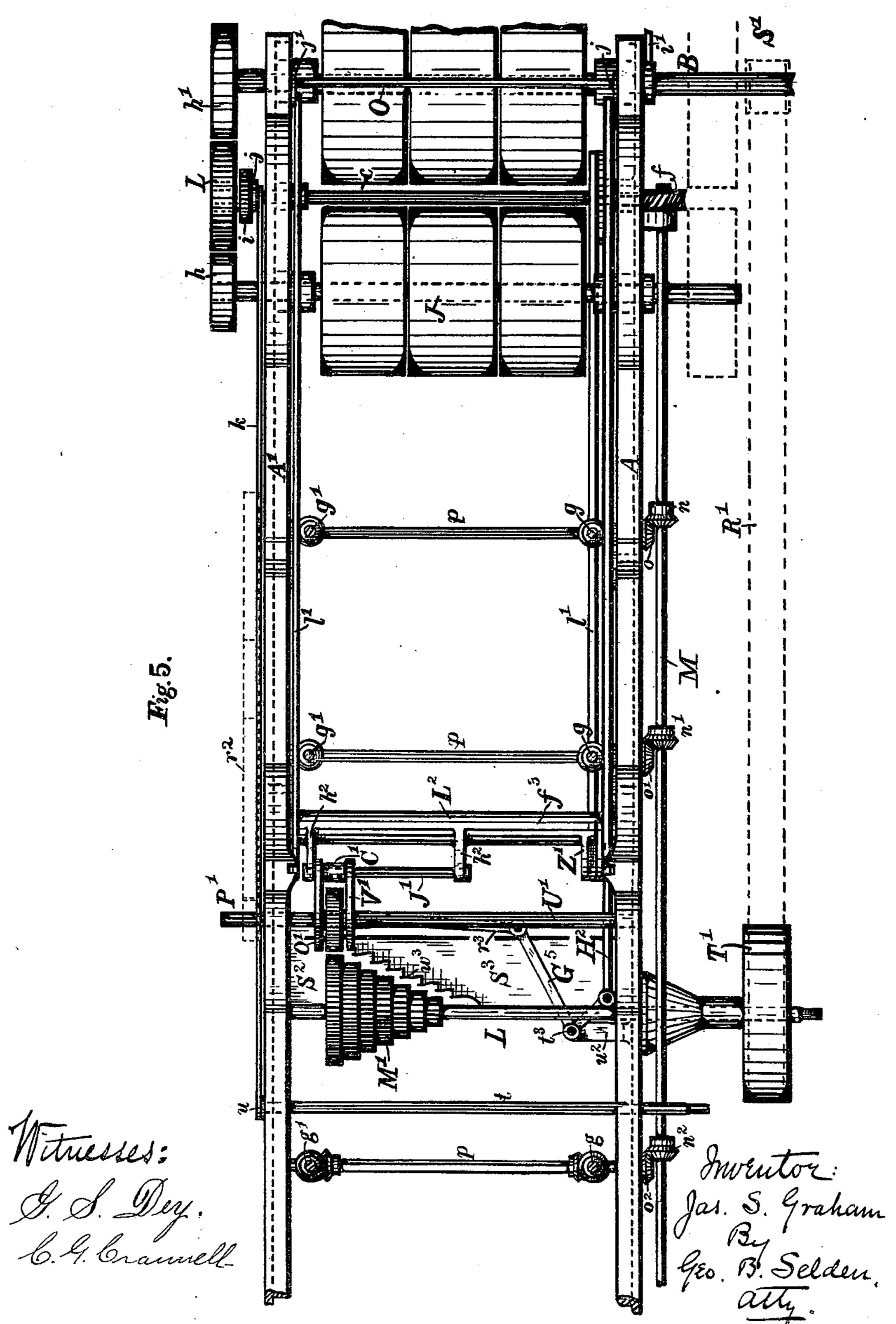
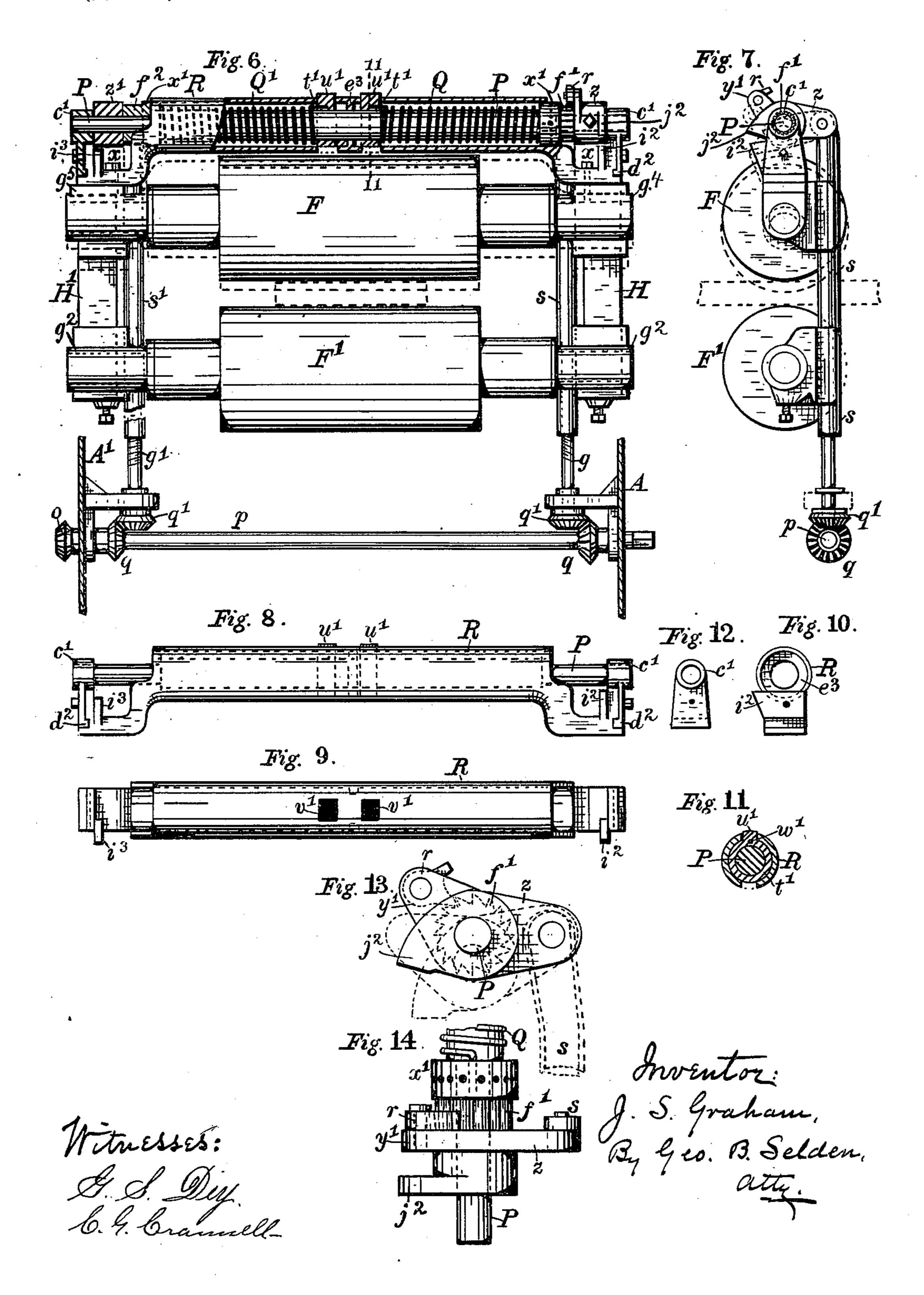

J. S. GRAHAM.

PLANING MACHINE.


(Application filed May 18, 1896.)

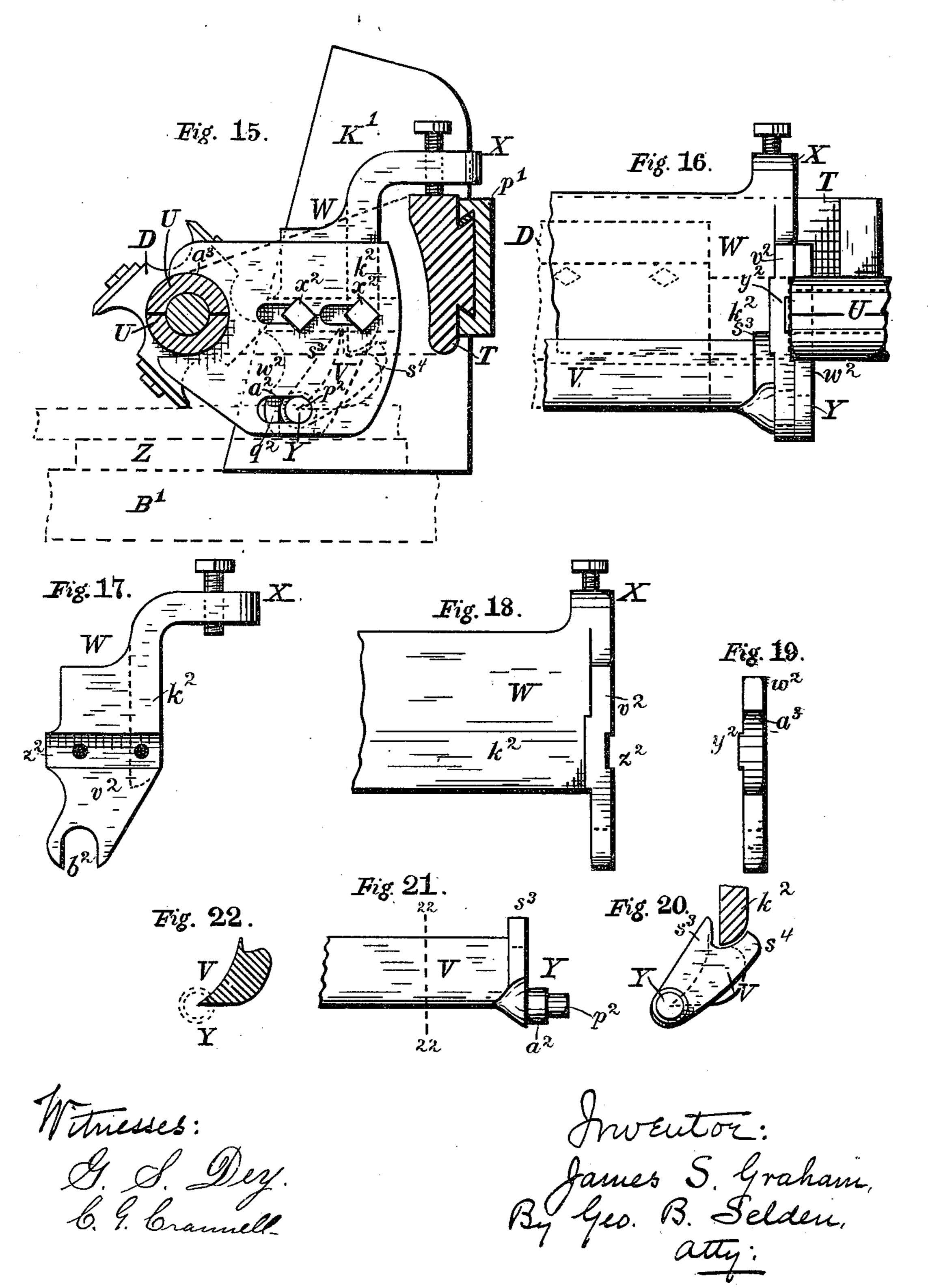
(Application filed May 18, 1896.)

