(Application filed Sept. 13, 1894.) 19 Sheets—Sheet 1. Benjamin blandigen (Application filed Sept. 13, 1894.) Attest. Inventor. Benjamin blemdigen Patented Aug. 16, 1898. ## B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 4. Attest. Hest. Hispatrick Inventor. Blujamin blandigen (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 5. Attest Inventor. Benjamin bl'anduzen (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 6. Attest Smith Stephentrick Inventor. Benjamin blandym Patented Aug. 16, 1898. ## B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.). 19 Sheets—Sheet 7. Attest. Inventor. Benjamin blandegen (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets-Sheet 8. Attest Inventor. Benjamin & Vandeyen Patented Aug. 16, 1898. ## B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets-Sheet 9. Attest. Inventor. Benjamin b Vandeyen Patented Aug. 16, 1898. # B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets-Sheet 10. Attest. Setspatrick Inventor. Benjamin blandegen (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets-Sheet II. (Application filed Sept. 13, 1894.) (No Model.) Fig. 26 Eig. 24. 19 Sheets—Sheet 12. Attest. Somith Statistics Benjamin blandigen Patented Aug. 16, 1898. ## B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 13. Attest. Benjamin blandyen (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 14. Attest. K. Smith. K. Stitzpatrick Benjammblandigen (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 15. Attest. Santa Laterian Benjamin blandyen Patented Aug. 16, 1898. # B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 16. Attest. Stypatrick Benjamin Wandagen Patented Aug. 16, 1898. ## B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets-Sheet 17. Attest. Benjamin blandyen (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 18. Attest. Benjamin & Vandyen Patented Aug. 16, 1898. # B. C. VANDUZEN. TRACTION ENGINE. (Application filed Sept. 13, 1894.) (No Model.) 19 Sheets—Sheet 19. Attest, Sinte Ketitapatrick Benjamin blandyen # United States Patent Office. BENJAMIN C. VANDUZEN, OF WINTON PLACE, OHIO, ASSIGNOR TO THE VANDUZEN GAS AND GASOLINE ENGINE COMPANY, OF CINCINNATI, OHIO. #### TRACTION-ENGINE. SPECIFICATION forming part of Letters Patent No. 609,253, dated August 16, 1898. Application filed September 13, 1894. Serial No. 522,898. (No model.) To all whom it may concern: Be it known that I, BENJAMIN C. VANDU-ZEN, a citizen of the United States, and a resident of the town of Winton Place, in the 5 county of Hamilton and State of Ohio, have invented certain new and useful Improvements in Traction-Engines, of which the following is a specification. Certain features of my invention have to to do with new and valuable mechanism for burning the gases derived from gasolene, benzin, kerosene, or other coal oils, and thereby operating an engine. Certain other features of my invention have to do with the construction of a new engine, and certain other features of my invention relate to mechanism whereby the said engine is a valuable traction-motor. The several features of my invention and the various advantages resulting from their use, conjointly or otherwise, will be apparent from the following description and claims: In the accompanying drawings, making a part of this application, and in which simi-25 lar letters of reference indicate corresponding parts, Figure 1, Sheet 1, is a plan of a machine illustrating my invention. Fig. 2, Sheet 2, is an elevation of the exhaust side of said machine—that is to say, the side where 30 the burned products of combustion are exhausted. Fig. 3, Sheet 3, is an elevation of the receiving side of the said machinenamely, that side which is opposite to the one shown in Fig. 2. Fig. 4, Sheet 4, is an eleva-35 tion of the rear end of the machine. Fig. 5, Sheet 5, is an elevation of the front end of the machine. Fig. 6, Sheet 6, is a plan view of the mechanism of the brake and mechanism for starting and stopping. Fig. 7, Sheet 40 6, is a side elevation of the same. Fig. 8, Sheet 7, is a plan view showing details of the claw-clutch arrangement. Fig. 9, Sheet 7, is an elevation of the said clutch arrangement. Fig. 10, Sheet 7, is an elevation of the 45 end of the clutch and showing the reverselever. Fig. 11, Sheet 7, represents an elevation of that side of the central portion of the clutch which faces toward the left in Fig. 9 and taken in the plane of the dotted line 50 11 11 of Fig. 9. The figures of Sheet 8 show details of the friction-clutch, to wit: Fig. 12 is a sectional plan. Fig. 13 is an elevation showing gear-wheel. Fig. 14 is a plan of the expander. Fig. 15 is an elevation of the friction-shell, expander, and lever, all combined, 55 Fig. 16 is a sectional plan. Fig. 17 is an elevation of the forked connection for shifting and expanding the expander. Fig. 18 of Sheet 9 is a plan of the driving-gear and showing the differential clutch-gears in sec- 60 tion and device for locking the shaft connections of driving-wheels. The figures of Sheet 10 show brackets for carrying the clutchshaft, to wit: Fig. 19 is an elevation of the single bracket. Fig. 20 is an elevation of 65 the double bracket. The figures of Sheet 11 show reversing-gear, to wit: Fig. 21 is a plan of the same. Fig. 22 is a side elevation thereof. Fig. 23 is an end elevation thereof. The figures of Sheet 12 respectively repre- 70 sent combination of engine, clamp, steeringdrum, and bracket and the combination of the engine, clamp, steering-drum, idlers, and bracket, to wit: Fig. 24 is a plan of the idler, brackets, and clamps. Fig. 25 is an elevation 75 of the same. Fig. 25^a is a vertical transverse section in the plane of the dotted line 28^a of Fig. 25. Fig. 26 is a plan view below the line 29 29 of Fig. 25. Fig. 27 is a plan of the steering-drum brackets. Fig. 28 is a side 86 elevation of the steering-drum brackets, in combination with securing-clamp, reaches, and steering-drum, looking from rear of engine. Fig. 29 is an end elevation of the steering-drum bracket on the receiving side of the 85 engine. Fig. 30 is an end elevation of the steering-drum bracket on the exhaust side of the engine. The figures of Sheet 13 represent views of the differential sleeve arranged with a frictional lock and lock-box, to wit: Fig. 31 90 represents a longitudinal horizontal section thereof. Fig. 32 represents a cross-section of the lock-box and lock, taken in the plane of the dotted line 44 44 of Fig. 31. Fig. 33 is an end view of the pinion-gear shown in section at 95 the left hand of Fig. 31. Fig. 34 is a plan view of this differential sleeve. Fig. 35, Sheet 14, is a plan view showing the steering gear, drum, and water-piping. This plan is taken from beneath the machine, looking upward. 100 Fig. 36, Sheet 15, represents a side elevation of the machine with certain parts of the mechanism removed in order to show the water-pipes and the gasolene-pipe connections 5 connecting the carbureter and lighter-valve, the water-tank, overflow-tank, and engine also being shown, together with the steeringchain and connections of the gear. The figures of Sheet 16 illustrate the spring for the 10 steering-chain and cup and connections to the axle-casing, viz: Fig. 37 is a plan view of the same. Fig. 38 is a view of the parts shown in Fig. 37 to the left of the dotted line 57 of Fig. 37, the spectator standing to the right of 15 the plane of said dotted line and looking toward the left. Fig. 39 is a vertical section of the mechanism shown in Fig. 37. Fig. 40 is a view of that end of the said mechanism which is at the left end in Figs. 37 and 39. 20 The figures of Sheet 17 illustrate the device for locking the screw for operating the reversing-gear. Of these, Fig. 41 is a plan view of the said mechanism. Fig. 42 is a side view showing the lever and lock-box in section, the 25 rest in elevation. Sheet 18 shows views in detail of the buffer-block or fender for preventing any obstructions on the road from coming into contact with the working gear of the engine and water-pipes of the engine and 30 also enables the engine to push out of its way any movable obstruction, also showing the brackets for sustaining the gasolene-tank and its location. Fig. 43 is a plan view showing the buffer-block for protecting the water-35 pipes and for other purposes. Fig. 44 is an elevation of the brackets for carrying the gasolene-tank. Fig. 45 is a front elevation of the buffer-block and of the water-pipes. Sheet 19, Fig. 46, is an elevation of the worm-wheel 40 operating the steering-drum. The engine and its connections are supported upon a horizontal frame or platform. This platform may be of any suitable material. I have, however, invented a novel 45 description of platform which serves the purpose not only of a support for the engine, but also performs the office of a conduit for the water used in connection with the engine, thereby, among other advantages, enabling 50 the water to be cooled as desired. In carrying into effect this feature of my invention I construct the platform or frame A as follows: The side pieces A² A² are joined to the rear end piece A³. (See Figs. 2, 3, and 35.) 55 Each of these pieces is piping and the three as joined constitute a continuous conduit. The front end of the right-hand pipe A² is connected to a smaller pipe A^4 , which connects at A⁵ with the lower end or outlet L⁶ 60 (see Fig. 3) of a centrifugal pump hereinafter described. The front end of the left-hand pipe A^2 is connected to a smaller pipe A^6 , which connects at A⁷ to an upward extension A⁸ piping A⁹, which latter connects with the 65 water-jacketing of the cylinder. (See Fig. 3.) The various sections
