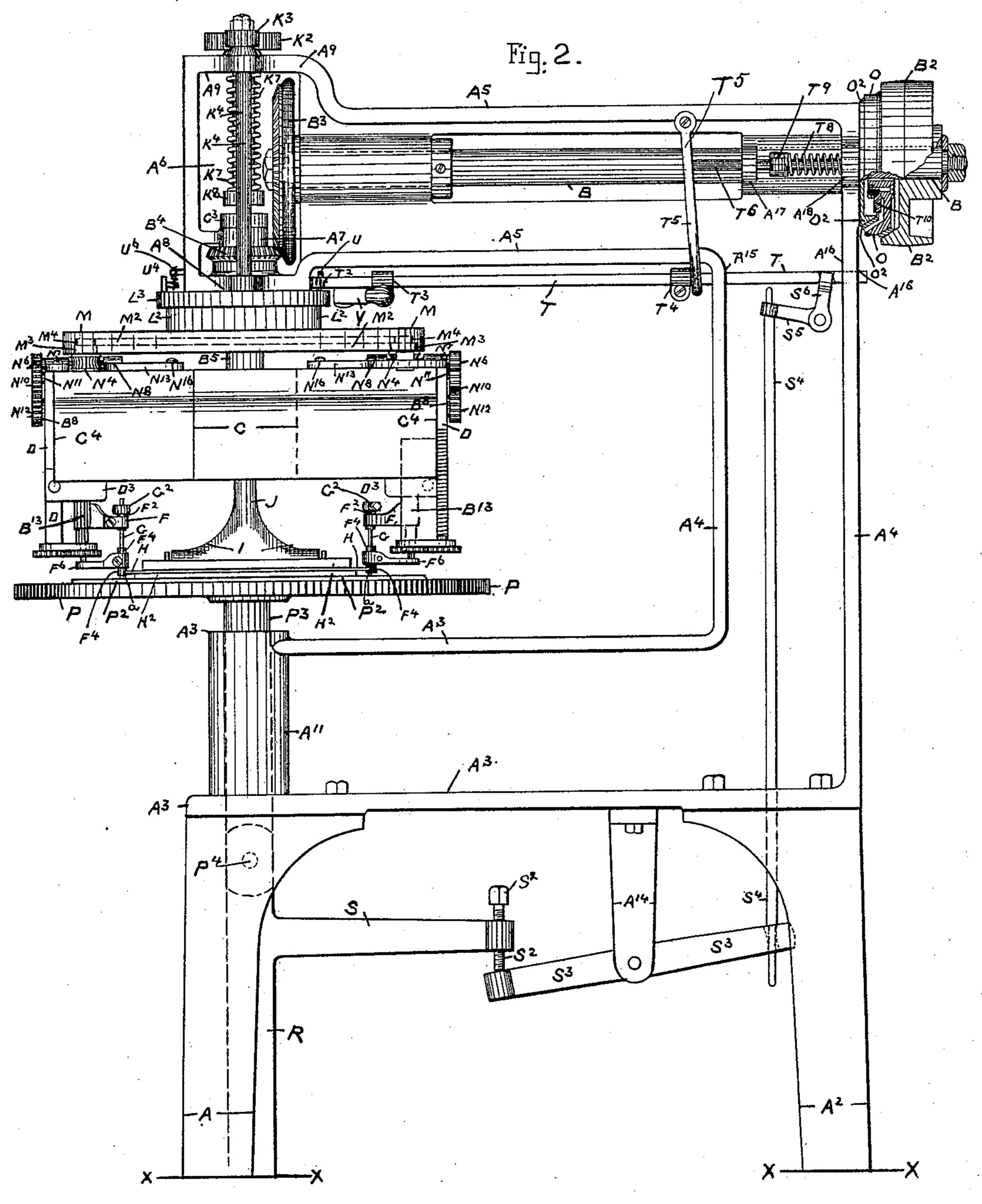

J. J. BREACH.

MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.