(No Model.)


10 Sheets—Sheet 2.

(Application filed May 18, 1896.)

(No Model.)

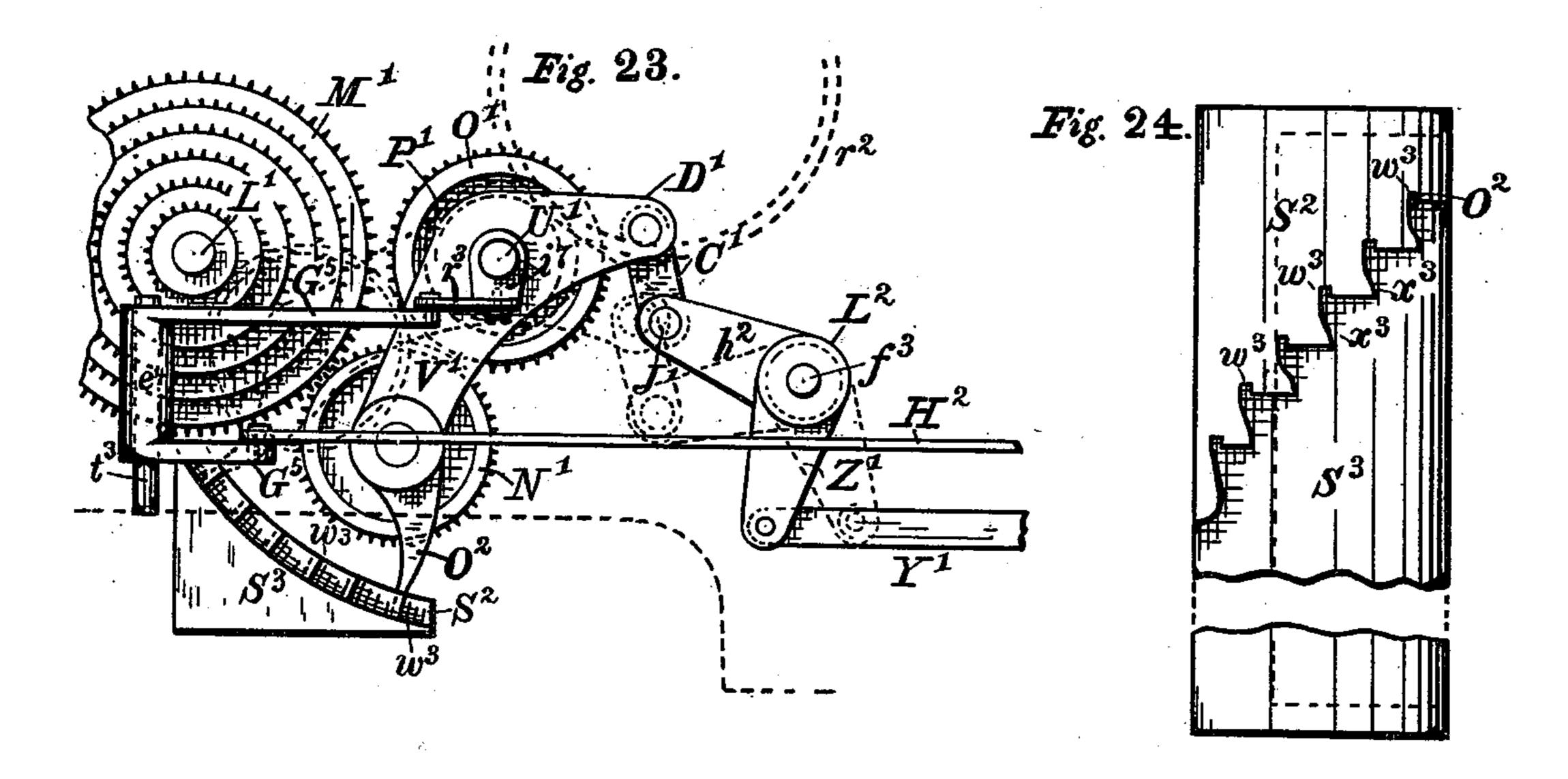

10 Sheets—Sheet 3

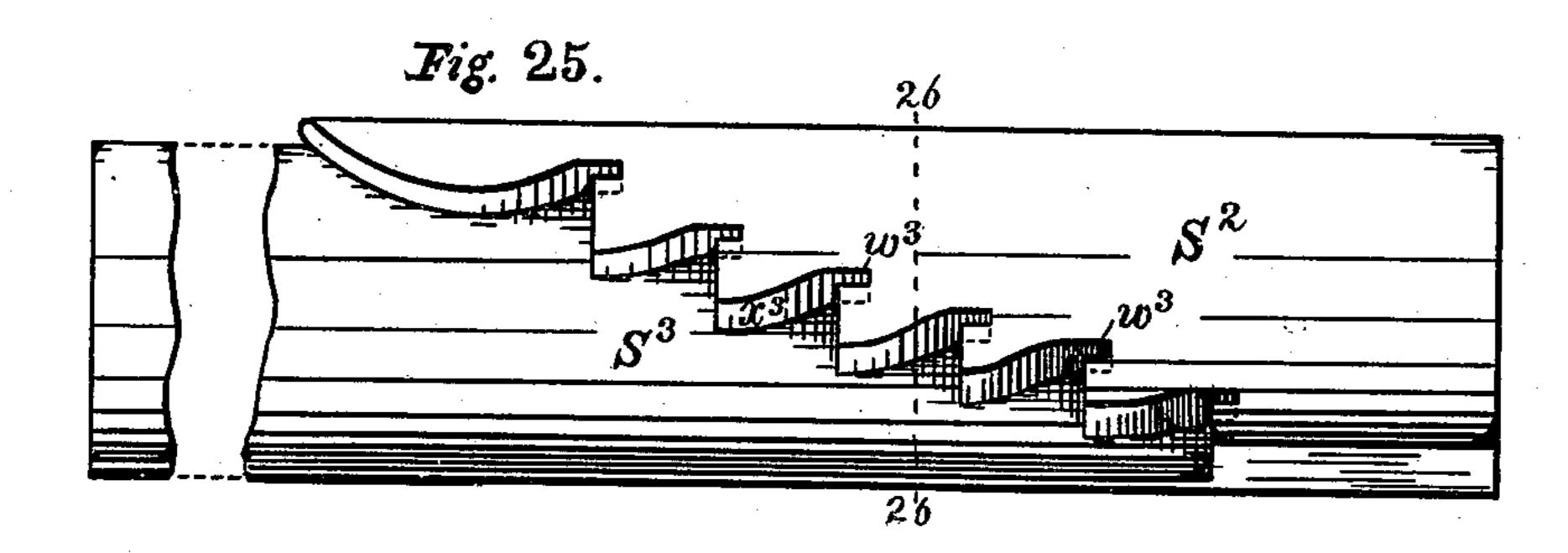
(No Model.)

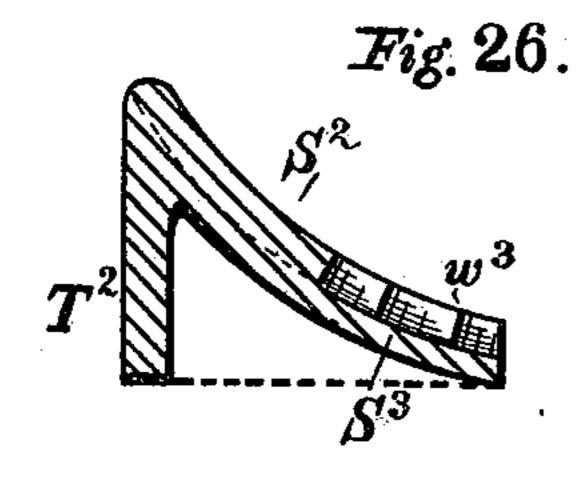
(Application filed May 18, 1896.)

10 Sheets—Sheet 4.

No. 666,898.

