
C. M. DAY.

(Application filed Oct. 6, 1898.)

(No Model.)

United States Patent Office.

CHARLES M. DAY, OF HOPEDALE, MASSACHUSETTS, ASSIGNOR TO THE DRAPER COMPANY, OF SAME PLACE AND PORTLAND, MAINE.

LOOM.

SPECIFICATION forming part of Letters Patent No. 618,789, dated January 31, 1899.

Application filed October 6, 1898. Serial No. 692,819. (No model.)

To all whom it may concern:

Be it known that I, CHARLES M. DAY, of Hopedale, county of Worcester, State of Massachusetts, have invented an Improvement in 5 Looms, of which the following description, in connection with the accompanying drawings, is a specification, like letters and numerals on the drawings representing like parts.

This invention relates more particularly to 10 that class of looms wherein a plurality of filling-carriers are automatically transferred one by one from a filling-feeder to the shuttle upon failure of the filling, such a loom being shown in United States Patents Nos. 529,940 and 15 529,942, dated November 27, 1894; and this invention has for its object the simplification and improvement of means for detecting the improper positioning of the shuttle in the shuttle-box and upon such detection prevent-20 ing the transfer of filling.

some respects to my present invention forms the subject-matter of United States Patent No. 568,455, dated September 29, 1896, to

25 which reference may be had.

Figure 1 is a partial end elevation of a loom with my invention applied thereto, the outer or right-hand end of the filling-feeder being omitted. Fig. 2 is a sectional view of the 30 loom, taken inside the filling-feeder mechanism, the lay being shown as in its forward position; and Figs. 3 and 4 are details to be referred to.

The loom-frame A, breast-beam A⁴⁰, the lay 35 A^3 , having the bottom of its shuttle-box S^{10} , Fig. 1, cut away below the self-threading shuttle S, the filling-feeder comprising connected plates suitably shaped to receive the ends of the filling-carriers b, Fig. 1, and mounted to 40 rotate on the stud a^6 , the stud f, the transferrer f', mounted thereon and having the forked depending end f^3 and a projection 21, the arm f^6 , provided with the tip-supporting device f^8 , and the shaft d', adapted to be ro-45 tated by the movement of the weft-fork in the absence of the filling, are and may be all as represented in said Patent No. 529,942.

An arm d^2 is secured to the rock-shaft d'and is connected to one end of a spring d^3 , 50 its other end being attached to the loom-frame,

and a link d^4 is jointed to the arm d^2 , the upper end of the link having a longitudinal slot d^{5} entered by a pin or stud c^{\times} on one of the arms c' of a hub or sleeve c, mounted rotatably on the stud f and having a second up- 55 turned arm c^2 . To this arm one end of an adjustable link e is pivotally connected, the other end of the link being jointed at e' to a short upturned arm k' of a hub K, mounted on the shaft or stud a^6 , projecting from the 60 stand a^7 , which supports the filling-feeder, as shown in Fig. 2.

A depending arm k^2 , secured to or forming a part of the hub k, is bent laterally at its lower end k^3 and forms the shuttle feeler or 65

detector.

By mounting the feeler or detector on the center of rotation of the filling-feeder the parts are brought into better working position and fewer and simpler parts can be em- 70 Another form of shuttle-detector similar in | ployed, it being understood that the end k^3 of the detector is turned toward the lay to engage the shuttle if the latter is improperly

positioned in the shuttle-box.

As in Patent No. 568,455 a rocker-stud m, 75 Fig. 4, having a disk-like head m', is mounted on the end f^3 of the transferrer, a spring s normally tending to turn the stud in the direction of the arrow 10, Fig. 1, the stud mhaving an arm m^2 , with an ear m^3 on one side 80 and a projection m^4 on the other side, while a notched dog m^{\times} , adjustably held on the arm m^2 , is adapted to be engaged by a bunter C^2 on the lay when a filling-carrier is to be transferred to the shuttle.

A third outwardly-extended and downturned arm c^3 on the hub c has attached to its extremity a downturned finger n which extends down over the lug m^4 on the arm m^2 , (see Fig. 1) and at times controls the latter. 90

When the loom is running properly, the $dog m^{\times}$ is out of the path of the bunter C^2 , and the rock-shaft d' holds the link d^4 down, and the arm c^3 is thereby elevated, with the finger n toward the front of the loom to there- 95 by act on the lug m^4 and maintain the dog m^{\times} in inoperative position, the finger n thus forming a detent for the dog. When the filling fails, however, the rock-shaft d' will be turned, elevating link d^4 and permitting the 100 hub c and its arms to turn on the stud f, so that the spring s immediately turns the stud m to throw the dog m^{\times} into position to be engaged by the bunter C^2 when the lay beats up. The movement of the arm m^2 by its spring causes the lug m^4 to move the finger n inward, depressing the arm c^3 and rocking the hub c to operate through the link e and move the shuttle feeler or detector k^2 across the inner end of the shuttle-box, so that if the shuttle is properly positioned the bunter will engage the dog m^{\times} and operate the transferrer f'.

Should the shuttle be improperly positioned, it will meet the end k^3 of the feeler as the lay beats up and will swing it on its fulcrum, moving the arm k' in the opposite direction, and through link e and arm c^2 the hub c will be turned to swing the arm c^3 outwardly, thereby causing the finger n to engage the lug m^4 and rock the arm m^2 oppositely to the arrow 10, Fig. 1, depressing the dog m^{\times} out of the path of the bunter.

Inasmuch as the transferrer is only operated when the dog is engaged by the bunter the transferrer will not be operated to transfer a filling-carrier to the shuttle when the latter is improperly positioned.

The slot d^5 in the link d^4 permits the described rocking movement of the hub c when the link is elevated and the shuttle is improperly positioned.

Having described my invention, what I claim, and desire to secure by Letters Patent, is—

1. In a loom, the lay having a shuttle-box; a rotatable filling-feeder; a shuttle-feeler fulcrumed on the axis of rotation of the filling-feeder, and means to move the feeler to detect.

improper positioning of the shuttle in the 40 shuttle-box.

- 2. In a loom, the lay; a rotatable filling-feeder; filling-transferring mechanism; a shuttle-feeler fulcrumed above the lay, in alinement with the axis of rotation of the 45 filling-feeder, and connections between the said feeler and the filling-transferring mechanism.
- 3. In a loom, the lay having a slotted shuttle-box; a rotatable filling-feeder; a trans- 50 ferrer to transfer filling-carriers therefrom singly to the shuttle; means to operate the transferrer upon failure of the filling; a shuttle-feeler fulcrumed above the lay in alinement with the axis of rotation of the filling- 55 feeder; and connections between said feeler and the transferrer-operating means, to prevent operation of said means when the shuttle to be supplied with filling is not in proper position in the shuttle-box.

4. In a loom, the lay having a shuttle-box; a rotatable filling-feeder; filling-transferring mechanism operated by or through failure of the filling; a shuttle-feeler fulcrumed above the lay on the axis of rotation of the filling-65 feeder; and connections between said feeler and the filling-transferring mechanism, to prevent operation of the latter when the shuttle to be supplied with filling is not in proper position in the shuttle-box.

In testimony whereof I have signed my name to this specification in the presence of two subscribing witnesses.

CHARLES M. DAY.

Witnesses:

GEO. OTIS DRAPER, T. E. CUNNINGHAM.