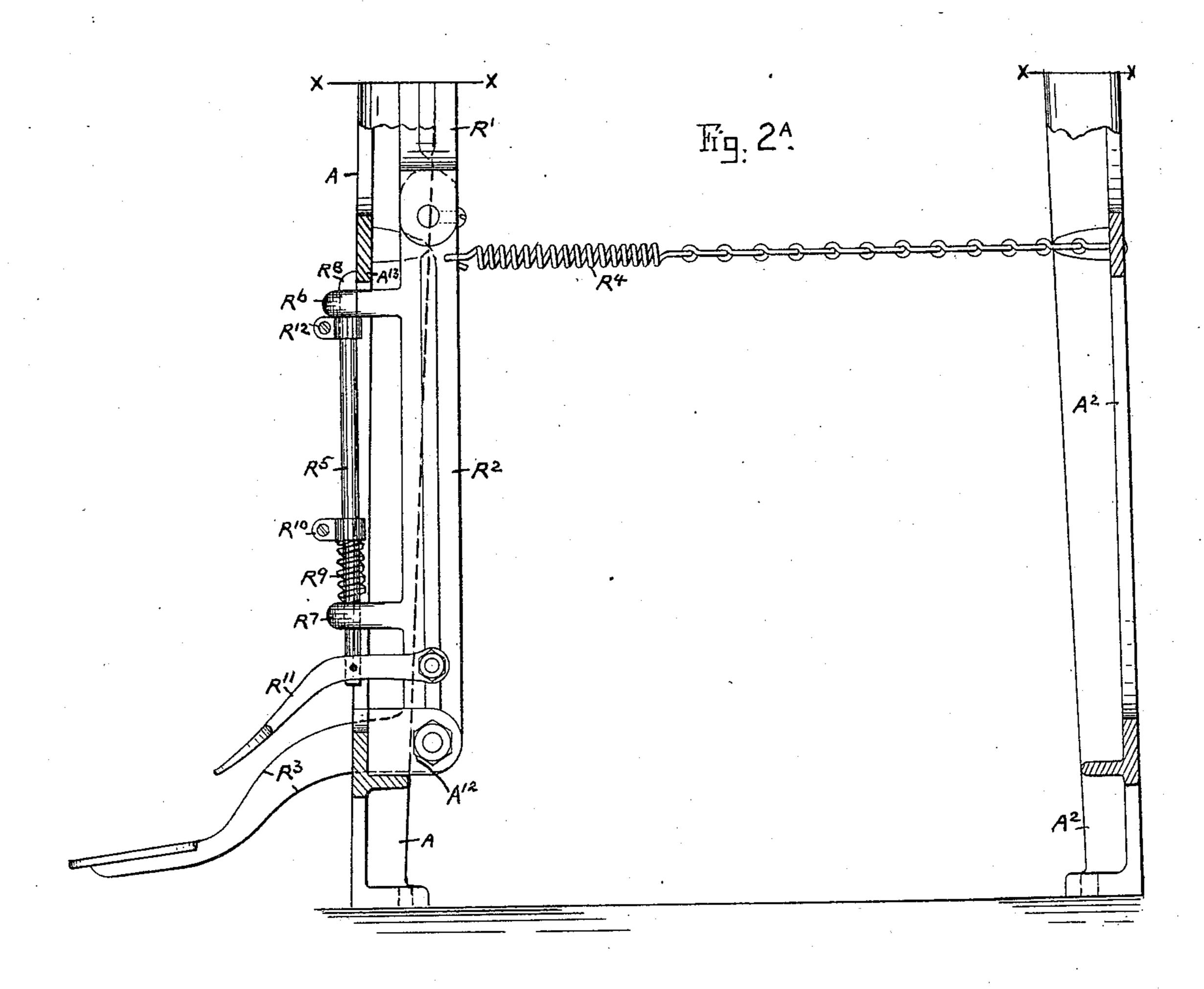
No. 589,409.


Patented Sept. 7, 1897.

MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.

No. 589,409.

Patented Sept. 7, 1897.