or portions of the pipe by elbows and pipe-couplings, in the usual manner. The machine is supported upon a rear axle 70 B and a forward axle B². One of the axles, as B, is rigidly connected to the frame A, preferably as follows: A sleeve B³ is cast or otherwise formed around the piping A², a sleeve for each pipe A². These sleeves are 75 rigidly fixed to a saddle or axle cap B4, preferably by being cast in one with the latter. This saddle rests upon the axle B and is prevented from slipping off of the same by a front flange B⁵ and by bolts B⁶, connected at 80 the lower ends to eyebolts B⁷, the latter extending under the axle and bolted directly to the front flange. This saddle B⁴ carries the differential shaft I and the journal-boxes B⁸ in which the journals of the differential shaft 85 revolve. (See Figs. 1, 3, and 23.) The sleeves B³ (see Fig. 4) carry the journal boxes or bearings B⁹, which support the journals of the counter-shaft for operating the clutchgear, which latter in turn causes the machine 90 to travel at a high or low rate of speed. To the saddle B4 there is also connected a platform C. (See Fig. 3.) This platform usually consists of a wooden flooring supported upon three flat bars B¹², bolted to the flange B⁵, and 95 further secured in position by means of the bolt B¹⁰, bolted to the saddle at points B¹³. The rear end of the platform receives additional support by the oblique brace B¹⁴, whose lower end is bolted to the platform-bar 100 B¹², as shown, (see Fig. 3,) and whose upper end is bolted to the journal-box B⁸. A like brace B¹⁴ is present at the other side of the platform and is similarly connected. (See Fig. 2.) The bars B¹² are rearwardly con- 105 nected together and braced in position by means of the transverse braces B¹⁶, bolted thereto. At each side of the platform a guard-rail B¹⁵ is present, whose lower end is connected 110 to the rear end of the flat bar B¹² and whose forward end is connected to the upper adjacent brace B^{14} . (See Figs. 1, 2, and 3.) To the flange B⁵ is also connected a drawbar D. The rear or free end of the draw-bar 115 is held in position by a bracket D², fastened to the rearward horizontal transverse brace or bar B¹⁶ aforementioned. (See Figs. 1, 2, and 3.) Means for permitting the draw-bar to elastically yield within desired limits are pro- 120 vided and preferably consist, as shown, of a piece of pipe D³, located in front of the flange B⁵ and inclosing a spring D⁴, of rubber, resting against the front edge of the flange B⁵. The draw-bar D passes through this rubber 125 and at its front end is provided with an enlargement, in the present instance consisting of a washer D⁵ and a nut D⁶, the latter screwed onto the draw-bar and abutting against the front end of the spring. The rear end of the 130 draw-bar is provided with an eye or any other suitable connection D⁷ for enabling connection to be made therewith for traction purconstituting the frame are suitably united, as poses. Each rear axle is supported upon wheels B¹⁷, located on the respective end portions of the said axle. The width of the tread of these wheels will be according to the nature of the 5 ground over which the vehicle works. The front axle is provided, as shown, with one or two wheels B¹⁸ B¹⁸. In case one wheel were used it would be centrally located. Two wheels are preferable, located, respectively, at the outer end portions of the said axle, substantially as shown in Fig. 35. The wheels are kept in place on their respective axles by any of the well-known means, in the present instance by the shoulders or collars B¹⁹ on the 15 axle at the end of the hubs and collars B²⁰ on the outer or front end of the hubs. The collars B²⁰ are held in place by bolts B²¹, passing through the adjacent extremity of the axle. (See Fig. 35.) A cross head-block B²³ (see Figs. 5 and 35) is suitably secured to the frame A—namely, to the pipes A². In the present illustrative instance means for connecting this cross head-block B²³ to the pipes consists of the sleeve B²⁴, respectively shrunk onto their adjacent pieces of pipe A². These sleeves are rigidly connected to the cross head-block. A saddle B²⁵ rests upon the axle, and a rear flange B²⁶ of this saddle rests against the rear side of the axle B². Bolts B⁶ and eyebolts B⁷, in connection with the flange B²⁶, embrace the axle (substantially as heretofore described in connection with the rear axle B) and hold the front saddle B²⁵ securely to the axle B². 35 Bolts B⁶ near the outer end of the axle B² instead of being united with eyebolts B⁷ are respectively screwed into the eyepieces B²⁷. These eyepieces are a preferred means for connecting the rear fork of the tongue to a vehicle. This tongue is seldom necessary, but can be used in cases where the machinery is disabled or for other desired purposes. The king-bolt B²⁸ passes down through the head-block B²³ and axle-saddle B²⁵ substan45 tially as shown. The head of the king-bolt prevents it from slipping down out of place. On the lower end of the king-bolt is located the front eye portion of the reach B²⁹, (see Fig. 35,) and on the king-bolt immediately below this eye portion of the reach is screwed a collared nut B³⁰, which latter retains the king-bolt and the front of the reach in position. The rear end of the reach is pivotally connected by the bolt B³¹ to the clamp-brack55 ets B³², secured to the right and left portions A² A² of the piping. (See Figs. 3, 5, 35, and 36.) It will be observed that the clamp-bracket is preferably made in two pieces B³⁵ B³⁶, the clamp fitting against the pipe A² and secured thereto by means of bolts B³⁷ to the lower portion of the engine-bed, which latter rests upon the piping, substantially as shown, and forms the opposite jaw or complementary piece of the clamp just mentioned. (See Figs. 65 3, 25, 28, and 36.) The means for readily and successfully turning the front axle B² on its king-bolt and thus controlling the direction in which the machine shall travel are as follows: To each of the lugs E (present on the saddle B25) of 70 the front axle is connected a bolt E². An enlargement or head E³ at the rear end of the bolt E² lies within the end E⁴ of the cylinder E⁵. (See Figs. 3, 35, 37, 38, 39, and 40.) Within the cylinder is located a spring E6, and draw-75 bolt E⁷ passes through said spring and at its forward end is provided with a head E8, which rests against the end of said spring E⁶. The bolt passes through a cap E⁹, screwed onto the rear end of the cylinder E⁵. The rear end of 80 the bolt E7 is provided with an eye or hook E¹⁰ for engaging a connection, preferably a chain, as E¹². Traction upon the chain E¹² compresses the spring E6 between the drawbolt head E⁸ and the cap E⁹ and furnishes a 85 certain amount of an elastic yielding between the axle and the mechanism for drawing chain, thereby conducing toward the ease of operation and preventing undue strain and breakage of the parts. For enabling the bolt E² to properly oscillate in response to a change of its axial direction as its end of the axle is moved toward the rear end of the machine or away therefrom a semicircular button or bearing-piece 95 E¹³ is provided, whose curved peripheral surface bears partly against the corresponding curved bearings in the lug E, substantially as shown in