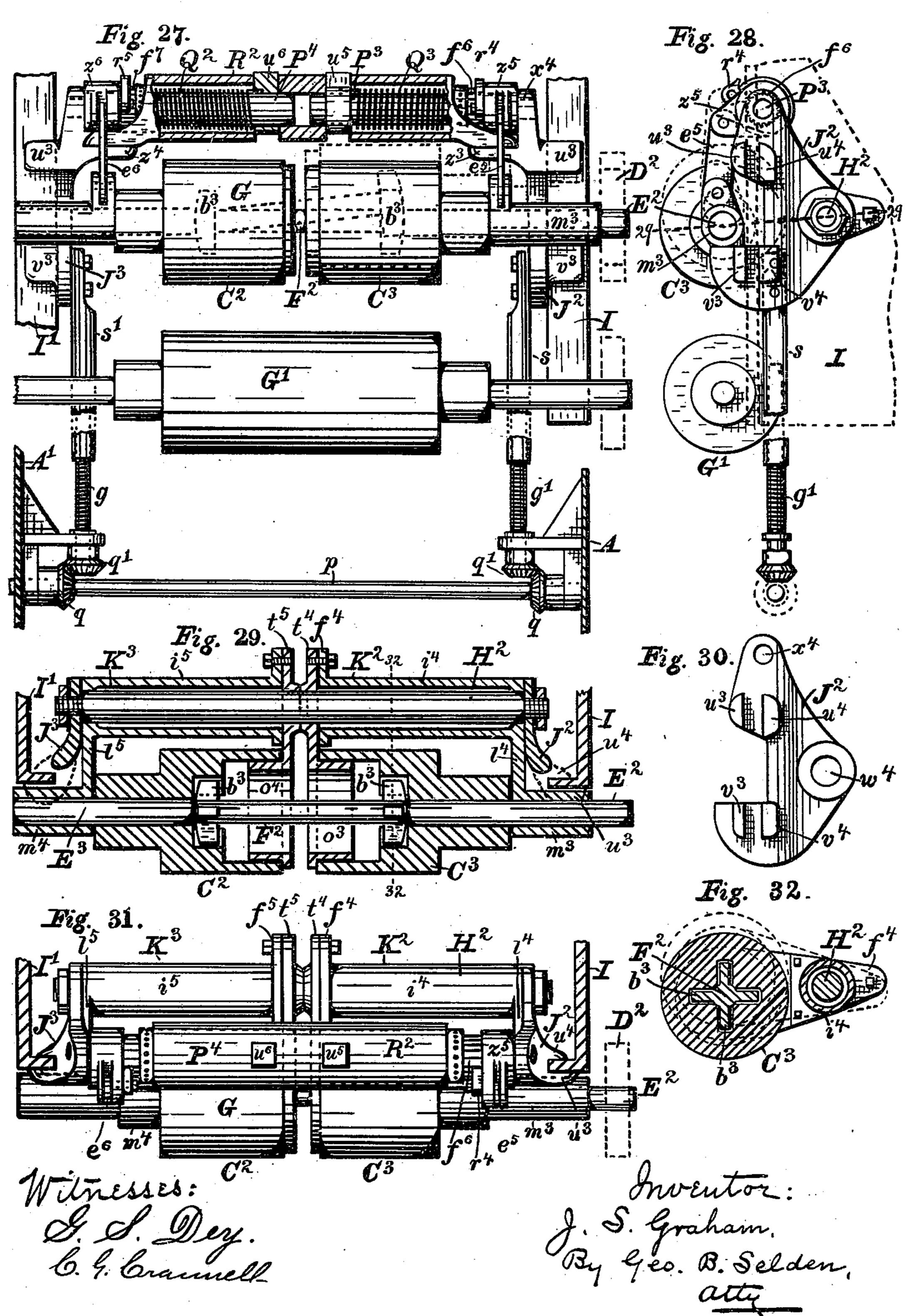

Patented Jan. 29, 1901.


J. S. GRAHAM. PLANING MACHINE.


(No Model.)

(Application filed May 18, 1896.)

10 Sheets—Sheet 5.

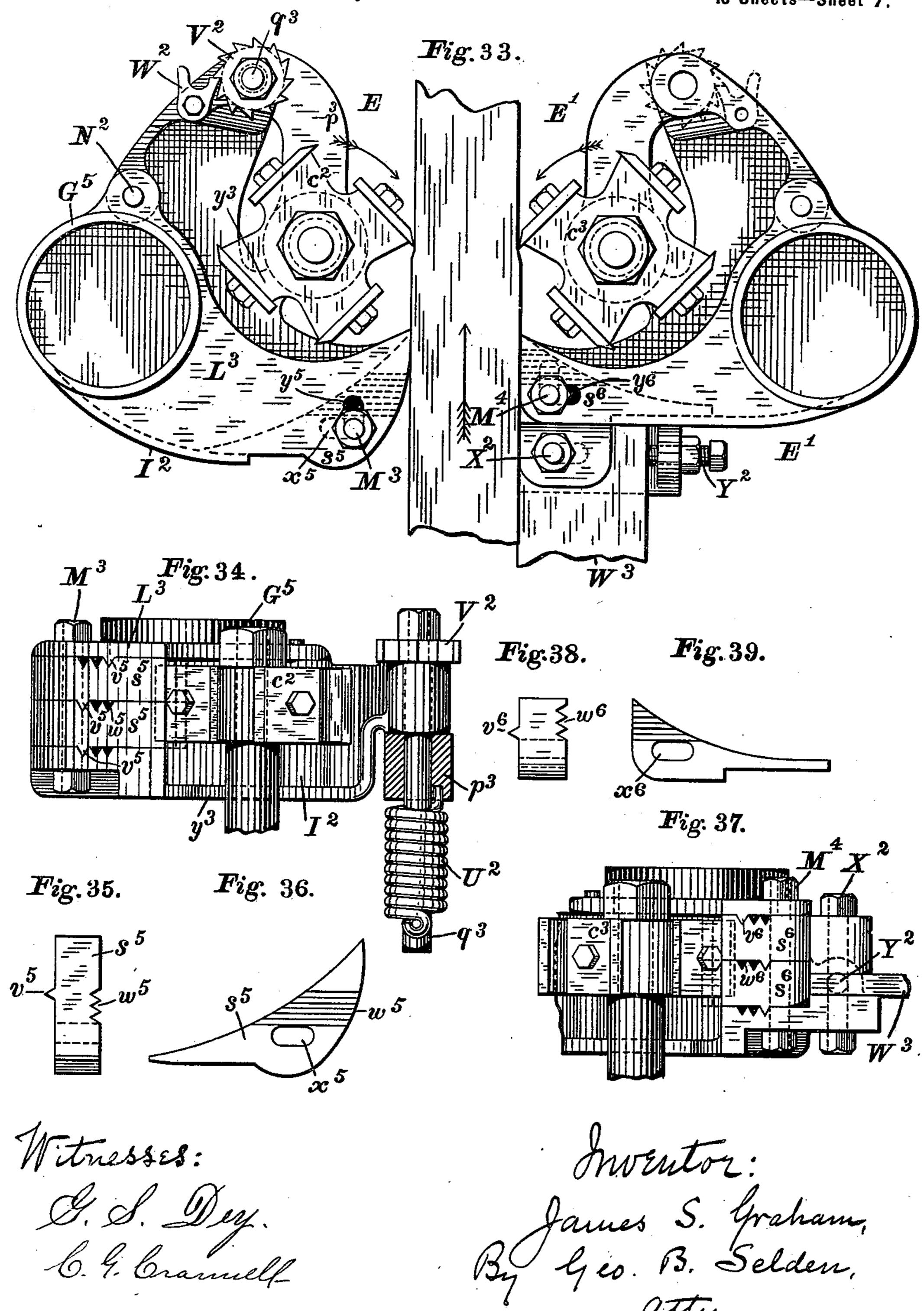

Witnesses: O. S. Dey. 6. G. Crannell

Inventor: James 5. Graham, By Geo. B. Selden, acts

(No Model.)

(Application filed May 18, 1896.)

10 Sheets—Sheet 6.



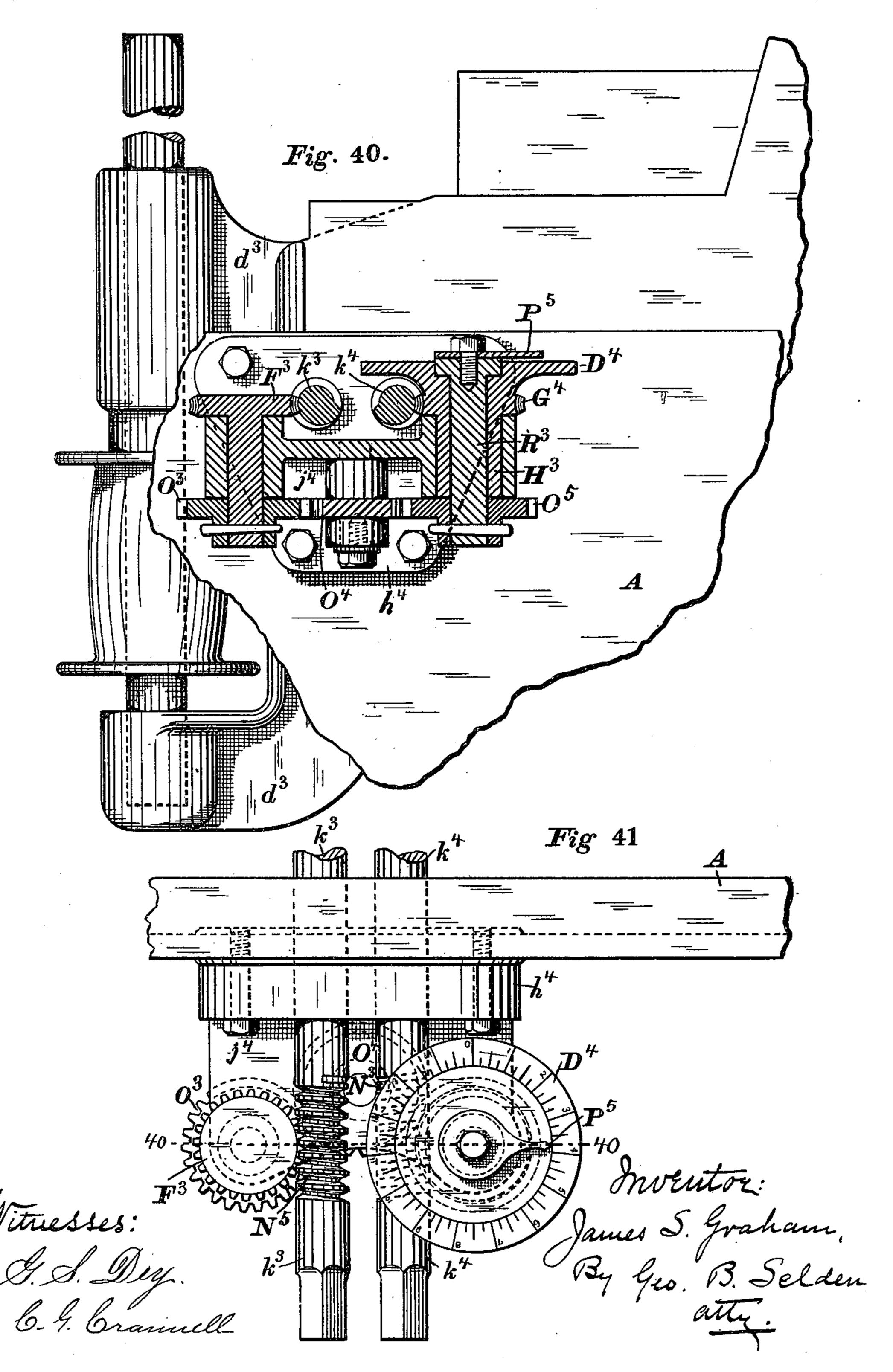
(No Model.)