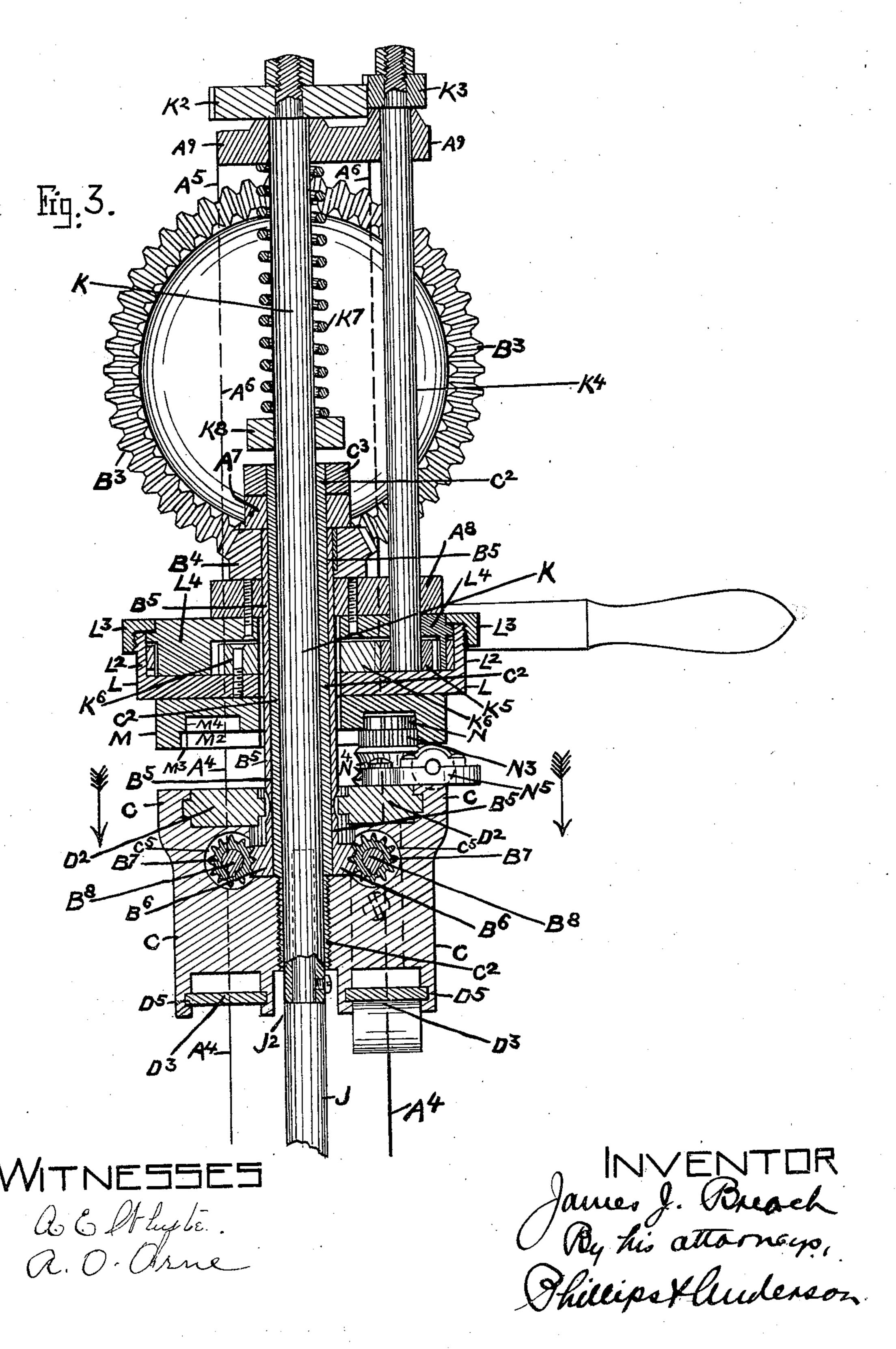

Witgesses.
Mary M. Storer
Marion E. Brown:

James J. Breach by his attorneys Brown Bros

MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.

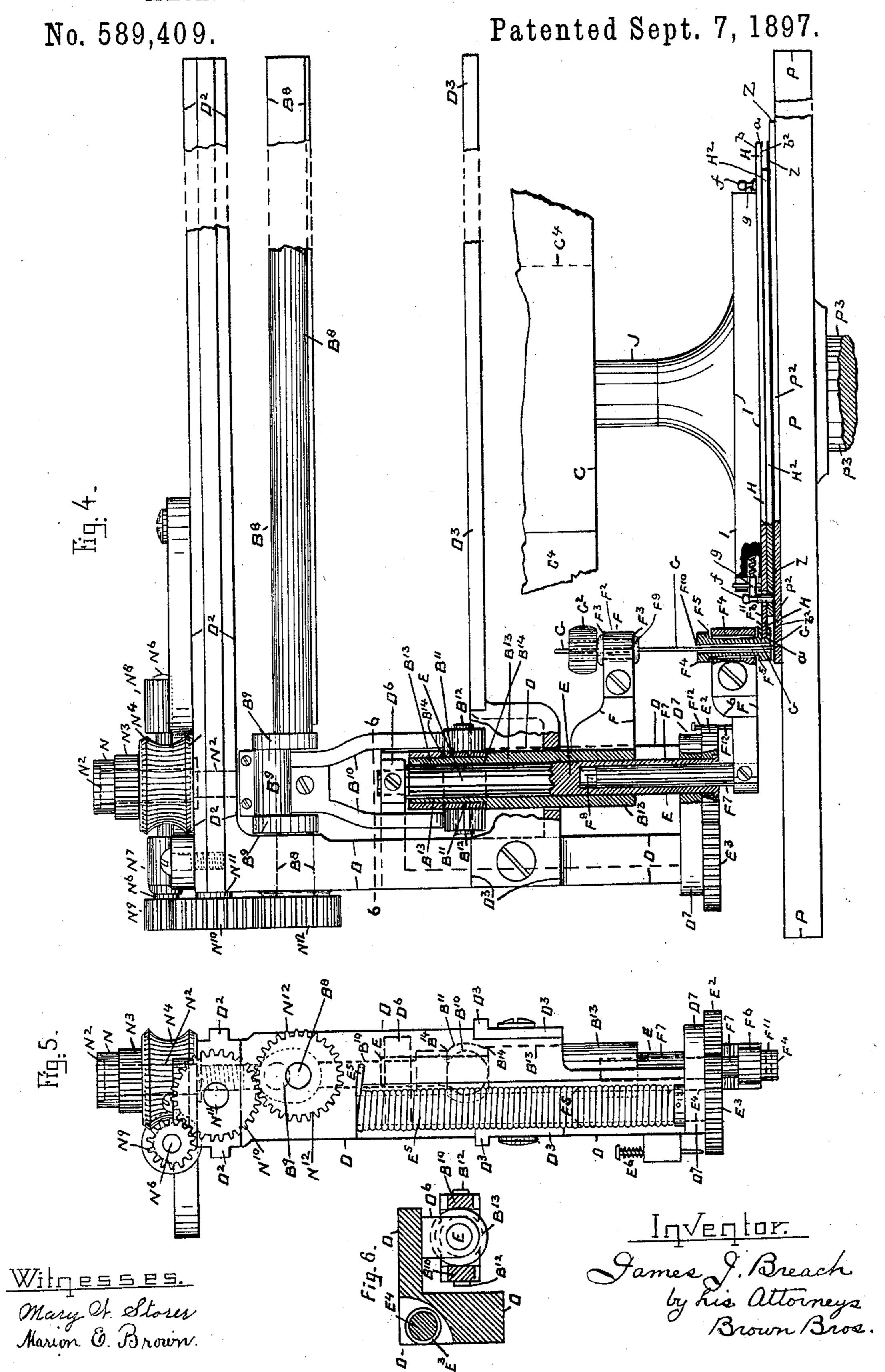
No. 589,409.