Fig. 39. That opening E²⁸ in the lug through which the bolt passes is also rearwardly enlarged for the same purpose. Each chain E¹² is carried backward against the idler-pulley E¹⁴, pivoted on axles E¹⁵. (See Fig. 3 and figures on Sheet 12 from 24 to 28, inclusive.) The chain is then carried back- 105 ward and wound upon a drum E¹⁶, journaled in a clamp-bracket E¹⁷, secured to the piping A². This bracket is further braced by means of tie-rods E¹⁸ E¹⁸, connected or braced to the flange B⁵ of the rear saddle B⁴. (See Figs. 3, 110 35, and 36.) These chains E¹² are respectively wound in opposite directions upon the drum E¹⁶. Mechanism for rotating this drum E¹⁶ is substantially as follows, (see Figs. 35 and 46:) On a projection E¹⁹ of the shaft is 115 fixed a worm-wheel E²⁰, which meshes into a worm E²¹, fixed upon a shaft E²³, whose lower end is journaled in the bearings E24 E24, connected to the bracket E17, and whose front end is journaled in the bearing E25, supported 120 by arm E²⁶, connected to the flange B³⁸ of the saddle B4. The shaft E23 is rotated by the hand-wheel E27, located over the platform C, and consequently within the reach of the operator standing upon said platform. I will now proceed to describe the frictiongear whereby the machine is started and stopped. (See more particularly Sheet 8, Figs. 12 to 17, inclusive.) F indicates the crank-shaft of the engine. 130 On this crank-shaft is an expander F², secured to the shaft by a key F²³. A friction-shell F³ surrounds the expander and also the shaft F. This friction-shell is rigidly con- nected to the driving-gear F⁴, and both it and said gear rotate loosely on the crankshaft F. Means for operating the expander are sub-5 stantially as follows: On the crank-shaft F is a shifter-sleeve F⁵, which is secured to and operates the expander-key F⁶ and the lever \mathbf{F}^7 as follows: An inclined or beveled side of the expander-key reciprocates with the key 10 under the point of the expander-lever, which point in the illustrative instance is an adjustable one, consisting of a set-screw F¹⁰, screwed through the free end of the expander-lever F⁷ and resting against the bevel of the ex-15 pander-key F⁶. By means of this set-screw \mathbf{F}^{10} the throw of the lever may be increased or diminished. The expander-lever is pivoted at F⁸ to the expander F². In the vicinity of the lever the expander is cut in two, 20 forming a slit or opening F⁹, extending from the periphery of the crank-shaft, and as the free end of the lever is moved out from the crank-shaft by means of the expander-key a portion of the end of the lever in the vicin-25 ity of the pivot strikes against the opposing
free end of the expander on the opposite side of the slit therein, and an opposite portion of the lever strikes against the adjacent side of the slit and forces or springs the two portions 30 of the expander at that point apart, thereby increasing its diameter and causing it to tightly engage the sheet F³. The degree of friction between the expander F² and its surrounding shell F³ will 35 depend upon the throw of the lever F7, which throw, as was before seen, is determined by the adjustment of the set-screw F^{10} . In conjunction with the pivotal connection F⁸ is a plate F¹⁸, secured to the hub of the ex-40 pander by set-screws F¹⁹, the function of the plate being to afford a better pivotal support and connection for the expander-lever and also facilitate the removal of the expanderlever. It will be understood that the ex-45 pander-key slides in the groove F²⁵ in the crank-shaft F. Means for securing the expander-key to the shifter-sleeve F⁵ consist of the set-screws F¹⁷. A collar F²⁰ on the end of the shaft, secured 50 thereto in place by set-screw F²¹, serves to retain the shifter-sleeve in position and from slipping off of the crank-shaft. The shiftersleeve is operated by a forked lever F¹², pivotally connected to the bracket F¹⁵ by means 55 of a pivot bolt or spindle F¹⁴. The forks of the lever engage the shifter-sleeve between the abutments F¹³ on the sleeve. This lever is provided with a suitable handle, as F¹⁶. The bracket F¹⁵ is pivoted to the side of the 60 base of the engine at F²⁶. (See Figs. 12 and 3.) As the forked lever F¹² is moved toward quently when the crank-shaft F is in motion 65 and the expander has thus engaged the friction-shell F³ the driving-gear F⁴, connected to the friction-shell, having likewise been set | below the bracket is secured in position by a the expander the latter will engage the fric- tion-shell and the driving-gear F⁴. Conse- in motion, will operate the entire machine, as hereinafter set forth. When the shifter-lever F¹⁶ is moved away 7° from the expander, the latter will be diminished in diameter and will no longer engage the shell F3, and consequently the crank-shaft will no longer continue to operate the machine. One object of having such a mode 75 and means of starting the machine is that no matter how rapidly the crank-shaft is rotated I am enabled to start the machine gradually and without risk of any breakage of the parts, the connection between the expander 80 F² and the shell F³ allowing of a certain amount of slippage until the machine has acquired the desired momentum and rate of speed. This mode of frictional connection between the crank-shaft and the driving-gear 85 is also of great advantage in case the machine meets with an unexpected obstacle which suddenly stops its movements or suddenly retards its speed, in which event the operating parts of the machine are prevented 90 from being broken by reason of the fact that the expander will slip within the clutch-shell F³. It will be understood that the expander is lubricated at the point of its contact with the friction-shell. I will now describe the reversing-gear for changing the direction in which the machine is to move. (See more particularly Sheets 11 and 17 for details of the same.) Close to the driving-wheel F4 aforemen- 100 tioned are the two pinions G and G2, both of which pinions mesh with the spur-gear G³, fixed concentrically on the clutch-gear shaft G4, that carries the fast and slow speed gear. The frame for supporting the pinions G and 105 G² is pivoted on the clutch-gear shaft G⁴ and preferably consists of two parallel plates G⁵ G⁵, fastened together at proper points by connecting-bolts G⁷, which hold the plates in position. The axles G⁶ G⁶ of the pinions G and 110 G² are respectively journaled in the said plates. The oscillatory movement of the plate G⁵ is effected by the screws G⁸ working through and engaging a nut G9, whose extensions on either 119 side are respectively connected to the plate G⁵. Each extension passes through and beyond its adjacent plate G⁵ and there receives a nut G¹² for the better securing the nut G⁹ in position. The free end of the screw G⁸ is pro- 126 vided with a suitable crank or hand wheel G¹⁰. This screw G⁸ not only serves to oscillate the frame G⁵ G⁵, but also to hold it in place at the desired point. Owing to the rapid motion of the machine and the jarring consequent upon 12 its movement over rough ground I have found that the screw G⁸ will be rotated by the jarring of the machine. I have therefore provided a device for preventing such rotation except when intentionally performed by hu- 13 man agency, which device is substantially as follows: The screw G⁸ extends down to the bracket G¹³, and the lower end of the screw nut G¹⁵. Directly above the bracket G¹³ the screw is provided with the collar G¹⁴, fixed thereto. On this collar is a notch G¹⁹ for the reception of the latch G¹⁸ of the locking-lever 5 G¹⁶, which lever is provided with a tail G²⁰. This lever G¹⁶ oscillates on a pivot G¹⁷, secured in a portion of the bracket G¹³, and the bracket is further provided with a pointed detent G²³, having a double incline. Reciprocating through the upper portion of the lever G¹⁶ is a spring set-bolt G²¹, whose lower end is pointed and likewise provided with a double incline, substantially as shown in Fig. 42. The upper end of this set-bolt is provided with the nut G²⁵ or equivalent projection for preventing the bolt from slipping down through the lever G¹⁶ farther than nec- essary. The set-bolt G²¹ has for the upper portion 20 of it a diminished shank G²⁴, embraced by the spring G²⁷, contained in the chamber G²⁶ of the lever G¹⁶, the spring at the top abutting against the upper end of the said chamber and at its lower end pressing against the en-25 larged portion of the said