J. S. GRAHAM. PLANING MACHINE.

(Application filed May 18, 1896.)

10 Sheets-Sheet 7.

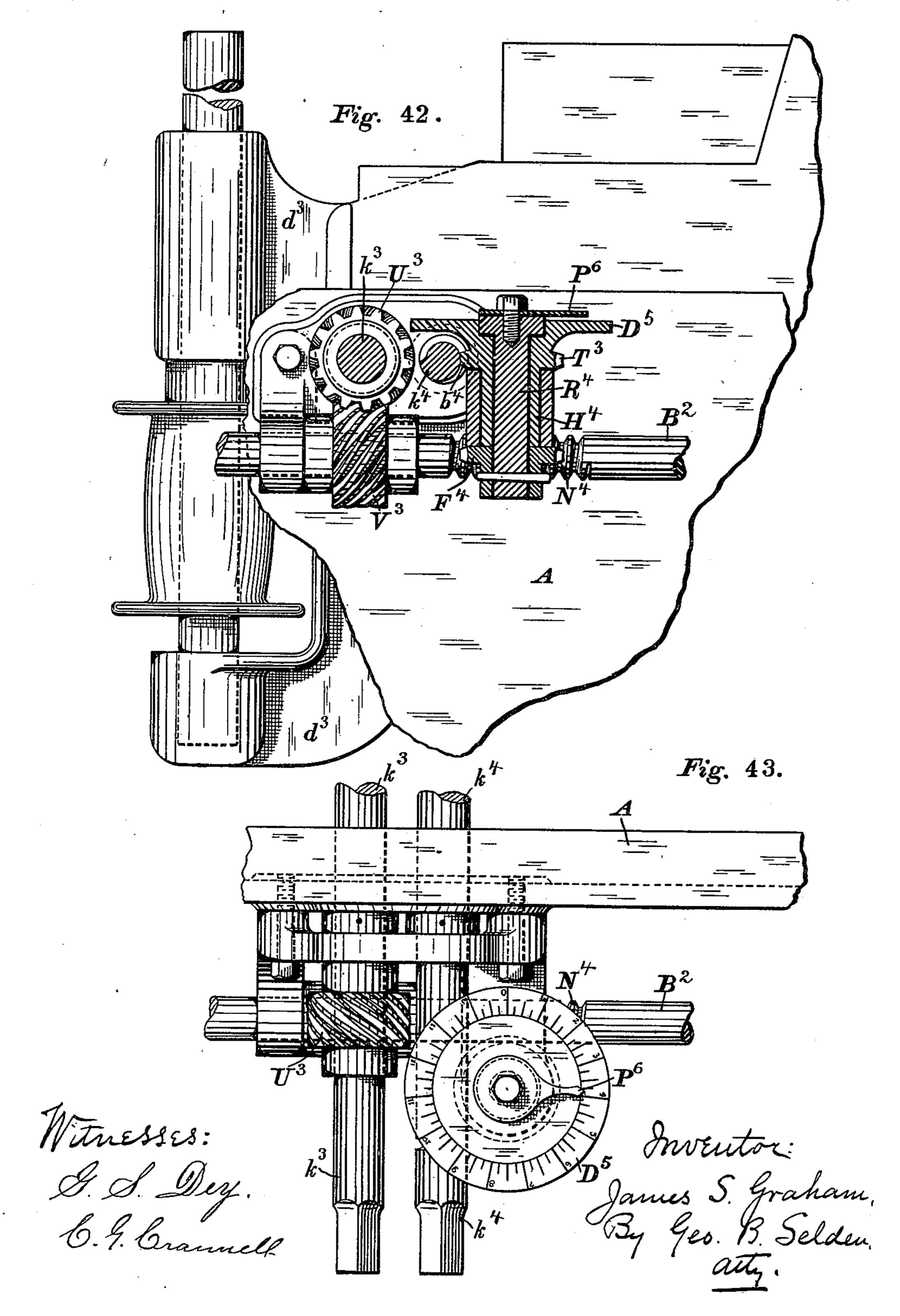
THE NORRIS PETERS CO., PHOTO-LITHO, WASHINGTON, D. C.


Patented Jan. 29, 1901.

J. S. GRAHAM.

PLANING MACHINE.

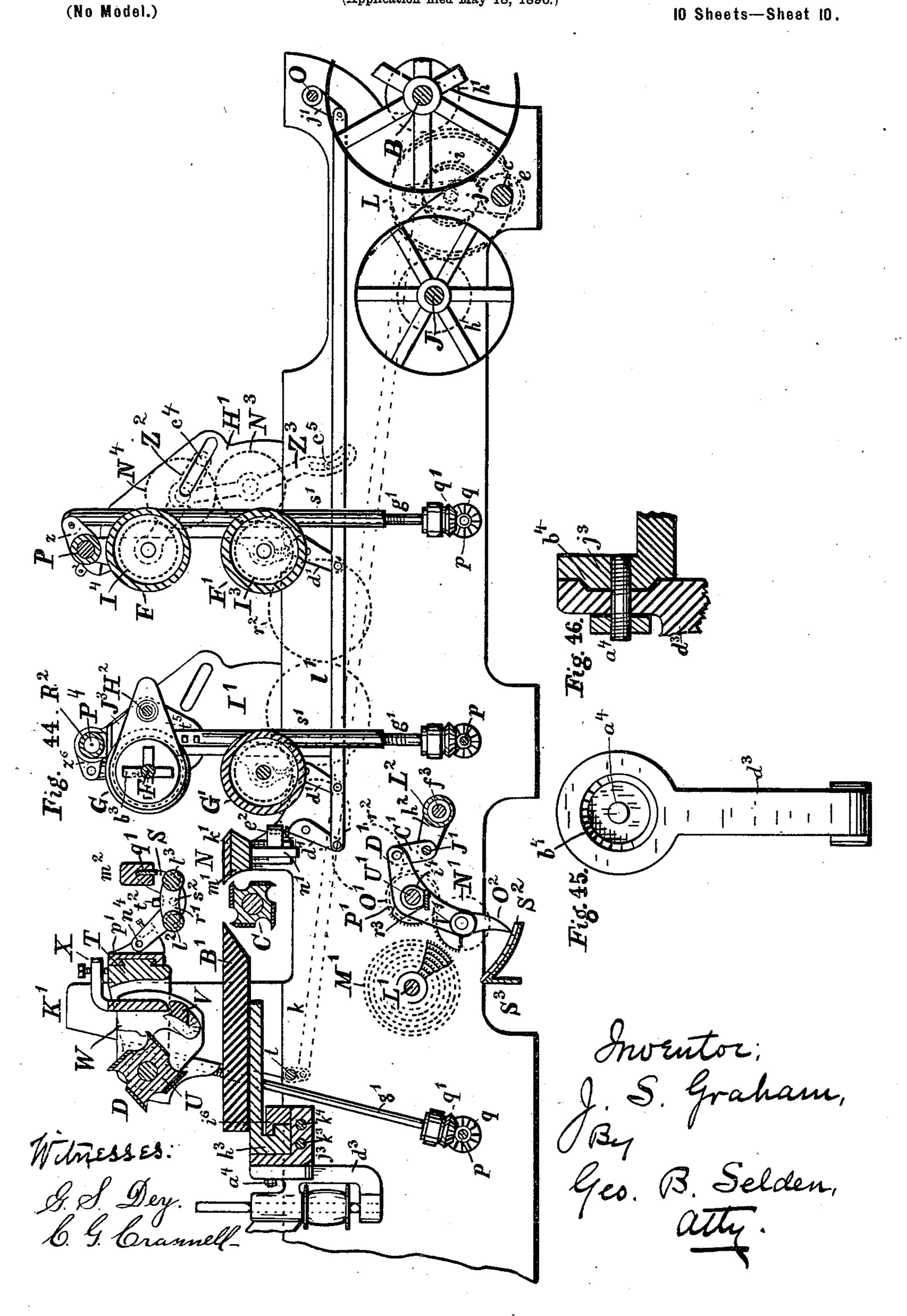
(No Model.) (Application filed May 18, 1896.)


10 Sheets—Sheet 8.

(No Model.)

(Application filed May 18, 1896.)

10 Sheets-Sheet 9.


No. 666,898.

J. S. GRAHAM. PLANING MACHINE.

(Application filed May 18, 1896.)

Patented Jan. 29, 1901.

10 Sheets—Sheet 10.

IJNITED STATES PATENT OFFICE.

JAMES S. GRAHAM, OF ROCHESTER, NEW YORK, ASSIGNOR TO THE J. S. GRAHAM MACHINE COMPANY, OF SAME PLACE.

PLANING-MACHINE.

SPECIFICATION forming part of Letters Patent No. 666,898, dated January 29, 1901.

Application filed May 18, 1896. Serial No. 591, 912. (No model.)

To all whom it may concern:

Be it known that I, JAMESS. GRAHAM, a citizen of the United States, residing at Rochester, in the county of Monroe, in the State of 5 New York, have invented certain Improvements in Planing-Machines, of which the following is a specification, reference being had

to the accompanying drawings.