Patented Sept. 7, 1897.


Willesses.
Mary A. Stores
Marion E. Rrown.

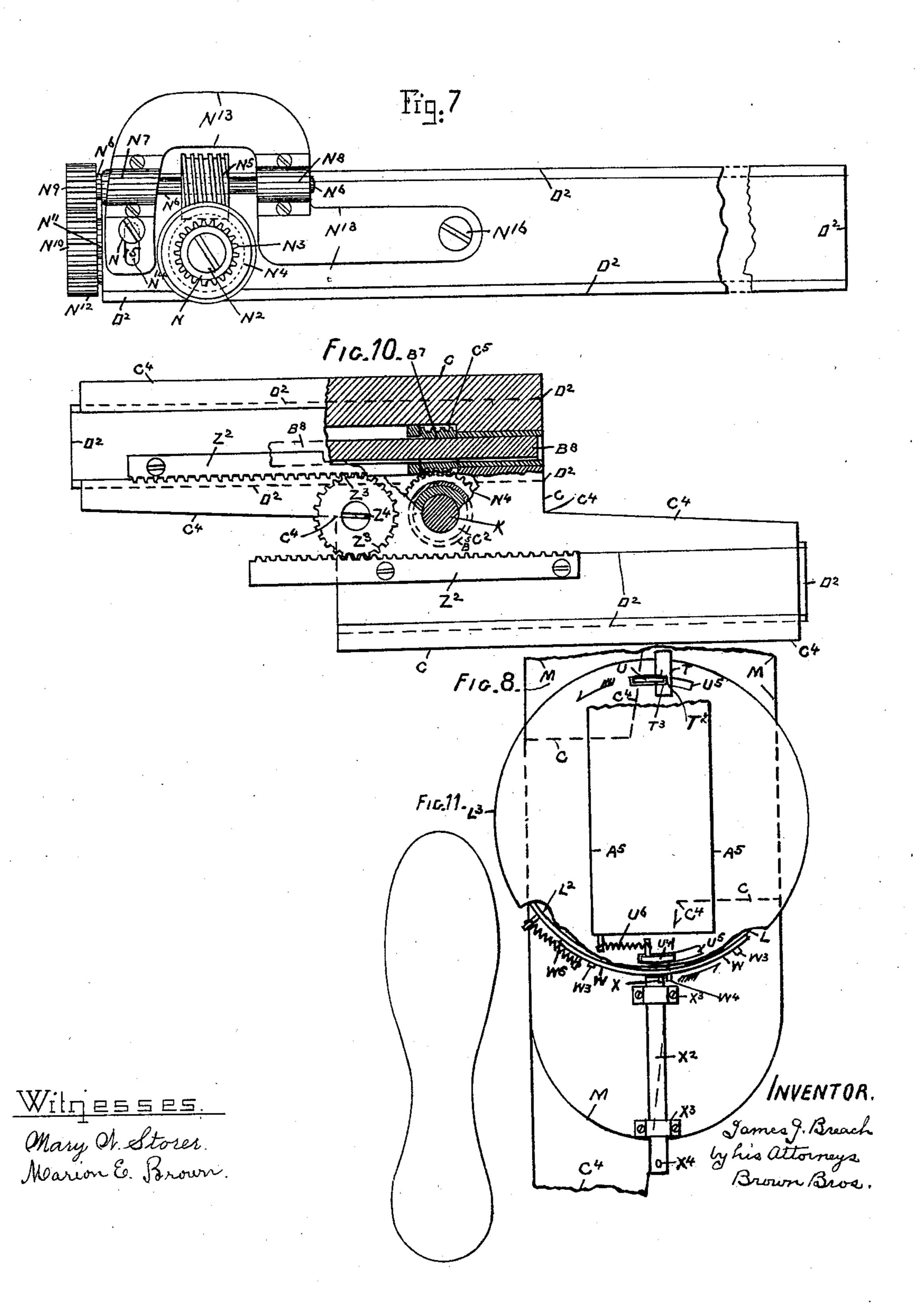
James J. Breach by his attorneys Brown Bros

MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.


No. 589,409.