bolt, thereby continually and elastically pressing said bolt down and out. The operation of this part of my device is substantially as follows: When it is desired to cause pinion G to engage the 30 driving-gear F⁴, the screw G⁸ is rotated so as to raise the adjacent end of the frame G⁵, thereby throwing the pinion G into engagement with the driving-gear F4 and causing the machine to go in one direction. When it is 35 desired to cause the machine to go in the opposite direction, the screw G⁸ is rotated in the reverse direction, thereby lowering the adjacent end of the frame G5 and bringing the pinion G² into engagement with the driv-40 ing-gear F⁴, thereby causing the machine to travel in the opposite direction. Rotating the screw so as to bring the frame G⁵ to its middle point of oscillation (see Fig. 22) results in throwing both of the pinions G and G2 out 45 of engagement with the driving-gear F4 and causing the machine to be at rest, as shown. After the frame G⁵ has been set at the desired point by means of the screw G8, in order that the screw G⁸ may retain that position, 50 the operator causes the latch G18 of the lever G¹⁶ to enter the notch G¹⁹ and the collar G¹⁴ of the screw. This he does by striking the upper part of the lever with the toe of his foot, and the set-bolt will then engage the 55 left-hand incline of the point G²³, as shown in Fig. 61. The screw is now secured, locked, and prevented from rotating. When the operator desires to again rotate the screw, he strikes the tail G²⁰ of the lever G¹⁶ with the 60 toe of his boot, driving the tail toward the nut G15, thereby throwing the latch G18 out of engagement with the notch G19 of the collar G14 and causing the left-hand incline of the said bolt G21 to engage the right-hand incline 65 of the point G²³ of the bracket. The locking- lever will now be held permanently out of engagement with the screw G8, and the latter may be rotated at will. As often as desired the locking-lever can be again operated to engage the screw and lock it, as aforemen- 70 tioned. It may be here remarked that the opening through the bracket G¹³, occupied in part by the lower end of the screw, is enlarged from the center in both directions to allow for the 75 lateral vibration of the frame, consisting of the plates G⁵ G⁵, bound together, as aforementioned. I will now describe the clutch-gear shaft and the construction whereby I am enabled 80 to impart to the machine a fast or slow speed at will. (For the details of this construction see Sheets 7 and 9.) Upon the cluch-gear shaft G4 is mounted the fast-speed gear H and the slow-speed 85 gear H2, both of which gears are mounted loosely on the said shaft. The fast gear carries a complementary clutch-piece H5, and the slow-speed gear carries the complementary clutch-piece H⁶. Within each of these 90 complementary clutch portions is a collar H⁸. Each of these collars is for the purpose of keeping its respective gear in position on the shaft when the central piece is withdrawn therefrom. The central clutch H³ is pro- 95 vided at each side with the complementary portion for engagement with the complementary clutch of the adjacent gear. This clutch H³ is keyed on the shaft G⁴ by a key or feather H⁴ and reciprocates along said shaft 100 over said feather. Means for reciprocating the clutch H³ consist of the levers H9, each provided with the pin H¹⁰, secured in position on its lever by a nut H¹², the pins entering a groove H⁷ in the 105 clutch H3. The levers H9 are fixed to the shaft H¹³, journaled in bearings H¹⁴ H¹⁵, the shaft being held in the journals by collars H16, fixed on the shaft near the vicinity of said journalbearings. For turning the shaft H¹³, I pro- 110 vide a lever H¹⁷, fixed to shaft H¹³, pivoted at H²⁵ to the bracket, H¹⁴ in turn connected to the flange of the saddle B4. Means for setting the lever and holding it in position consist of the spring-lever H18, pivoted to the 115 main lever H¹⁷ and elastically held out by spring H¹⁹ in the vicinity of the handle of the main lever, said lever H¹⁸ in turn connected to the latch-bolt H21, reciprocating in guides H²³ and engaging at will any one of the three
120 notches in the arc H²⁴. Moving and setting the said lever H¹⁷ in one direction causes the clutch H3 to engage one of the gears H2 or H, and moving the lever in the opposite direction the full length of its stroke causes the 125 clutch H³ to engage the other of said gear, thus changing the speed of the machine from fast to slow or from slow to fast, according as the lever is set. When the lever is set in the middle arc, the central clutch is out of en- 130 gagement with either of the gears HH2 and the machine is at a standstill. I will now describe the mechanism which I have invented for insuring ease in the opera- tion of the various parts of the driving apparatus while the machine is in a curve and for preventing breakage of the said parts. (For details of the said construction see more par-5 ticularly Sheets 9 and 10 of the drawings.) This construction is as follows: I is a differential shaft journaled in the left-hand bearings B⁸ B⁸, aforementioned. The right-hand end of said shaft is journaled in the sleeve I2, 10 supported at its right-hand end in the righthand bearing B⁸ aforementioned and supported at its left-hand end by its junction with the shaft I, as shown. Each of the driving-wheels B¹⁷ carries an internal gear-wheel 15 B D concentric therewith and fastened to the said wheel by bolts or stirrups D¹², substantially as shown in Fig. 2. At the right-hand end of Fig. 18 is seen a pinion I⁸, keyed on the sleeve I². This pin-20 ion engages the adjacent interior gear-wheel B D of wheel B¹⁷. On the left-hand end of the differential shaft I is a pinion I²⁰, fixed thereto and engaging an interior gear B D in the adjacent wheel B¹⁷. In the chamber I⁴ of 25 the sleeve I² is located an eye I³, provided with the bolt or screw extensions I5, which pass through a cap I⁷, secured to the sleeve I² over the chamber I⁴. On this bolt, above the cap, is screwed a nut I⁶. By tightening this nut 30 I⁶ the shaft I is forcibly pressed against one side of the sleeve and greater frictional contact there created between the sleeve and shaft, thereby causing the shaft and sleeve to move as one, but permitting the one to slip 35 against the other where the resistance to the turning of either one or the other is so great as to endanger the breakage of the operating parts. This lock is put into operation for the purpose of guiding the machine out of a hole, 40 as when tightened it enables both wheels B¹⁷ to be positively driven at the same rate of speed, thereby preventing the machine when one of the wheels is in a hole from standing still and the driving-wheels slipping, as would 45 be the case where the one wheel B¹⁷ would be allowed to turn more than the other, which latter condition is the case when the lock is not in use, as will be more fully hereinafter understood. On the left-hand end of the sleeve I² is a beveled spur-wheel I⁹, and farther along on the said shaft is fixed a second beveled spurgear I¹⁶, keyed to the shaft I. Between these two beveled spur-wheels are the beveled pin-55 ions I¹² I¹², respectively located at opposite sides of the shaft and respectively rotating each on its own axle I¹³, said axle being secured to the spur-gear I¹⁰, rotating loosely on shaft I by means of the boss I¹⁴, cast to the 60 spur and embracing the axle, and a set-nut I¹⁵, screwed through the boss against the axle I¹³. The lower end of each axle is kept in place by being stepped or laid into the hub I²¹ of the spur-wheel I¹⁰. At the left of the wheel 65 I¹⁰ is the plate I¹⁷, whose peripheral rim is fixed to the outer portion of the spur-wheel I¹⁰ and whose hub portion is connected to the sleeve I¹⁸, rotating loosely on the shaft I and forming a hub upon which the spur-wheel I¹⁹ is concentrically keyed. It will be here ob- 70 served that the spur-wheel I¹⁹ meshes with the fast-speed gear Haforementioned. When the slow-speed gear H² is driven and becomes the operating-wheel, it rotates the spur-wheel I¹⁰, which in turn rotates the beveled pinions 75 I¹², in turn rotating the beveled spur I⁹, which latter rotates the sleeve I², and the said pinions I¹² also rotate the spur-wheel I¹⁶, which in turn rotates the shaft I. Thus both wheels B¹⁷ are positively rotated. When the ma- 80 chine is running in a curved direction, the operation of the beveled gear is such as to allow that wheel