My invention relates to certain improve-10 ments in the construction of planing and matching machines, which improvements are fully described and illustrated in the following specification and the accompanying drawings, the novel features thereof being speci-15 fied in the claims annexed to the said speci-

fication. In the accompanying drawings, representing a planing and matching machine containing my improvements, Figure 1 is a side ele-20 vation. Fig. 2 is a transverse section on the line 2 2, Fig. 1. Fig. 3 is a partial plan view of the pressure device above the under cutter. Fig. 4 is a partial plan view of the throatpiece of the under cutter. Fig. 5 is a plan 25 view of the frame. Fig. 6 is a rear elevation of the first pair of feed-rolls. Fig. 7 is a side elevation of the same. Fig. 8 is a rear elevation of the transverse sleeve. Fig. 9 is a plan view of the same. Fig. 10 is an end view of 30 the same. Fig. 11 is a section on the line 11. 11, Fig. 6. Fig. 12 is a side view of the cap at the end of the spring-shaft. Fig. 13 is a side view of the pivoted arm. Fig. 14 is a plan view of the pivoted arm and ratchet and 35 pawl. Fig. 15 is a side view of the upper cutter and its chip-breaker. Fig. 16 is a partial rear elevation of the chip-breaker of the upper cutter. Fig. 17 is a side elevation of the frame of the chip-breaker. Fig. 18 is a par-

40 tial rear elevation of the same. Fig. 19 is a rear elevation of the adjustable end plates of the chip-breaker frame. Fig. 20 is a side view of the chip-breaker. Fig. 21 is a partial rear elevation of the same. Fig. 22 is a section of 45 the same on the line 22 22, Fig. 21. Fig. 23

is a side elevation of the change-speed gearing. Fig. 24 represents the notched lockingplate as seen from above. Fig. 25 represents the same as seen from the right hand in 50 Fig. 23. Fig. 26 is a section of the same on

vation, partly in section, of the divided feedrolls. Fig. 28 is a side elevation of the same. Fig. 29 is a section on the line 29 29, Fig. 28. Fig. 30 is a side view of the sliding bracket 55 detached. Fig. 31 is a plan view of the divided feed-rolls. Fig. 32 is a section on the line 32 32, Fig. 29. Fig. 33 is a plan view of the matcher-heads and chip-breakers. Fig. 34 represents the left-hand chip-breaker and 60 hood as seen from the inside. Figs. 35 and 36 represent different views of one of the nosepieces of the left-hand chip-breaker. Fig. 37 represents the right-hand chip-breaker and hood as seen from the inside. Figs. 38 and 65 39 represent one of the nosepieces of the righthand chip-breaker. Fig. 40 is a sectional elevation of the device for gaging the width of the boards. Fig. 41 is a plan view of the same. Fig. 42 is a sectional elevation representing 70 a modification of the same. Fig. 43 is a plan view of the said modification. Fig. 44 is a central longitudinal section of my improved planing-machine. Figs. 45 and 46 are respectively face and sectional views of the 75 matcher-bracket.

In the accompanying drawings, A A' represent the side frames; B, the main drivingshaft; C, the under cutter; D, the upper cutter; EE', the matcher-cutters, and FF' and 80 G G' the first and second pairs of feed-rolls.

HH' and II' represent the standards for the first and second pairs of feed-rolls, and K the standards for the upper cutter.

Motion is transmitted from a pulley on the 85 driving-shaft to the upper cutter D by means of the belt a and to the under cutter C by means of the underlying belt b running around a pulley on the shaft J.

The mechanism for raising or lowering the 90 upper feed-rolls and the upper cutter by the power of the machine consists, essentially, of the friction-wheel L, the shaft c, worm d, wormgear f, side shaft M, and screws g g'. The friction-wheel L is arranged to be shifted 95 slightly, so as to bring it in contact with either one or the other of the pulleys h h' on the shafts B and J, which revolve in opposite directions, so that the rolls may be raised or lowered, while, when the wheel occupies the 100 central position, out of contact with either of the line 26 26, Fig. 25. Fig. 27 is a rear ele- | the pulleys h h', the feed-rolls will remain

fixed in any position to which they may have been adjusted. The shaft c is arranged transversely, being supported in suitable journals in the side frames and provided at one end 5 with the gear e and at the other with the worm d. The friction-wheel L is carried by a stud m on the arm j, Fig. 2, which arm swings on the shaft c. The wheel L revolves freely on the stud m, being attached to the gear i, which to meshes with the gear e on the shaft c. By shifting the arm j slightly in one direction or the other the friction-wheel is made to contact with one of the pulleys hh', which impart motion to the wheel which is transmitted to 15 side shaft M by the gears ie, shaft c, and worm and worm-gear df. At suitable points below the feed-rolls the side shaft is provided with the bevel-gears $n n' n^2$, which mesh with corresponding gears o o' o2 on the transverse 20 shafts p, Figs. 5, 6, and 7, supported by the side frames. The shafts p are provided with the bevels q, which mesh with bevels q' on the lifting-screws g g', which are threaded into the rods or tubes ss', connected with the jour-25 nal-boxes of the upper rolls F and G and of the upper cutter D. It will be understood that these rolls and the cutter are raised or lowered simultaneously by turning the screws g g' in one direction or the other and that the 30 requisite motion of these screws will be secured by putting the friction-wheel L in contact with one or the other of the pulleys h h'. The movement of the arm j, by which contact is produced between the friction-wheel and the pulleys is controlled by a rock-shaft t, Figs. 1 and 5, and a connection k. The rock-shaft is provided with a crank u at one end, and the connection k is pivoted at one end to a pin on the crank and at the other 40 end to the upper end of the arm j. The rockshaft and connection enable the operator to adjust the rolls and cutter while standing opposite the cutter in position to observe the scale and index which are usually applied to 45 the cutter-standard and journal-box to indicate the thickness of the lumber planed. The operator applies a wrench to the end of the rock-shaft and by turning it in one direction or the other brings the wheel L in contact 50 with one or the other of the pulleys h h', thereby raising or lowering the upper feedrolls and the upper cutter to any desired degree. The screws gg' are supported in suitable brackets attached to the side frames.

It will be understood that, although I prefer the arrangement shown, the side shaft M may be located inside the frame and on either side of the machine.

In order to provide for raising or lowering 60 the upper cutter independently of the feedrolls, the bevel n^2 is splined on the side shaft, so that it may be moved lengthwise thereon and disconnected from its corresponding bevel, in which case the cutter may be raised 65 or lowered by hand by a crank applied to the shaft v of the gear w, which meshes with a

gear on the transverse shaft which drives the

screws which raise or lower the upper cutter. The gear n^2 is carried by a journal-box arranged to slide lengthwise of the shaft and 70 provided with a cam a' and hand-lever b', by which the gear is shifted. The journal-box is attached to a plate which slides parallel to the side shaft in suitable ways on the side frame. Any suitable clutch may be employed 75 for the purpose of disconnecting the gear n^2 from the side shaft M, so as to permit the independent adjustment of the upper feed-rolls

and the upper cutter.

In order to provide for the simultaneous ad-80 justment of the lower feed-rolls F' and G' and the throat-piece N of the under cutter C, I employ the rock-shaft O, provided with cranks at its ends which are connected to the pivoted cam-levers d', which support the lower 85 rolls and the under cutter. The cam-levers d' are pivoted on studs inserted in the side frames, their upper ends being given an eccentric or cam-like form, so that on swinging their lower ends from left to right in Fig. 1 90 the rolls F'G' and the throat-piece N will settle down from their own weight. The journal-boxes g^2 g^3 of the lower feed-rolls may rest directly on the cam levers or they may be provided with adjusting-screws e', by which 95 independent adjustment of the rolls and the throat-piece may be secured. These adjusting-screws are inserted into the journal-boxes from below and are preferably provided with jam-nuts, the heads of the screws resting di- 100 rectly on the cam-levers. These screws also enable me to adjust the lower rolls for level. The rock-shaft is provided with a handle i', and a scale and clamping-screwj, Fig. 1, may be arranged so as to indicate the amount of 105 cut permitted to the under cutter and to secure the lower rolls and the throat-piece in any desired position of adjustment. The cranks on the rock-shaft are connected to the cam-levers by the connections l'. The throat- 110 piece consists of a wear-plate k', secured on a cross-bar m', which has at each end an upright flange or web n^3 , which fits in grooves in the inner sides of the frames. The flanges n³ slide up and down in the grooves as the 115 cam-levers are adjusted. The throat-piece is provided with the adjusting-screws e^2 , which bear on the cam-levers. The operator when he desires to vary the amount of the cutting done by the under cutter adjusts the position 120 of the cam-levers by turning the rock-shaft O in one direction or the other, thereby raising or lowering the lower feed-rolls and the throat-piece. The cam-levers being all connected together by the connecting-bars l', the 125 cranks and the transverse shaft O, the rolls, and the throat-piece are adjusted simultaneously and equally at each end.

The arrangement and construction of the first pair of feed-rolls will be understood from 130 Figs. 1 and 6 to 14, inclusive. The upper feedroll F is forced down upon the lumber by the spring or springs shown in the upper part of Fig. 6. The lifting-rods s s' are connected to

arms zz', which as the roll F rises operate to compress the spring. In Fig. 1 the parts are represented in the positions they occupy when the machine is empty, while in Figs. 6 and 7 5 the parts are shown in full lines in the positions they assume when lumber is passing through between the rolls and in dotted lines in the positions occupied by them when the machine is not at work. As the upper roll 10 F rises it carries up the shaft P and the spring or springs Q Q', and, since the spring is connected at one end to the shaft and at the other to the swinging arm z, which is held down by the lifting-rod, the upward move-15 ment of the upper roll compresses the spring. Provision is made for securing tension on the spring and for adjusting such tension by means of a ratchet and pawl. The journalboxes g^4 g^5 of the upper roll F are connected 20 together above the roll by a hollow transverse sleeve R, which is bolted to the boxes, as indicated at x, Fig. 6. The sleeve R incloses the shaft P and the spring or springs Q Q', being made of a suitable form, with down-25 turned ends, as shown. The shaft P is supported at each end by caps c', which are screwed onto the ends of the sleeve R, as represented, a lip d^2 , Fig. 6, on the cap entering a groove in the end of the sleeve to hold the 30 cap in place. The shaft P is also supported by an internal collar e³, cast on the interior of the sleeve at the middle of its length. The arms zz' are attached to the shaft P by setscrews or other suitable devices, so as to turn 35 therewith. The outer ends of the springs Q Q', if two springs are used, are attached either directly to the arms z z' or indirectly for the purpose of adjusting the tension to the ratchets $f' f^2$, which are connected with the arms 40 by the pawls r. The inner ends of the springs are inserted in blocks t't', which are prevented from turning in the sleeve by projections u'entering openings v', Fig. 9, in the sleeve. In assembling the parts the blocks are inserted 45 into the open ends of the sleeve, with the lugs u' extending lengthwise, and the lugs are then inserted in the openings v' by turning the blocks up into their proper positions. The ends of the springs are inserted in holes w', 50 Fig. 11, in the blocks t'. In a similar manner the outer ends of the springs are inserted in holes in the arms zz' or in the hub x', Fig. 14, of the ratchet f'. The ratchet is loose on the shaft, and the hub x' is provided with a series 55 of holes or otherwise arranged so that the ratchet may be turned by a rod or a wrench for the purpose of adjusting the tension of the spring. The pawl r is pivoted on a lug y', projecting from the arm z. It will be un-60 derstood that as the roll rises the sleeve also rises, the shaft, ratchets, and arms turn in the sleeve, and the spring or springs are compressed. The shaft P equalizes the resistance of the roll to being raised at each end of the 65 roll. The tension of the springs, and consequently the pressure of the roll on the lumber passing below it, is readily adjusted by

turning the ratchet. Stops are provided to limit the downward movement of the roll. These stops consist of projecting lugs $i^2 i^3$ on 70 the sleeve R and of the corresponding flanges j^2 on the arms z z'. When the machine is empty, the opposing edges of the stops i^2 i^3 and of the lugs j^2 are in contact with each otner; but when lumber is being fed the lugs 75 separate from the stops as the roll rises and the shaft P turns, as indicated by the full lines in Fig. 7, to a greater or less degree, according to the distance which the roll rises. The journal-boxes $g^4 g^5$ of the upper roll are 80 gibbed onto the standards H H' in any usual or preferred way, so that the roll can travel freely up or down on the standards either when adjusting itself to the inequalities of the lumber below it or when being adjusted 85 up or down for different thicknesses of lumber by the lifting-screws g g', as already described. The journal-boxes g^2 of the lower feed-roll F' are also gibbed on the standards. The hubs x' of the ratchets are preferably ar- 90 ranged to project a short distance into the

open ends of the sleeve R.