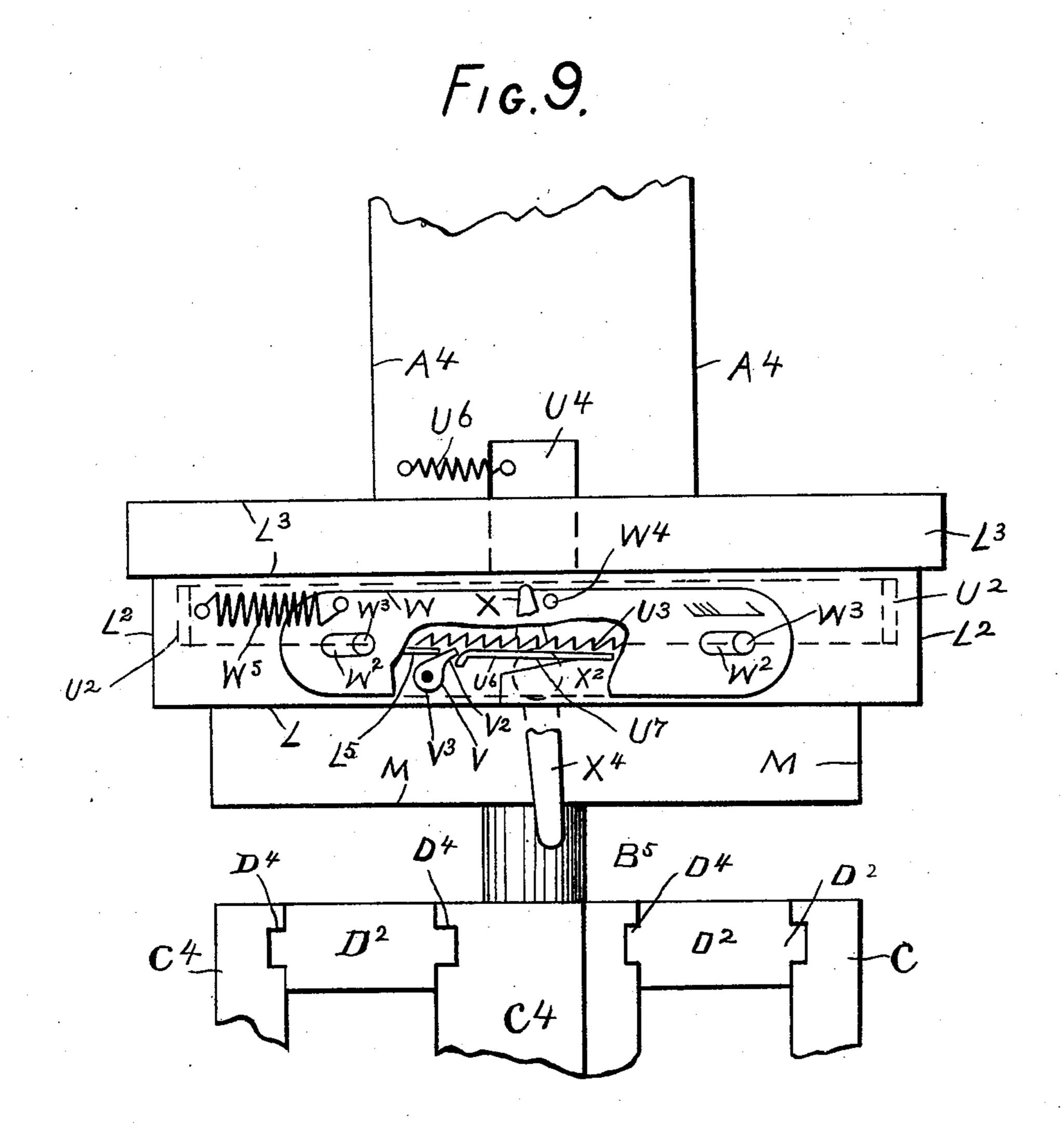
Patented Sept. 7, 1897.

J. J. BREACH.


MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.

MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.

No. 589,409.


Patented Sept. 7, 1897.

MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.

No. 589,409.

Patented Sept. 7, 1897.

WITNESSES a. O. Oshre James J. Breach. By his attorney. Phillips Hluderson

United States Patent Office.

JAMES J. BREACH, OF BOSTON, MASSACHUSETTS.

MACHINE FOR CUTTING OUT BOOT OR SHOE SOLES.

SPECIFICATION forming part of Letters Patent No. 589,409, dated September 7, 1897.

Application filed June 15, 1891. Serial No. 396,366. (No model.)

To all whom it may concern:

Be it known that I, James J. Breach, a citizen of the United States of America, and a resident of the city of Boston, in the county of Suffolk and State of Massachusetts, have invented certain new and useful Improvements in Machines for Cutting Out Boot or Shoe Soles, &c., of which the following is a full, clear, and exact description.

This invention relates to a machine for cuting out articles from sheet material, and more particularly to machines for cutting out full and tap soles from leather, leather-board, or

other suitable sheet material.

The object of the invention is to produce a machine which will readily cut out articles from sheet material of irregular curvilinear outline, and a machine employing a reciprocating cutter having provision for always presenting its cutting edge at the proper angle relative to the outline of the article to be cut, and, further, to generally improve the construction and operation of machines of this character.

To this end the present invention consists of the devices and combination of devices which will be hereinafter described and claimed.

The invention is illustrated in the accom-

panying drawings, in which—

30 Figure 1 is a plan view. Figs. 2 and 2^A, with the parts represented placed to coincide along lines x x of each figure, make a complete side elevation. Fig. 3 is a vertical section on line 3 3, Fig. 1, parts being in eleva-35 tion. Fig. 4 is a side elevation, parts being in section, of a portion of the machine, showing the sliding part of the cutter-carrier. Fig. 5 is an end elevation of the sliding part of the cutter-carrier shown in Fig. 4. Fig. 6 is a 40 horizontal section on line 6 6, Fig. 4. Fig. 7 is a plan view of the sliding cutter-carrier. Fig. 8 is an enlarged plan, and Fig. 9 is an end view, of the automatic clutch-operating devices. Fig. 10 is a plan, parts being in sec-45 tion, of a rotating support for the cutter-carrier, and Fig. 11 is a plan view of a sole pattern illustrating a modification.