B¹⁷ which is at the inner side of the curve and which has a tendency to drag to substantially accommodate itself, and 85 thus prevents it from being forced to slip over the ground, and thereby detracting from the motive power of the machine. This creeping of the beveled gear whereby several teeth are taken up in the course of a revolution is 90 successfully accomplished by my invention. When the fast-speed wheel H is in operation, the slow-speed wheel H² is not positively driven, and the first-named wheel positively drives the spur-wheel I¹⁶, thereby positively 95 communicating motion to the spur-wheel I¹⁰, aforementioned, which communicates motion to the beveled gear as it did before, and the operation of the machine in its traveling around a curve is the same as it was before. Therefore whether the machine travels fast or slow these features of my invention enable it to successfully turn a curve without any slippage of the driving-wheels and consequent 105 loss of power. I will now describe the means for stopping the friction-shell when the expander is disengaged therefrom. (See Sheet 6, Figs. 6 and 7 thereon.) Usually when the expander has been in contact with the friction-shell F³ and 110 is thrown out of engagement therewith the shell F³ will continue to revolve. This continued rotation of the friction-shell would prevent the operator in charge of the machine from using the reverse-gear for the reason 115 that the wheel or friction-shell continues to revolve, and if the machine is suddenly reversed the gear-teeth are likely to be broken. J is a brake-band nearly surrounding the friction-shell F³. One end of the brake-band 120 is connected at J² to the bracket F¹⁵, and at its other end is connected at J⁶ to the crank-lever J⁴, pivoted at J⁵ in the supporting-bracket J³. The opposite end of this crank-lever is pivotally connected at J⁷ to the rod 125 J⁸, whose free end is connected to the crank foot-lever J¹⁰, pivotally fulcrumed at J¹² to the bracket J¹³, connected to the platform C, heretofore mentioned. For the purpose of enabling the brake-band 130 J to be loosened out of engagement with the friction-shell when the foot of the operator is withdrawn from the treadle J¹⁰, I provide a spring J¹⁶, embracing rod J⁸ and at one end abutting against the vertical flange B³⁴ on top of the saddle B⁴. The front end of the spring is held in engagement by the set-collar J¹⁴ on rod J⁸, of which collar J¹⁵ is the set-bolt, impinging against the rod J⁸, the spring being compressed between the abutting flange B³⁴ and the collar J¹⁴. When the expander has been thrown out of engagement with the friction-shell F³ and it is desired that the further rotation of the friction-shell shall be prevented, the operator promptly depresses treadle J¹⁰, thereby tightening the friction-band J on the friction-shell F³. Releasing the treadle J¹⁰ throws friction-band J out of 15 engagement with the friction-shell. Means for retarding the speed of the machine on level ground, when desired, and more particularly in going down a hill, is as follows: K is a brake-wheel keyed on the differ-20 ential shaft I. (See Figs. 6, 7, and 18.) Embracing the brake-wheel K is a brake-band K², formed in two pieces K³ K⁴, pivotally united at K⁵. The end of the portion K³ of the brake-band is fastened at K6 to the flange 25 B³⁴, aforementioned. The free end of the other portion K4 of the brake-band is pivotally connected at K7 to link K8, whose other end is pivotally connected at K9 to one end of the brake-lever K¹², pivotally fulcrumed 30 at K¹⁰. The other end of lever K¹² carries a nut K¹³, pivoted at K¹⁴ thereto. Through this nut passes a screw K¹⁵, the central portion of whose shank turns loosely in the vertical supporting-sleeve K16, in turn supported by 35 the bracket K¹⁸, secured to the bracket B⁸ of the journal-box, as aforementioned. The screw-shaft K¹⁵ is prevented from vertical displacement by means of the set-collars K¹⁷ K¹⁷, one directly above and the other im-40 mediately below the sleeve K¹⁶. The screwshaft K¹⁵ is operated by hand-wheel K¹⁹ or other suitable device. The rotation of the screw and its mode of operation are obvious. The rotation of the screw-shaft depresses the 45 adjacent end of lever K10, which in turn, through intermediate connections, tightens the brake-band on the brake-wheel and then applies the brake to the machine and decreases the speed of the latter or prevents its 50 speed from being accelerated in going downhill. Rotation of the screw in the other direction in the reverse manner disengages the brake-band from the brake-wheel. I will now describe the driving-pulley whereby motion is communicated from my engine to any engine temporarily connected thereto and which it is desired my engine shall operate. (See more particularly Sheets 1, 2, 4, and 5.) shaft F, constructed similarly to the expander F² on the crank-shaft heretofore described. This expander is operated by a shifting device in connection with a lever similar in construction to the shifting device F⁵ F¹³ and lever F¹² and expander-lever F⁷ with adjustable set F¹⁰, substantially as shown on Fig. 12 of the drawings, Sheet 8. Surrounding the expander is the friction-shell M², and this shell is similar to the shell F³, (shown in Fig. 70 12,) with the exception that the flange on the left-hand side of the friction-shell is not connected to any gear F⁴ and that the right-hand side of the friction-shell is bolted to a ring loose on shaft F for keeping it in place on the 75 expander. Inasmuch as such an annular plate is well known, further description of it is omitted. The belt M³ for engaging the pulley M⁶ and for
communicating motion from said belt to 80 any machine which it may be desired to be operated by my engine for convenience runs over an idler M4. This idler is also used for tightening the pulley M6, the axle M5 of the idler being reciprocally adjustable to and from 85 the belt. A pulley N, (see Fig. 2, Sheet 2,) fixed upon the crank-shaft F, operates the centrifugal pump L⁵ on the tank L, hereinbefore mentioned, by engaging a pulley L7 on the shaft L⁸ of said pump through the agency 90 of the belt N². A suitable cover for the operator while on the platform C is shown and consists in general of the uprights N⁸ N⁸, fixed at their lower ends to the saddle B4 and at their upper ends carrying the horizontal 95 cover N⁴, preferably also braced by the brace N⁵, secured to the upright N³ at its midlength, and by the additional brace N⁶ to the jacket. The gasolene tank or reservoir for supply- 100 ing the engine with gasolene is present and is indicated by the character O². This tank is suitably supported, preferably by the upright O³, whose lower end is fixed in the bracket O⁴ of the engine-frame. For economy of con- 105 struction the upright supports O⁸ are made of piping. A clamp O⁵ for clamping the said uprights O³ in place to the bracket O⁴ is present on each side and is bolted to its adjacent bracket by nuts O⁶. These nuts also perform 110 the additional function of holding the bolts O' in place and securing the brackets O4 and their clamps O⁵ tightly against their respective reaches by piping A², substantially as shown in Sheet 18, Figs. 43 and 44. On the 115 upper end of the column of the uprights O³ is a saddle O⁸, in which the tank O² rests. From one end of the bracket a band O⁹ extends up, over, and down around the gasolenetank O² and is bolted to the opposite end of 120 the bracket, thereby securing the tank O² firmly in position. An oblique brace O¹⁰ extends from said saddle-bracket O⁸ diagonally to the rear side of the tank and has its lower end there bolted to the tank L. For the purpose of protecting the elbowpiping A³ at the front end of the machine I provide a buffer P. (See Sheet 18, Figs. 43 and 45.) This buffer is made in a box shape, substantially as shown, to cover the piping A⁴ 130 and A⁶, and is secured at each end to the adjacent cap P², screwed on the end of the adjacent pipe A² to render the connection between the latter and A⁴ and A⁶ water-tight. At the center of the buffer is a concave shield P³, in which may be placed an auxiliary buffer, as a block of wood or any suitable material, for taking the impact of anything the machine 5 may push, and thus relieve the other parts of the buffer from the said impact. I will now continue the description of the passage of the water in performing its functions of cooling the cylinder and of itself being 10 cooled. There are connections