The arrangement and construction of the pressure device above the under cutter C will be understood from Figs. 1 and 3. Pressure 95 is applied to the lumber over the under cutter by means of the rollers l² l³, supported in a pivoted frame S and held down by one or more weights m^2 . The frame S is pivoted at n^4 to lugs on a laterally-adjustable bar p', 100 which is arranged to be shifted on the frame T, which carries the journal-boxes U of the upper cutter D. The object of this lateral adjustment of the pressure device is to bring narrow boards when fed on one side of the 105 machine under the center of the length of the rollers $l^2 l^3$. The bar p' and the frame T are connected together by a dovetail or other suitable joint, a set-screw or other device being employed to secure the bar in the desired 110 position on the frame. It will be observed also that the pressure device moves up and down with the upper cutter D whenever the latter is adjusted. q^4 is the cross-bar of the frame S, to which the weight m^2 is applied. 115 The rollers $l^2 l^3$ are carried by an inner movable frame r', pivoted at s^2 to the frame S. This construction allows the rollers to adjust themselves slightly to the roughness of the lumber passing under them, a suitable stop 120 being provided to limit this movement by extending the cross-bar t^2 of the inner frame r'over the ends of the frame S, as indicated in Fig. 3. The frame S may be turned up entirely out of the way to afford access to the 125 under cutter C.

U represents the journal-box for the shaft of the upper cutter, which is clamped to the standards K by a bolt engaging with a nut in a T-headed slot in the standards or in any 130 other suitable way. The frame T connects the journal-boxes of the upper cutter on the opposite sides of the machine and also supports the chip-breaker for the upper cutter,

which is represented in Figs. 15 to 20, inclusive. The chip-breaker V consists of a plate of proper form adapted to the purpose adjustably pivoted in a movable frame W, 5 which swings about the axis of the cutter D. The construction of the movable frame W will be understood from the end view, Fig. 17, and the rear view, Fig. 18, of one end of the frame. It consists of a transverse plate 10 k^2 , having at each end the wings v^2 , which project toward the cutter-shaft. X represents arms, provided with set-screws, which project over the frame T and by which the position of the frame W and chip-breaker V relatively to 15 the cutter may be adjusted. The end plates w^2 are attached to the wings v^2 by one or more bolts x^2 , Fig. 15, a projecting rib y^2 being fitted into a groove z^2 in the wings to insure the proper location of the end plates 20 relatively to the wings. On their rear edges | the end plates w^2 are provided with a circular notch a³, which fits the journal-boxes U of the cutter on each side just inside the arms of the frame T. The frame W and the chip-25 breaker are therefore permitted to swing concentrically with the axis of the cutter. The form of the chip-breaker will be understood from the sectional view Fig. 22. At each end it is provided with a pivot Y, of two dif-30 ferent diameters, the larger inner portion a^2 , Fig. 21, of which fits a circular notch b^2 , Fig. 17, in the wings v^2 , while the outer smaller portion p^2 of the pivot fits a slotted opening q^2 , Fig. 15, in the end plates w^2 . The con-35 struction described permits the adjustment of the chip-breaker to and from the cutter by means of the bolts x^2 , the smaller part p^2 of the pivot Y being adjustable in the slot q^2 . In Fig. 15 the parts are shown in the posi-40 tion they occupy when the chip-breaker is arranged at its greatest distance from the cutter; but it will be understood that by slacking the bolts x^2 the frame w and the chipbreaker V may be adjusted toward the cut-45 ter. The chip-breaker V is permitted to rock on its pivots to a certain degree. This result is secured by providing the chip-breaker with the lugs $s^3 s^4$, Fig. 20, with a notch between them, into which the lower edge of the plate 50 k^2 engages. This construction allows a limited amount of oscillation in the chip-breaker as the lumber passes under it. Z, Fig. 15, is a wear-plate supported on the bed B'. The machine is of course provided with a suit-55 able bed on which the lumber is fed. The mechanism for driving the feed-rolls

at variable speeds consists, essentially, of the transverse shaft L', Figs. 5 and 23, carrying a cone of gears M' and operating to transmit 60 motion at different speeds to the feed-rolls through the swinging gear N', the gear O', pinion P', and any suitable train of gearing r². The gear O' is supported on a transverse shaft U', which drives the train of gearing r² by the pinion P'. Any suitable kind of expansion-gearing may be employed between the upper and lower feed-rolls. In the ar-

rangement shown the gear I3, Fig. 44, on the shaft of the lower feed-roll F' drives the gear I4 on the shaft of the upper roll F by the in- 70 termediate gears N³ N⁴, which are supported by links, so that they always remain in mesh with each other and with the gears on the rolls. The gear N⁴ is carried by a link Z², which is pivoted on the roll-shaft and is pro- 75 vided with a pin c^4 , which slides in a slot in the standard. The gear N³ is carried by a link Z³, which is pivoted on the stud carrying the gear N⁴ and is provided at its lower end with a curved slot which slides on a pin c^5 , 80 inserted in the side frame, so that the gear N³ while traveling up and down will be always properly in mesh with the gear I3. A pivoted link may also be employed between the rollshaft and stud of the gear N³. A similar ar- 85 rangement is adopted on the other pair of feed-rolls. The shaft L' and its cone of gears are driven in any convenient manner, as by the belt R' from the pulley S' on the main shaft B. This arrangement is convenient, as 90 in case it is desired to change the rate of feed the operator throws off the belt R' between the pulley S' and the pulley T' on the coneshaft L'. The swinging gear N' is arranged so as to be engaged with any one of the gears 95 of the cone M', so as to transmit motion at different speeds to the feed-rolls. The shafts L' and U' revolve in suitable journals on the frame, being located at such a distance apart that the gear O' does not engage with any of 100 the cone-gears M'. The gear O' is splined on the shaft U', so that it can be adjusted across the machine lengthwise of the shaft. The swinging gear N' is carried by the frame V', which is free to turn on the shaft U', so that 105 the gear N' may be engaged with any one of the cone of gears M'. The gears O' and N' are always in mesh with each other. The gears O' and N' and the frame V' are adjustable simultaneously lengthwise of the shaft 110 U', so as to bring the gear N' in the proper position laterally to engage with any of the cone-gears when swung into mesh by the movement of the frame V'. The movements of the two gears are controlled by the levers 115 W' and X', Fig. 1, one of which, W', shifts the gears O' N' and the frame V' lengthwise on the shaft U' and the other, X', swings the gear N' and frame V' to or from the cone of gears M'. These levers W' and X' are 120 pivoted to the frame in such position as to be conveniently under the control of the operator at the feed end of the machine. The lever X' is connected by a rod or bar Y' with a bent lever Z', pivoted to the frame, 125 and the lever Z' is connected by a link C' with the projecting arm D' of the swinging frame V'. Motion of the upper end of the lever X' in either direction will thus shift the gear N' into or out of mesh with 130 the gears of the cone. In Fig. 23 the gear N' is shown engaged with the largest conegear in full lines, and its position when in mesh with the smallest cone-gear is repre-

sented by dotted lines. Any desired number of | cone-gears may be employed, producing as many different speeds of the feed-rolls. In order to permit of the adjustment of the 5 frame V' and the gears across the machine, the bent lever Z' is constructed with a shaft J', Figs. 5 and 23, on which the connection C' slides. The bent lever is most conveniently made of a sleeve L2, arranged to turn 10 on a transverse rod f^3 and provided with the arms h^2 , which carry the shaft J'. The three shafts U', J', and f^3 are arranged parallel with each other, so that as the frame V'slides along the shaft U' the connection C' slides on 15 the shaft f^3 . The lever W' is provided with a notched sector M2, Fig. 1, and a suitable spring or other catch adapted to engage in any of the notches and to hold the parts in any desired position, with the gear N' in the 20 proper plane to engage with any one of the cone-gears. The lever W' is arranged to shift the swinging gear N', the gear O', and the frame V' laterally across the machine by the bent lever G⁵, the connection H², and the pit-25 man r^3 . The bent lever G^5 is pivoted on a stud t^3 , carried by a suitable bracket u^2 , Fig. 5, attached to the frame. One end of the lever is pivoted to the connection H² and the other to the pitman r^3 . The lever is provided 30 with a sleeve e^4 , Fig. 23, by which its arms are separated from each other. The pitman is pivoted to a boss i^7 on the frame V'. It will thus be seen that the motion of the lever W' will be transmitted to shift the gear N' and its 35 attached parts laterally across the machine, so that the gear occupies the same plane as any of the cone-gears, and that it will be held in such position by the engagement of the catch on the lever with the notched sector M². The 40 gear N' is held in mesh with any of the conegears by the arm O² of the frame V', which engages with the notches of the cylindrical notched plate S2, the construction of which will be understood from Figs. 23 to 26, inclusive. 45 The arm O² projects downward from the frame V'and its point engages with any one of a series of notches w^3 in the cylindrical plate S^2 . The plate S² is made of a curved form, having its center in the axis of the shaft U', and 50 consequently the notches w^3 occupy positions where the point of the arm O² may engage with any one of them. The notches extend lengthwise of the plate a sufficient distance to engage and hold the point of the arm, (see 55 O2, Fig. 24,) so that the gear N' cannot escape from meshing with one of the cone-gears. In order to prevent the ends of the teeth on the gear N' from striking the ends of the teeth of one of the cone-gears, the edge of the 60 notch is bent outward, so that as the gear is shifted laterally it is held away from the conegear by the arm O² resting on the curved surface x^3 until the ends of its teeth have passed beyond the ends of the teeth on the cone-65 gear, after which the teeth are permitted to engage, the points of the teeth on one passing into the openings between the teeth of the

other. When the operator desires to change the rate of the feed, he operates the lever \mathbf{W}' and brings the gear N' in line with the cone- 70 gear, which will give the desired speed, and then by the lever X' brings the point of the arm O^2 against one of the curved surfaces x^3 , corresponding with the chosen cone-gear, and then engages the gear N' in mesh with the 75 particular gear-cone by a further movement of the lever W', the point of the arm sliding along the curved surface and permitting the arm and gear to approach the cone-gear and engaging the teeth. The notched plate S² is 80 supported in place in any suitable way. In the drawings it is shown as extended across the machine by a corresponding plate S³ of larger curve and provided with a stiffeningrib T2, Fig. 26, and with end plates which are 85 bolted to the side frames.