The machine comprises a frame of suitable size and shape to support the working parts, and may conveniently consist of two leg-frames A A^2 , one, A, at the front and the other, Λ^2 , at the rear of a horizontal arm A^3 ,

that is rigidly secured to both of said frames and makes part of a gooseneck standard A^4 A^5 , and of which the upright portion A^4 is at 55 the rear and the horizontal portion A^5 extends to the front end of and is directly over and above said horizontal arm A^3 .

B is the driving-shaft.

The driving-shaft B is preferably horizon- 60 tal, as shown, and at its opposite end portions it turns in bearings of the horizontal portion of the gooseneck standard A⁴ A⁵.

The driving-shaft B has a loose pulley-wheel B² confined against lateral movement 65 and a sliding clutching-collar O splined on it and adapted to slide in one direction to clutch the loose pulley B² to cause the shaft to rotate and in the other direction to unclutch it from the loose pulley-wheel and to clutch the 70 driving-shaft to the fixed projection O² at the rear end of gooseneck A⁴ A⁵ and thus stop the rotation of said shaft.

The pulley-wheel B² is driven by a belt, (not shown,) and if clutched to the shaft B the 75 shaft is driven, and if unclutched from the shaft and clutched to the gooseneck A⁴ A⁵, as stated, the shaft is rigidly held against rotation.

B³ is a bevel gear-wheel fixed to the front 80 end of shaft B and located within a chamber A⁶ at the front of gooseneck A⁴ A⁵.

B⁴ is a horizontal bevel gear-wheel which meshes with the bevel gear-wheel B³ and which is fixed on the upper end of a vertical 85 tubular shaft B⁵, which at its lower end has a horizontal worm-wheel B⁶, which is in mesh with similar worm-wheels B⁷ B⁷, Figs. 3 and 10, each confined against endwise movement and free to rotate in chambers C⁵ of a com- 90 mon head-block C.

The head-block C is rigidly secured to the lower end of a vertical shaft C², which is surrounded by the tubular shaft B⁵, and at its upper end it is secured to a collar C³, resting 95 on a horizontal offset A⁷ of gooseneck A⁴ A⁵. The horizontal bevel gear-wheel B⁴ on the tubular shaft B⁵ is directly under said offset and at rest on the lower wall A⁸ of the chamber A⁶. By resting collar C³ on the offset A⁷ 100 the head-block C is held in position, and by resting the gear-wheel B⁴ on the lower wall A⁸ of the gooseneck said gear, its tubular shaft B⁵, and worm-gear B⁶ thereon are held

in position. The head-block C is the support for the cutter-carrier, all of which will be hereinafter described.

Each worm-wheel B⁷ is splined on a sepa-5 rate and similarly-arranged horizontal shaft B⁸, and each shaft is rotated by the rotation of and is free to move lengthwise through its worm gear-wheel B7. Each shaft B8 is supported and rotates on a separate and similar 10 sliding frame, each of which constitutes a two-part support for the cutter-carrier. Each sliding frame in substance is composed of an upright D, on which said splined shaft is supported and rotates, and of horizontal bars or 15 rails D² D³, one above and the other below said shaft, and parallel with each other and said shaft, and all at right angles to said end upright D. The vertical edges of each rail D² D³ are parallel, and each is adapted to fit 20 and slide in horizontal and parallel squaresided or dovetailed ways or grooves D⁴ D⁵ of said head-block C, and also of its horizontal end extension C4, one located at one end and the other at the opposite end of the block, 25 and all so arranged that each slide-frame D D² D³ is at opposite sides of and each at a corresponding distance from a common vertical plane through the axial line of the vertical tubular shaft B⁵, before referred to.

Each splined shaft B⁸ at the inner side of the end upright D of the sliding frame has a crank B9, on which is hung a vertical pitman-rod B¹⁰ of fork shape and having between its arms or tines a tubular block B¹¹, 35 which is held therein by axially coincident | and horizontal trunnion-pins B¹², whereby it is free to turn or rotate on said pitman-rod. B¹³ is an upright cylindrical sleeve that passes through said tubular block and is free to turn 40 therein, and which has shoulders B14 at its upper and lower end portions to hold it against lengthwise movement in said block, while allowing it to freely turn therein. E is a vertical rod which extends through and projects 45 above and below the upper and lower ends of said sleeve B¹³ and at its opposite end portions is rigidly held on upper and lower sta-

a sliding frame $D D^2 D^3$. The fixed rod E acts as a guide for the sleeve B¹³ as it is moved up and down by the rotation of the splined shaft B⁸ through the pitman-rod B¹⁰ and tubular block B¹¹, and said rod also acts as a bearing for said sleeve

tionary offsets D⁶ D⁷ of the end upright D of

55 as it rotates.

Below the offset D⁷ of the sliding frame is a horizontal gear-wheel E2, which is held loosely to and free to turn on said guide-rod E, and which meshes with a horizontal gear-60 wheel E3, fixed at the lower end of a vertical shaft E4, which at its opposite end portions is held and turns in bearings on the upright D.