between that chamber or space which is between the jacket and the cylinder on the one hand and the chambers in the cylinder-head on the other. The cylinder is provided with a suitable 15 valve, in turn surrounded by a suitable waterspace, the valves being secured to the cylinder-jacket. This water-space around the valve is connected to the water-jacket chamber around the jacket by a connecting-pas-20 sage. The tank being filled with water and the engine started in operation, the pump forces water through the pipes on opposite side of the frame and continuing pipe, and then flowing upward through further con-25 duits enters and fills the water space or chamber around the cylinder. The water then passing through the connecting-passage fills the chamber around the valve and next fills the chambers in the head of the cylinder, and 30 then flowing out through the overflow-pipe passes to the spraying device. The water in its first contact with the cylinder and the valve was cold and in turn has become heated. As it passes through the overflow-pipe it has 35 become slightly cooled and through the agency of the spraying-device its temperature is greatly lowered, so that it now enters the pump in a comparatively cool condition, from which point it is again pumped to the cylin-40 der, as aforementioned, and thus its temperature is reduced to the desired working point, and it enters the cylinder in as cool a condition as it did in the first instance. What I claim as new and of my invention, 45 and desire to secure by Letters Patent, is— 1. In a traction-engine, having chains for guiding the front axle, the drum E¹⁶ for operating the chains, supported in a bracket E¹⁷ partially embracing the reaches and being 50 connected to a superincumbent jaw, substantially as and for the purposes specified. 2. In a traction-engine, having chains for guiding the front axle, the drum E¹⁶ for operating the chains, supported in a bracket E¹⁷ 55 partially embracing the reaches, and being connected to a superincumbent jaw, and tierods E¹⁸ connecting the bracket E¹⁷ to the rear axle-saddle B4, substantially as and for the purposes specified. 60 3. In a traction-engine, having chains for guiding the front axle, the drum E¹⁶ for operating the chains, supported in a bracket E¹⁷ partially embracing the reaches, and being connected to a superincumbent jaw, provided 65 with worm-wheel E²⁰ and also carrying the journal-bearings E^{24} , E^{24} , worm E^{21} , on the shaft E²³, journaled in the bearings E²⁴ and l E²⁵, substantially as and for the purposes specified. 4. In a traction-engine, having chains for 70 guiding the front axle, the drum E¹⁶ for operating the chains, supported in a bracket E¹⁷ partially embracing the reaches, and being connected to a superincumbent jaw, and the bracket B³² clamped to the reaches, and car- 75 rying and pivotally holding one end of the oscillating reaches B²⁹, and front axle to which are attached the chains E¹², and the king-bolt holding the forward end of the oscillating reach, substantially as and for the purposes 80 specified. 5. In a traction-engine, the rear axle and the saddle B4 provided with the vertical flange B⁵ arranged to lie against one side of the axle, and the vertical bolts B⁶ and the eyebolts B⁷, 85 respectively embracing the other side of the axle and the bottom thereof, substantially as and for the purposes specified. 6. In a traction-engine, the rear axle provided with the saddle supporting and con- 90 nected to the journal-bearings B⁸, the saddle being provided with the downwardly-extending flange B5 to which are secured the bars B¹² of the platform, the bars being supported at rear by the diagonal brace B14 connected to 95 the platform at one end and to the journal B⁸ on the other, substantially as and for the pur- poses specified. 7. In a traction-engine, the rear axle provided with the saddle supporting and con- 100 nected to the journal-bearings B⁸, the saddle being provided with the downwardly-extending flange B5, to which are attached below the axle, bars B¹² of the platform, these bars being connected together by the brace B¹⁸ and 105 receiving support at the rear by the braces B¹⁴ respectively connected to the brace B¹⁶ of the journal-bearings B⁸, substantially as and for the purposes specified. 8. In combination with the rear axle and 110 saddle B4 provided with the flange B5 extending down at the side of the axle, the draw-bar D supported at one end in said flange and at the other in the bracket D² supported by the platform, substantially as and for the pur- 115 poses specified. 9. In a traction-engine, the supportingframe consisting of reaches between the front and rear axles, said reaches being made of piping, forming a conduit for the passage of 120 water through the same for the purposes substantially as specified, and the front cross head or head-block B²³, provided with sleeves B²⁴ shrunk upon the piping and the king-bolt B²⁸ connected thereto and to the saddle B²⁵ on 125 the front axle, substantially as and for the purposes specified. 10. In a traction-engine, the supportingframe consisting of reaches (between the front and rear axles) made of piping, and forming 130 a conduit for the passage of water through the same for the purposes substantially as specified, and the front cross head or headblock B²³, provided with sleeves B²⁴ shrunk 100 upon the piping, and the king-bolt B²⁸ connected thereto and to the saddle B25 on the front axle, the saddle B25 having vertical flange B²⁶, and a central enlargement for the 5 passage of the king-bolt, the king-bolt receiving the oscillating reach B²⁹, whose rear end is pivoted to a portion of the frame at the rear, substantially as and for the purposes specified. 11. In a traction-engine, the combination of the parallel conduits A², A², and the cylinder-engine bed, set directly on the conduits, and partly embracing the same, and clamped thereto, substantially as and for the purposes 15 specified. 12. In a traction-engine, the rear axle B, saddle B4, mounted thereon, and a supporting-frame, comprising the cylindrical reaches or perches of the vehicle, and sleeves B³ re-20 spectively shrunk on the adjacent perches, and rigidly secured to the saddle B5, substantially as and for the purposes specified. 13. In a traction-engine, the rear axle B, saddle B4 mounted thereon, and a support-25 ing-frame, comprising the cylindrical reaches or perches of the vehicle, and sleeves B³ respectively shrunk on the adjacent perches, and rigidly secured to the saddle B4, and the front cross-head B²³, and sleeves B²⁴ shrunk 30 upon the reaches or perches, and the kingbolt B²⁸ connected thereto and to the saddle B²⁵ on the front axle, substantially as and for the purposes specified. 14. In a traction-engine, the combination 35 of the reaches forming the sides of the frame, the bracket B³² consisting of the lower portion B³⁵, holding the idlers E¹⁴ and the lower half of the clamp B^{36} , partially embracing the reaches, and the lower portion of the engine-40 bed resting upon said reaches and partially embracing the same, and forming the opposite jaw of the
clamp, and clamped by bolts B³⁷, and the oscillating reach-brace B²⁹, secured at one end to the clamp B32, and at the 45 other end to the king-bolt, substantially as and for the purposes specified. 15. The clamp-bracket B³², secured to the supporting-reaches, and carrying idle-pulleys E¹⁴, as abutments for guiding the chains E¹² 50 to the drum E^{16} , and partially holding one end of the oscillating reach B²⁹, substantially as and for the purposes specified. 16. In combination with the rear axle and saddle B4 provided with the flange B5 extend-55 ing down at the side of the axle, the drawbar D supported at one end in said flange and at the other in the bracket D² supported by the platform, the said draw-bar being provided with means for making it elastically 60 yield in the direction of its length within limits, namely, spring D4 surrounding the draw-bar D and compressible between the flange B⁵ and the enlarged head preferably consisting of the washer D⁵ and the nut D⁶, 65 substantially as and for the purposes specified. 