Figs. 27 to 32 represent the divided feedroll. The lower roll G' is supported by any suitable journal-boxes arranged in any suitable manner on the standards I I'. Provi- 90 sion may be made for adjusting the lower roll up and down, as already described, and the rolls are driven by any suitable train of gearing with suitable expansion-gearing between the upper and lower rolls. The upper roll G 95 is divided into two parts or sections C² C³, the section C³ being driven by gear D², Fig. 27, and shaft E², while the section C² is driven from C³ by the connection F², which permits one of the sections to rise higher than the 100 other, as indicated by the full and dotted lines in Fig. 27. At either end the connection F² is provided with a joint consisting of a number of radial arms fitting a recess of corresponding shape in the opposing roll-sections 105 C² C³, so as to form what are practically universal couplings, which permit the unequal rise or fall of either roll, while securing their simultaneous revolution. The preferred arrangement will be understood from Figs. 29 110 and 32, in which the radial arms, which are preferably four in number, are represented at b³ fitting corresponding recesses in the opposing faces of ends of the hollow spaces of the roll-sections. It will of course be under- 115 stood that any other form of universal joint may be employed, that the number and arrangement of the radial arms may be varied, and that the arms may be on the roll-sections and the recesses on the ends of the connec- 120 tion F². In the construction shown the arms b³ are forged with the connection—a simple and cheap form of construction. The rollsections are pivoted, so that they may rise and fall independently on the shaft H2, Figs. 28, 125 29, 31, and 32, which shaft is itself supported by arms or brackets J2 J3, which are adjustable on the standards I I', being connected with the screws g g' of the lifting mechanism by the internally-threaded rods ss'. The roll-130 sections C² C³ are supported at both their inner and outer ends by a frame which is pivoted to swing on the shaft H2. These frames are independent of each other, and the rolls

are held down upon the lumber by the springs Q² Q³, Fig. 27. The frame K² for the roll C³ consists of a hollow sleeve i4, Figs. 29 and 32, surrounding the shaft H² and provided at its outer end with the arm l4, which carries the journal-box m^3 , in which the outer end of the shaft E² of the roll-section C³ revolves. At its inner end the sleeve i^4 is provided with a flange f^4 , to which is bolted an arm or plate 10 t4, which reaches inward between the inner ends of the roll-sections and carries the ring . or journal o³, Fig. 29, which is fitted to and supports the inner end of the roll-section C³. The inner end of the section C³ revolves on 15 the hollow journal o3, its outer end being supported by the shaft E^2 in the journal-box m^3 . The sleeve i^4 and the plate t^4 are fitted at either end of the frame K² to turn freely on the shaft H². It will be perceived that by the construc-20 tion described the roll-section C3 is permitted to swing on the shaft H2, remaining always parallel with itself, and that this movement is independent of the corresponding section C2. The shaft H2 is attached at either end 25 by nuts and keys or other suitable devices to the brackets J² J³, which, however, are also connected together above the divided roll G by the hollow sleeve R2, which incloses the springs Q² Q³. The frame K³, which carries 3¢ the roll-section C2, consists of parts similar to the frame K2, already described. It is provided with the sleeve is around the shaft H^2 , the plate or arm t^5 , which carries the journal-ring o⁴ inside the inner end of the 35 section C², and the arm l⁵, which supports the journal m^4 at the outer end of the shaft E^3 . The frame K³ vibrates on the shaft H² as the section C² rises or falls with the varying thickness of the lumber passing under it, and 40 this movement is entirely independent of the other section C3, except that both are simultaneously adjusted up and down to adapt the machine to lumber of different thicknesses by the lifting-screws g g' and the lift-45 ing mechanism already described. The construction and arrangement of the adjustable brackets J² J³ will be understood from Figs. 27, 28, and 30. They are provided with lugs or projections $u^3 u^4 v^3 v^4$, which fit against 50 the opposing sides of the standards I I'. The web of the bracket is provided with the opening w^4 , Fig. 30, which receives the end of the shaft H². It has also an upward projection provided with an opening x^4 , Fig. 30, which 55 receives the end of the shaft P3, about which the spring Q³ is coiled, and the arrangement is the same for the shaft P⁴ and spring Q². There are also lugs or inward projections z^3 z4, Fig. 27, on the brackets J2 J3, to which the 60 sleeve R² is secured. As the roll-section C³. rises it compresses the spring Q3, and similarly as the section C² rises it compresses its spring Q². This result is produced by the connections e^5 e^6 , which are connected to 65 cranks to which the outer ends of the springs are attached. The inner end of the spring {

attached to the collar u⁵, Fig. 27, which has a lug engaging in a suitable opening in the sleeve R² in a manner similar to that already 70 described, so that it cannot rotate on the shaft P³. At its outer end the spring Q³ is connected by an adjustable ratchet with the crank z^5 , to which the upper end of the link e⁵ is pivoted. As the roll-section C³ rises it 75 turns the crank z^5 , and this compresses the spring Q³, so that the requisite pressure on the lumber is secured. This movement of the section and crank is represented by the full and dotted lines in Fig. 28. While the 80 outer end of the spring Q3 may be directly connected to the crank z^5 in order to adjust the tension of the spring, I interpose the ratchet f^6 and pawl r^4 , which is pivoted to the crank z^5 . The outer end of the spring Q^3 85 is attached to the ratchet f^6 or to an enlarged collar thereon, which collar is preferably provided with a series of holes by inserting a rod in which the tension of the spring may be adjusted. The pawl may be provided with a 9c suitable spring to secure its engagement with the ratchet. It will thus be seen that the spring Q³, acting through crank z⁵ and link e^5 , presses the roll-section C³ down on the lumber and that such pressure is adjustable 95 by the employment of the ratchet. A similar construction is adapted for the other roll-section C^2 . The journal-box m^4 is connected by the link e^6 with the crank z^6 , which as it turns twists or compresses the spring Q² on the 100 shaft P4, which, it will be observed, is separate from the shaft P3. The inner end of the spring Q^2 is held by the collar u^6 . A ratchet and pawl $f^7 r^5$ are interposed between the spring Q^2 and the crank z^6 , so as to make the 105 tension of the spring and the pressure on the lumber adjustable in a manner similar to that already described. It is thus provided that the roll-section C² can rise and fall independently of the other section and its pres- 110 sure on the lumber can be adjusted. The machine is thus adapted to feeding boards of two different thicknesses at the same time, while the divided roll permits of adjustment as a whole to lumber of different thicknesses. 115 It will also be understood that my improved divided roll as herein described may be used independently, as well as in connection with the other improvements set forth in this application. Either or both of the feed-rolls in front of

the cutters may be provided with a divided feed-roll.

I 20

The matcher cutter-heads are represented in plan view in Fig. 33. They consist of any 125 suitable rotary cutter-heads c^2 c^3 , supported on upright shafts, which are driven from the main shaft B by quarter-twist belts which run over pulleys on the shaft J. The matchershafts are arranged so that they can be ad-13c justed across the machine and also so that they may be set at angles with the vertical line for the purpose of dressing the edges of Q³ of the section C³ is inserted or otherwise I the lumber on a bevel. The frame of one of

7

the matcher-shafts is represented at d^3 , Figs. 1 and 44, from which it will be seen that it is attached by a bolt a^4 to an adjustable anglepiece j^3 , which is arranged to be shifted across 5 the machine by the threaded rod k^4 . A transverse bar h^3 extends across the machine between the side frames. This bar is provided with a projecting flange, to which the angleplate j^3 is secured by the gib i^6 . The screw 10 k^4 is used to adjust one of the matchers and the screw k^3 the other. Around the bolt a^4 the matcher-bracket is provided with a circular recess which fits a corresponding boss on the angle-plate, the surfaces in contact be-15 ing preferably conical, as indicated at b^4 , Figs. 45 and 46, so that the bracket is firmly held in any position in which it may be set, either square with or inclined to the bed, by screwing up the nut on the end of the bolt. From 20 the bracket an arm p^3 extends upward and outward and supports the spindle q^3 of the hood I2 of the matcher-cutter, which is provided with the collar G⁵ for the attachment of the suction-spout through which the chips 25 are carried off. The hood I2 swings on its pivot, being pressed toward the edge of the lumber by the spring U2, one end of which is fastened to the spindle q^3 and the other to the journal at the upper end of the arm p^3 . To 30 get it out of the way, this spring U2 is placed below the bed. At its upper end the spindle q^3 is provided with a ratchet V^2 , with which \bar{a} pawl w^2 on the hood engages, whereby provision is made for adjusting the tension of 35 the spring. The lower plate of the hood may contact with the bracket p^3 , as indicated at y^3 , to limit the swinging movement.