E⁵ is a coiled spring under tension surrounding the shaft E⁴. The spring E⁵ is at-65 tached at one end to the shaft E4, and at the other end it rests on the end upright D, the arrangement being such that a turning of the

shaft in one direction is against the tension of said spring and in the other direction with the tension of said spring. The sleeve B¹³ has a 7° horizontal radial or side extension or arm F, and this arm at its outer end has a vertical cylindrical block F², which is shouldered at its opposite ends F³, and thereby is held on and is free to turn in said arm. The axial 75 line of this block F² is parallel with the axial line of the rotation of the sleeve B¹³ on the fixed vertical guide-rod E, and below said block E² is another similar block F⁴, which by its end shoulders F⁵ is similarly held and is 80 free to turn on another arm F⁶ in radial extension of vertical shaft F7, which is entered into and free to turn in the vertical socket F⁸ of the lower end portion of sleeve B¹³ on said guide-rod E and concentric with the axis 85 thereof.

F¹² is a vertical pin fixed on the lower arm F⁶ in position to be engaged with the teeth of the horizontal gear-wheel E², and thus said arm F⁶ is placed under the tension of the 90 coiled spring E⁵ and given a yielding and elastic pressure in its bearing by its block F^4 against the edge of the pattern-plate, all as

hereinafter appears.

The axes of the upper and lower blocks ${
m F}^2$ 95 and F⁴ are at corresponding distances from the axial line of rotation of the sleeve B¹³ and shaft F⁷.

G is a vertical blade which in cross-section is of rectangular shape and extends from 100 block F² to block F⁴ and through corresponding rectangular bores F⁹ and F¹⁰ of each block, and it is attached to the upper block F² by means of a collar G², which fits upon and is fastened to a split projection of said block F². 105 (See dotted lines, Fig. 4.) In the machine of the drawings there are two of these blades G, and the lower end of each has a chisel cutting edge, so that as each blade is vertically reciprocated the sheet material suitably held and 110 located therefor will be cut out thereby, all as hereinafter appears.

For the purpose of accurately positioning the cutting edge of the knife G relatively to the contour of the article to be cut, so that 115 the cutting edge thereof shall always be in line with the cut which it is desired to make, the knife is preferably swiveled by mounting the same in the freely-movable blocks F^2 and F4, as described, and said knife and its sup- 120 porting-blocks are turned to bring its edge in proper position by a suitable guiding contact with the pattern H, which guiding contact may conveniently be secured by the following construction.

The lever-block F⁴ in arm F⁶ and preferably below the said arm has a peripheral notch F^{11} , suitably shaped to have a guiding contact against the exposed edge a of a horizontal pattern-plate II, and, as shown, bears against 130 the upper and lower surfaces b and b^2 of said pattern.

The pattern H is detachably held against the under side of a block I, concentrically se-

125

589,409

cured to the lower end portion of a vertical stem or rod J, which has its upper end portion entered into a vertical socket J² and detachably secured to the lower end of a verti-5 cal shaft K, in upward extension of said stem J, and free to turn in the vertical sleeve C² of the head-block C and the collar C³ of said sleeve and in the upper wall A⁹ of the chamber A^6 of the gooseneck A^4 A^5 . The shaft K10 within the chamber A^6 is surrounded by a coiled spring K7, confined end to end between the upper wall A⁹ of said chamber and a collar K⁸, fixed on the shaft K. Again, the shaft K at its upper end portion has a horizontal 15 gear-wheel K² fixed thereto, and this gear rests on said upper wall A⁹ of the gooseneck A^4 A^5 and is in mesh with a smaller horizontal gear-wheel K³ at the upper end portion of a vertical shaft K4, which at its opposite end 20 portions turns in suitable bearings of the upper and lower walls A⁹ A⁸ of the chambered head of the gooseneck A^4 A^5 and at its lower end portion has a horizontal pinion gear-wheel K⁵, in mesh with a larger horizontal gear-25 wheel K⁶, which turns about the vertical tubular shaft B⁵, which is directly geared, as explained, with the driving-shaft B. The gear-wheel K⁶ is at the upper side of

and rigidly held on a horizontal circular disk 30 L, surrounding and free to turn about the tubular shaft B⁵. This disk L has an upwardprojecting peripheral flange L², that is capped by a screw-threaded ring L³, screwed onto its upper end and shaped to lap horizontally and 35 loosely over a horizontal annular block L^4 , which loosely surrounds said tubular shaft B⁵ and is made fast to the under side of the lower wall A⁸ of the chambered head A⁶ and has the upper side of the disk L at a bearing

40 against its under side.

M is a flat and horizontal plate made fast to the under side of the circular disk L and loosely surrounding and free to turn about said tubular shaft B⁵. This plate M, as shown, 45 is of greater dimension in one than in the other direction, and at its under side it has a continuous and encircling groove or way M2, which is of uniform width throughout, and, as particularly shown, Figs. 1 and 3, is com-50 posed of two straight and parallel lengths, which at their opposite ends are continued in a semicircle, each of corresponding radius and having the center of both at corresponding distances from and coincident with a straight 55 line through them and the axis of said tubular shaft B⁵. This groove or way M² has a continuous vertical toothed rack M³, forming the lower portion of its outer edge, and a vertical flat face M⁴ above said rack and form-60 ing the upper portion of its said outer edge. The flat face M⁴ of the way M² forms a bearing for a horizontal friction - roller N, turning loosely on a vertical stud N², rigidly held on the upper rail D² of a sliding frame D D² D³, 65 and the toothed rack M³ of the way M² has meshing with it a horizontal pinion gearwheel N^3 , turning on said stud N^2 and having

a concentric worm gear-wheel N⁴, both turning as one. The worm gear-wheel N^4 is in mesh with a worm N⁵ of a horizontal shaft 70 N⁶, that turns in bearing-blocks N⁷ N⁸, held on the upper rail D² of a sliding frame D D² D³, and outside of the end upright D of said frame it has a pinion gear-wheel N⁹, in mesh with a vertical gear-wheel N^{10} , turning on a 75 fixed stud N¹¹ of said end upright and in mesh with a gear-wheel N¹², held on the splined and crank shaft B⁸ belonging to said sliding frame.