17. In combination with the rear axle and saddle B4 provided with the flange B5 extending down at the side of the axle, the drawbar D supported at one end in said flange 70 and at the other in the bracket D² supported by the platform, the said draw-bar being provided with means for making it elastically yield in the direction of its length within limits, namely spring D4 surrounding, by the 75 casing D³, the draw-bar D and compressible between the flange B⁵ and the enlarged head preferably consisting of the washer D⁵ and the nut D⁶, the spring being surrounded by the tube D³, substantially as and for the pur- 80 poses specified. 18. In a traction-engine whose supportingframe consists of piping A² forming the reaches of the gear, the clamp-brackets B³² secured to the piping substantially as de-85 scribed, and carrying the idle-pulleys E¹⁴, substantially as and for the purposes speci- fied. 19. In a traction-engine, the combination of the piping forming the reaches between the 90 axles, the sleeve surrounding the conduit and the head-block connected to the said sleeve, saddle or axle, king-bolt connecting said saddle and head-block and also receiving the forward end of the oscillating reach B29, and the 95 bracket-clamp B³² at rear, connected to the piping and holding the pivot E³⁴ upon which the rear end of the said oscillating brace oscillates, substantially as and for the purposes specified. 20. The combination of the piping A forming the reaches of a traction-engine, the bracket B³² consisting of the lower portion B³⁵ holding the idlers E¹⁴ and the lower half of the clamp ${ m B}^{36}$ partially embracing the pip- 105 ing A², A², and the lower portion of the engine-bed resting upon said piping and partially embracing the same and forming the opposite jaw or complementary portion of the clamp and being connected to the opposite 110 portion of the clamp by bolts B³⁷, substantially as and for the purposes specified. 21. In a traction-engine, the piping A², A², forming a part of a conduit for the flow of water for cooling the engine, the lower jaw 115 E³⁶ of the clamp whose upper jaw or complementary portion is the engine-bed, each jaw partially embracing the piping, the jaws being connected together by bolts, and the low jaw carrying the bolt or projection B³, form- 120 ing the pivot of the rear end of the oscillating brace, substantially as and for the purposes specified. 22. In a traction-engine having the conduit-piping as a supporting-frame between 125 the rear axle and the front head-block, the chains E¹² connected to the front axle and guiding against deflecting-abutments as E14 and wound in opposite directions around the drum E¹⁶, the drum being supported in a 130 bracket E¹⁷, partly embracing the piping, and being connected to the complementary portion or opposing clamp, resting on the piping, substantially as and for the purposes specified. 23. In a traction-engine having the con-5 duit-piping as a supporting-frame between the rear axle and the front head-block, the chains connected to the front axle and guiding against deflecting-abutments as E¹⁴ and wound in opposite directions around the drum 10 E¹⁶, the drum being supported in a bracket E¹⁷, partly embracing the piping, and being connected to the complementary portion or opposing clamp, forming the engine-bed, substantially as and for the purposes specified. 24. In a traction-engine, where the main portion of the frame constitutes a conduitpipe for the purposes specified, the bracket E¹⁷ fastened to the piping and provided with the journal-bearings E^{24} and the drum and 20 worm-wheel E²⁰ and worm E²¹, the said bracket also being provided with the journal-bearings E²⁴, E²⁴, in which the journals of the said worm revolve, shaft E²³ of said worm, the shaft being further provided with the jour-25 nal-bearing E²⁵ connected to the frame of the machine, and the band-wheel E²⁷, substantially as and for the purposes specified. 25. The combination of the bracket-clamp E¹⁷, clamped to the frame A², A² of the ma-30 chine, and the rear axle, saddle B4 secured to the axle, having downwardly-extending flange B⁵, the said bracket being connected to the machine by tie-rods E¹⁸, the bracket carrying the drum E¹⁶, provided with a con-35 centric worm E^{20} and also carrying the journal-bearings E^{24} , E^{24} , worm E^{21} on shaft E^{23} revolving at its lower end in the said journals E²⁴ and revolving in its upper end in the journal E^{25} , support E^{26} of the journals E^{25} con-40 nected to the saddle B4, substantially as and for the purposes specified. 26. In a traction-engine having front axle, capable of being turned on a pivot connected to the frame of the machine, and chains con-45 nected respectively to the outer or end portions of the axle and converging rearwardly against the deflecting-abutments, and connected with means for drawing in one chain and loosening the other simultaneously, the 50 spring being suitably connected with the bolt E² having semispherical bearing E¹³ rotating against the curved bearings in the saddle or projection, the recess in said saddle through which the bolt passes being enlarged rear-55 wardly, substantially as and for the purposes specified. 27. In a traction-engine having front axle, capable of being turned on a pivot connected to the frame of the machine, and chains con-60 nected respectively to the outer or end portions of the axle and converging rearwardly against the deflecting-abutments, and connected with means for drawing in one chain and loosening the other simultaneously, the 65 spring being suitably connected with the bolt E² having buttons or semispherical bearing E¹³ rotating against the curved bearings in the axle saddle or projection, the recess in said saddle through which the bolt passes being enlarged rearwardly, the bolt E² being 70 provided with the head E³ and the cylinder E⁵, the said head lying within the cylinder E⁵ and against the head E⁴ of the latter, and the spring E⁶ within the cylinder, and held in place by the cap E⁹ and the draw-bolt E⁷ whose 75 head E⁸ is within the cylinder and against that end of the spring which is opposite to the one which bears against the cap E^9 , the bolt E⁷ passing through the cap being provided with the hook E¹⁰ for connection with 80 the chain, substantially as and for the purposes specified. 28. In a traction-engine having front axle, capable of being turned on a pivot, connected to the frame of the machine, and chains con-85 nected respectively to the outer or end portions of the axle and converging rearwardly against the deflecting-abutments, and connected with means for drawing in one chain and loosening the other simultaneously, the 90 spring being suitably connected with the bolt E² having semispherical bearing E¹³ rotating against the curved bearings in the axle saddle or projection, substantially as and for the purposes specified. 29. In a traction-engine having front axle, capable of being turned on a pivot connected to the frame of the machine, and chains connected respectively to the outer or end portions of the axle and converging rearwardly 100 against the deflecting-abutments, and connected with means for drawing in one chain and loosening the other simultaneously, the spring being suitably connected with the bolt E^2 having semispherical bearing E^{13} rotating 105 against the curved bearings in the axle saddle or projection, the recess in said saddle through which the bolt passes being enlarged rearwardly, substantially as and for the purposes specified. 30. In a traction-engine, the frame for supporting the machine and constituting the reaches between the front head or cross block and the rear axle, consisting of piping A^2 , A^2 , forming the conduit, the piping at one end 115 of the machine being connected by the conduit A³ and the other end of the machine, one of the pipes A² being connected with the pipe A⁶ connected in turn to the space between the jacket of the engine and the cyl- 120 inder thereof, the adjacent end of the other pipe being connected by the auxiliary pipe A^4 to the pump, substantially as and for the purposes specified. 31. In an engine, the crank or driving shaft 125 F carrying the expander F² fixed thereon, the expander having the opening F⁹ in its outer portion, and the friction-shell F³ surrounding the expander and connected to the drivinggear F4, the shell and gear mounted loosely 130 on the shaft, and the beveled expander-key F⁶ and expander-lever F⁷ arranged to be moved outwardly from the shaft by key F⁶ and still farther separate the portions of the expander IIO opposing each other at the slit or opening F⁹, thereby increasing the diameter of the expander, substantially as and for the purposes specified. 32. In an engine, the crank or driving shaft F, the driving-gear F⁴ provided with the shell F³ turning loosely on the shaft, and an expander F² fixed to the