The chip-breaker consists of one or more adjustable pieces s⁵, Figs. 34, 35, and 36, which 40 are made adjustable in two different directions, one to and from the lumber, to compensate for wear, and the other toward the cutter. The chip-breaker s⁵ is clamped between the lower plate of the hood and the top plate 45 L³ by the bolt M³. A pin or bolt at N², Fig. 33, also secures the plate L³ to the hood. The chip-breaker s^5 is provided on one side with a rib v^5 and on the opposite side with a series of corresponding grooves w^5 . Corresponding 50 ribs or grooves are formed on the lower side of the plate L³ and on the lower plate of the hood, so that when it is desired to adjust the chip-breaker toward the cutter the bolt M³ is slacked and the chip-breaker moved the width 55 of one of the ribs or grooves, being then secured in place with the rib in the groove next adjacent to the one it previously occupied. The slots y⁵ in the upper and lower plates permit this adjustment. When two or more 60 wearing-pieces s⁵ are employed, they are adjustable relatively to each other in a similar manner, each piece being provided with the requisite ribs and grooves. The adjustment of the chip-breaker to and from the lumber 65 is effected by means of the slot x^5 in the wearing-pieces, the ribs sliding lengthwise in the

grooves. It will be observed that the slots y^5 and x^5 are placed at right angles to each other, and this construction, in connection with the ribs and grooves, permits the chip-breaker to 7° be adjusted in the two directions mentioned.

The hood surrounding the matcher-head c^3 is constructed similarly to that already described. It is provided with the adjustable chip-breaker s⁶, secured in place by the bolt 75 ${
m M}^4$ and provided with the ribs and grooves v^5 w^6 and the slot x^6 . y^6 is a slot in the upper plate of the hood. By these means provision is made for adjusting the chip-breaker in two different directions at right angles with each 80 other in a manner similar to that already described with regard to the chip-breaker on the opposite side of the board. The hood for this cutter is, however, provided with the guide-bar W³, along which the lumber runs 85 and which is attached to the hood by the bolt X², passing through a suitable lug and made adjustable by the screw Y2, which is threaded through a lug attached to the hood. The guide-bar W^3 is slotted where the bolt X^2 90 passes through it, and by means of the screw Y² the bar may be always kept in line with the wearing-surfaces of the chip-breaker s⁶.

In order to facilitate the setting of the matcher-cutters at any desired distance apart 95 in order to edge or match boards of any required width, I connect the adjusting-screws k^3 k^4 , Figs. 1, 40, and 41, by worm or spur gearing, so that the space between the cutters at any given time is indicated by a pointer 100 and dial on the outside of the machine. The dial is connected with one of the screws, so as to revolve when the screw is turned, and the pointer is connected with the other screw. It will be understood that one of the screws 105 $k^3 k^4$ is threaded through the sliding block j^3 , carrying one of the matcher-cutters, and that the other is threaded through the block carrying the other outter. One of the rods passes through one of the blocks in an enlarged hole. 110 D⁴, Figs. 40 and 41, is the dial, and P⁵ the pointer. Outside the frame the screw k^3 is provided with a worm-thread N⁵, Fig. 41, which engages with a worm-gear F³, which by a train of spur-gears O³ O⁴ O⁵ transmits 115 movement to the stem R³ of the pointer P⁵. Fig. 40 is a section parallel to the frame on the line 40 40, Fig. 41. The sleeve H² of the dial D4 is provided with a worm-gear G4, which meshes with a worm N³ on the shaft 120 k^4 . It will be observed that the arrangement is such that the dial and pointer travel in opposite directions. The various parts of the mechanism are supported from the side frame A by the bracket j^4 , attached to the frame by 125 the plate H⁴. This bracket is provided with suitable journals for the stem of the wormgear F³ and the sleeve of the dial. It also carries a stud on which the spur-gear O³ revolves. The operation of this indicator will 130 be readily understood from the preceding description. The dial being properly graduated

and marked, the position of the pointer on it | the support R, spiral spring Q, crank and conshows instantly the distance between the cutters in inches or fractions of an inch.

In a modified form of the indicator for the 5 matchers (represented in Figs. 42 and 43) I employ a side rod B2, which extends along the frame in suitable journals and permits the setting of the cutters at any required distance apart by the operator while standing 10 at the feed end of the planer. The arrangement is similar to that already described, worms and worm-gearing and a rotary dial and pointer being employed. D5 is the graduated dial, and P6 the counter. The side rod 15 B² is provided with a worm N⁴, which meshes carries the counter. The dial D⁵ is revolved from the screw k^4 by the worm b^4 , which meshes with the worm-gear T³ on the sleeve 20 H^4 of the dial. The screw k^3 is provided with the spiral gear U³, which meshes with a corresponding spiral gear of equal size V3, fastened on the side rod B2. A suitable supporting-frame is employed to sustain the va-25 rious parts. By turning the side rod the cutters are adjusted to any desired distance

pointer on the dial. It will be understood that when a center 30 guide between the matchers is used, so that two boards can be run at the same time to be jointed or matched on their outer edges only, the guide-bar W³ should be omitted and the hood about the matcher c^3 provided with a 35 spring and ratchet similar to those already

apart, and such distance is indicated by the

described.

I claim— 1. The combination with suitable standards, of the upper and lower feed-rolls, the 40 rock-shaft arranged parallel thereto, the support for the rock-shaft, the spiral spring applied to the rock-shaft, said spring being connected to the shaft and the frame of the machine whereby the spring is compressed when 45 the roll is elevated and adapted to return the roll, substantially as described.

2. The combination with the standards H H', of the feed-rolls F, F', the rock-shaft P, spiral spring Q, crank z, and connection s,

50 substantially as described.

3. The combination with the standards H H', of the feed-rolls F F', the rock-shaft P, spiral spring Q, cranks zz', threaded connections s s', and lifting-screws g g', substan-

55 tially as described.

4. The combination with suitable standards, of the upper and lower feed-rolls, the rock-shaft arranged parallel thereto, the support for the rock-shaft, the spiral spring ap-60 plied to the rock-shaft, said spring being connected to the shaft and to the frame of the machine, and the ratchet mechanism between the spring and the connections, substantially as described.

5. The combination with the standards H H', of the feed-rolls F F', the rock-shaft P,

nection z s, and the ratchet and pawl f' r, substantially as described.

6. The combination with the standards H 70 H', of the feed-rolls F F', the rock-shaft P, spiral spring Q, crank z provided with lug j', connection s, and journal-box g^4 having stop

i², substantially as described.

7. The combination with the feed-rolls of a 75 planing-machine and their driving-gearing, of the cone-gear M', the laterally-adjustable gear O', the swinging laterally-adjustable gear N', and its supporting-frame, the notched plate S², and suitable levers and connections 80 whereby the gear N' may be adjusted and with a worm-gear F4 on the stem R4, which | held in mesh with any of the cone-gears, substantially as described.

8. The combination with the cone-gears M', of the adjustable swinging gear N', the frame 85 V' having arm O2, the notched plate S2 having notches w^3 and inclined surfaces x^3 , substan-

tially as described.

9. The combination with the feeding mechanism of a planing-machine, of the driving- 90 shaft L' carrying cone-gears M', the shaft U' supporting adjustable gear O', the swinging adjustable gear N', and its frame V', the notched plate S2, the levers W' and X' and suitable connections, whereby the gears may 95 be adjusted lengthwise on the shaft, and engaged with any of the cone-gears, substantially as described.

10. In combination, the upper and the lower cutter, of a yielding pressure device for the roo lower cutter, said pressure device being vertically adjustable with the upper cutter and comprising a frame carrying two pressurerollers pivoted on its central axis in another pivoted frame arranged to be adjusted later- 105 ally across the machine, substantially as de-

scribed.

11. In combination, the upper and the lower cutter, of a yielding pressure device for the lower cutter, said pressure device being ver- 110 tically adjustable with the upper cutter and comprising a frame carrying two pressurerollers pivoted on its central axis in another movable frame pivoted on a slide supported by the standards of the upper cutter and ad-115 justable laterally across the machine, substantially as described.

12. The combination with the under cutter C and adjustable lower feed-roll G', of the adjustable throat-plate N, the rock-shaft O' 120 and connections l', the cam-levers d' and adjusting - screws e' e^2 , substantially as de-

scribed.

13. The combination with the cutter D, of the frame W having notches b^2 , the adjust- 125 able end plates w^3 , having slots q^2 , and the pivoted chip-breaker V, having bosses Y, substantially as described.

14. The combination with the section C³ of the rock-shaft P³, coiled spring Q³, crank z⁵ 130 and connection e^5 , substantially as described.

15. The combination with the section C³ of

666,898

the rock-shaft P³, coiled spring Q³, crank z^5 , ratchet f^6 , pawl r^4 , and connection e^5 , sub-

stantially as described.

16. The combination with the sections C² C³, baving crank-arms connected therewith of the internal connection F² and suitable springs Q² Q³ mediately fixed to the frame and to the crank-arms said arms being rocked by the rise and fall of the sections, whereby the sections are independently pressed against the lumber, substantially as described.

17. The combination with the sections C² C³ having crank-arms connected therewith and the lifting-screws g g', of the internal connection F², and suitable springs Q² Q³ mediately fixed to the frame and to the crank-arms said arms being rocked by the rise and fall of the sections, whereby the sections are independently pressed against the lumber,

20 substantially as described.

18. The combination with the sections C² C³ having crank-arms connected therewith of the internal connection F², the shaft H², swinging frames K² K³, and the springs Q² Q³, 25 said springs being mediately fixed to the frame and to crank-arms moved by the rise or fall of the sections, substantially as described.

19. The combination with the adjusting-30 screws $k^3 k^4$ of the matchers of a planing-ma-

chine, of the rotary dial D⁴ and rotary pointer P⁵ and suitable connections between the screws and the dial and pointer, substantially as described

tially as described.

20. The combination with the adjusting- 35 screws $k^3 k^4$ of the matchers of a planing-machine, of the rotary dial D⁴ and rotary pointer P⁵, worms N³ N⁵, worm-gears O³ G⁴, and suitable connecting gearing, substantially as described.

21. The combination with the adjusting-screws $k^3 k^4$ of the matchers of a planing-machine, of the rotary dial D⁴ and rotary pointer P⁵, worms N³ N⁵, worm-gears O³ G⁴ and gears O³, O⁴ and O⁵, substantially as described.

22. The combination with the adjustingscrews $k^3 k^4$ of the matchers of a planing-machine, of the rotary dial and rotary pointer, the side shaft B^2 , and suitable connections, substantially as described.

23. The combination with the adjusting-screws $k^3 k^4$ of the matchers of a planing-machine, of the rotary dial D⁵ and rotary pointer P⁶, the spiral gears U³ V³, worm N⁴, worm-gears F⁴ T³, and the worm on the shaft k^4 , 55 substantially as described.

JAMES S. GRAHAM.

Witnesses:

GEO. WILSON, H. LOEWER.