shaft and provided with a lever pivoted substantially at F⁸, in connecto tion with the slot F⁹ of the expander for enabling the movements of the lever to increase the size of the expander, the free end of the lever carrying the adjustable set-screw F¹⁰ and expander-key F⁶ in contact with the set-15 screw and reciprocating under and in contact with the set-screw, and means for reciprocating the key, substantially as and for the purposes specified. 33. In an engine, the crank or driving shaft 25 F, the driving-gear F⁴ provided with the shell F³ turning loosely on the shell, and an expander F² fixed to the shaft and provided with a lever pivoted at F⁸, and in connection with the slot F⁹ of the expander for enabling the 25 movements of the lever to increase the size of the expander, the free end of the lever carrying the adjustable set-screw F¹⁰ and expander-key F⁶ in contact with the set-screw, and sliding in the groove F²⁵ in the shaft 30 and means for reciprocating the expander- key, substantially as and for the purposes specified. 34. In an engine, the crank or driving shaft F, the driving-gear F⁴ provided with the shell 35 F³ turning loosely on the shaft, and an expander F² fixed to the shaft and provided with a lever pivoted substantially at F⁸, in connection with the slot F⁹ of the expander for enabling the movements of the lever to increase 40 the size of the expander, the free end of the lever carrying the adjustable set-screw F¹⁰ and expander-key F⁶ in contact with the setscrew, and sliding in the groove F²⁵ in the shaft, and means for reciprocating the ex-45 pander-key, and the shifter-sleeve F⁵ provided with abutments F¹³ and the forked lever F¹² operating between said abutments and pivoted at F¹⁴ to the bracket F¹⁵ connected at F²⁶ to the engine, substantially as 50 and for the purposes specified. 35. In an engine, the combination of the driving-shaft F and driving-gear F4, pinions G and G² meshing with the spur-wheel G³ mounted on the clutch-gear shaft G4, the said 55 pinions and gear being located in the frame G⁵, G⁵, oscillating on the said shaft G⁴, and the nut G9 located in said frame, and the screw G⁸ passing through and engaging the nut G⁹ and journaled in the bracket G¹³, substan-60 tially as and for the purposes specified. 36. In an engine, the combination of the driving-shaft F and driving-gear F4, pinions G and G² meshing with the spur-wheel G⁸ mounted on the clutch-gear shaft G4, the said 65 pinions and gear being located in the frame G⁵, G⁵, the said frame oscillating on the said shaft G4, and the nut G9 located in said frame, and the screw G⁸ passing through and engaging the nut G⁹ and journaled in the bracket G¹³, set-screw rod being provided with the 70 collar G¹⁴, provided with the notch G¹⁹ and the lever G¹⁶ pivoted at G¹⁷ having the latch G¹⁸ for engaging said notch G¹⁹, and tailpiece G²⁰, and having the elastic spring-set G²¹ having a point provided with two beveled sides 75 engaging the point G²³ on the bracket, which latter point also has two beveled sides, screwshaft having nut or detent G15 preventing it from riding out of the bracket G¹³, substantially as and for the purposes specified. 37. In combination with the oscillating frame G⁵, G⁵, pivoted on a shaft G⁴, the spurgear G³ and pinions G² and driving-gear F⁴ mounted on its separate shaft, the screw G³ working in the notch G⁹ in one portion of the 85 oscillating frame G⁵, G⁵, and mechanism for preventing the rotation of the rod except by human agency, to wit: lever G¹⁶, pivoted at G¹⁷, and having latch G¹⁸ for engaging the notch G¹⁹ of the screw and tailpiece G²⁰, spring-90 set G²¹ pressed down by means of the spring G²⁷ located in the chamber G²⁶ of the lever, and the spring-set being provided with the nut or detent G²⁵ and at its free or operating end being provided alternately with two bev- 95 els for engagement with two bevels on the latch-point of the bracket G¹³, substantially as and for the purposes specified. 38. In combination with the oscillatory frame G⁵, G⁵, carrying the gears in combina- 100. tion with the driving-gear, the screw G^s arranged for oscillating the frame G⁵ and passing through the bracket G¹³ and provided above the bracket with collar G¹⁴ and below the bracket with the nut or detent G¹⁵, the 105 passage through the bracket being enlarged from the center in both directions to allow the necessary oscillation of the groove as the frame G⁵, G⁵, oscillates, substantially as and for the purposes specified. 39. In combination, the driving-wheels, a shaft I for operating one of said drivingwheels, and a sleeve I² for operating the other of said wheels, the shaft being received into said sleeve, and the eye I³ located in the re- 115 cess I4 of said sleeve, and surrounding the shaft I, the eye having a bolt I⁵, and a cap I⁷ over recess I4, the bolt I5 passing through the cap and nut I⁶ thereof, substantially as and for the purposes specified. 120 40. In the mechanism for enabling the driving-wheels to rotate the one faster than the other, while both are positively driven, the combination of the driving-wheels shaft I supported near one end in journal-bearings 125 B⁸ and pinion I²⁰ fixed on said shaft I and internal gear B D on the adjacent drivingwheel B¹⁷, sleeve I² loosely receiving the other end of the shaft and journaled in a bearing as B⁸, a pinion I⁸ fixed on said sleeve and en- 130 gaging internal gear B D, and said internal gear located on the adjacent driving-wheel B¹⁷, a driving-wheel positively driven by the engine and engaging a pinion I¹⁰ or I¹⁹, said pinion being loosely journaled on shaft I, and beveled pinions I¹² on opposite sides of hub of pinion I¹⁰ revolving loosely on shaft I, and the adjacent beveled gear I⁹ and I¹⁶ respectively engaging said pinion I¹² on opposite sides thereof, one of these beveled gears being fixed to the shaft I and the other to the sleeve I², the sleeve I² having a recess I⁴, an eye I³ surrounding the shaft, and a bolt I⁵ connected to the eye and means for drawing the eye against the shaft I, substantially as and for the purposes specified and for the purposes specified. 41. In the mechanism for stopping the machine, the brake-wheel K, fixed on shaft I, 15 operating the driving-wheels B¹⁷, through suitable intermediate mechanism, and the brakeband K⁴, K⁵, attached at one end to the frame of the machine and at the other end at K⁷ to the nut K^{13} , nut K^{13} , and screw-sleeve K^{16} , and 20 screw-rod K¹⁵ screwing through the nut K¹⁸, secured in the sleeve by the collars K¹⁷, substantially as and for the purposes specified. 42. In the mechanism for stopping the machine, the brake-wheel K, fixed on shaft I, 25 operating the driving-wheels B¹⁷, through intermediate mechanism, and the brake-band K⁴, K⁵, attached at one end to the frame of the machine and at the other end at K⁷ to the nut K^{13} , nut K^{13} , and screw-sleeve K^{16} , and 30 screw-rod K^{15} screwing through the nut K^{13} , secured in the sleeve by the adjustable col- lars K¹⁷, substantially as and for the purposes specified. 43. In the mechanism for stopping the machine, the brake-wheel K, fixed on shaft I, 35 operating the driving-wheels B¹⁷, through intermediate mechanism, and the brake-band K⁴, K⁵, attached at one end to the flange B³⁴ of the axle-cap, and at the other end at K⁷ to the nut K¹³, nut K¹³, and screw-sleeve K¹⁶, and 40 screw-rod K¹⁵ screwing through the nut K¹³, secured in the sleeve by the collars K¹⁷, substantially as and for the purposes specified. 44. The combination of the shaft M and the pulley M⁶, friction-shell connected to gear- 45 wheel meshing with gear on the crank-shaft F and an expander and expander-key fixed to shaft M, and device for shifting the expander-key, substantially as and for the purposes specified. 45. In combination with the piping A^2 , A^6 , A^2 and A^4 , the caps P^2 , P^2 , on said piping A^2 , A^2 , and the buffer P, whose ends are connected to the said caps, substantially as and for the purposes specified. 46. In combination with the piping A², A⁶, A² and A⁴, the caps P², P², on said piping A², A², and the buffer P, whose ends are connected to the said caps, and whose center is provided with the concave piece P³, centrally located 60 therein, the buffer being of a box shape, substantially as and for the purposes specified. BENJAMIN C. VANDUZEN. Attest: JOHN E. FITZPATRICK, K. SMITH.