P is the platen. This platen is rigid and 80 horizontal, and it is flat on its upper side, and, as shown, its outline is preferably circular. Again, preferably the platen is made of iron or other suitable and rigid metal or other material; but if it is not always suitable its up- 85 per side is provided with a sheet P² of leatherboard or other suitable sheet material, all so arranged as to make it suitable for a cuttingblock and also to make it suitable as one jaw or part of a clamp, the other jaw of which is 90 the under side of the pattern H, held on the block I as before mentioned, or preferably, as shown, by the use of an interposed plate H², made of iron or other suitable material and held against the under side of the pattern H. 95

The platen P is rigidly held at the upper end of a vertical spindle P³, that is contained and is free to move up and down within a vertical guide-bearing A¹¹ at the front end of the lower horizontal arm A³ of the supporting- 100 framework of the machine, and the axial line of this guide-bearing is coincident with the axial line of the vertical tubular shaft B⁵, hereinbefore referred to. The spindle P³ at its lower end is hung by a horizontal pivot P^4 105 on the upper end R of a vertically-located toggle-lever R' R2, consisting of an upper arm R'and a lower arm R², which are pivoted end to end together. The lower toggle-arm \mathbb{R}^2 at its lower end is pivoted to earpieces A¹² at 110 the lower portion of the front leg-frame A, and below said earpieces it is extended forward and horizontally and adapted as a foot or treadle lever R³, so that by pressing down said treadle the toggle-arms are straightened 115 out, pulling against the tension of a spiral spring R4, that is hung at its opposite ends on the lower toggle-arm and on the rear legframe A². By this operation of the togglelever the platen P is raised, and with it the 120 sheet material to be cut out, toward the plate H², and finally firmly clamped between said plate H² and platen P, secured, preferably, by fastening and holding with suitable means the toggle-lever in its said straightened po- 125 sition.

Means to hold the toggle-lever in its position clamping the sheet material to be cut out between the platen P and the pattern H, as just described, are shown in Fig. 2^A. They 130 consist of a vertical catch-rod R5, which at its opposite end portion is arranged to play through upper and lower earpieces R⁶ R⁷ of the lower toggle-arm \mathbb{R}^2 . This catch-rod \mathbb{R}^5 ,

as the toggle-lever straightens, moves toward the front leg-frame A, and the upper end thereof is adapted to first pass under the lower edge of the vertical lip A^{13} of said leg-5 frame and to be raised vertically outside of said lip A^{13} , the rod being raised by the tension of spring R⁹, confined end to end on said rod between a fixed collar R¹⁰ and the lower guiding-earpiece R⁷ therefor, the rod being ro held up and its end in contact with the face of lip A^{13} until said catch-rod is depressed by placing the foot on and pressing down a treadle-lever R¹¹, fulcrumed on the lower toggle-arm R² and hung on the lower end of said 15 catch-rod R^5 , whereby the toggle-lever by the action of its spring R4 is moved backward, bringing its arms into a more or less angular vertical position and lowering the platen P and releasing the sheet material previously 20 held on it and clamped between it and the pattern H, as has been described.

R¹² is a collar fixed on catch-rod R⁵, which acts by striking the upper earpiece R⁶ as a stop to the upward movement of the rod R⁵.

The toggle-lever described and in the machine of this invention, as it is practically shown, is utilized to secure from its movements to straighten and to bend its arms movements of the clutching-collar O of the 30 driving-shaft to clutch and to unclutch the driving-shaft B and the driving pulley-wheel B², and by mechanism as follows:

S is a horizontal arm which is projected from the rear edge of the upper toggle-arm 35 R' and toward the rear of the machine.

S² is an adjustable vertical pin held on and at the outer end portion of the arm S, so located that as the toggle-lever straightens said pin bears and presses downward on the up-40 per edge of a lever S³, which intermediately of its length is fulcrumed on a fixed support A^{14} , depending from the under side of the horizontal arm A³ of the framework of the machine. The rear end of the lever S³ is con-45 nected to the lower end of a vertical rod S⁴, that at its upper end is connected to one arm S⁵ of a vertically-placed bell-crank lever S⁵ S⁶, which is fulcrumed on and at one side of the gooseneck $A^4 A^5$, and the other arm of the bell-50 crank lever is connected to the rear end of a horizontal rod T, that extends lengthwise along and under the horizontal arm of the framework and is arranged for lengthwise movement through suitable supporting-bear-55 ings $A^{15}A^{16}$ of the vertical arm $\overline{A^4}$ of the gooseneck A⁴ A⁵. The horizontal rod T is just above the screw-threaded ring L³ of the upwardly-flanged disk L, hereinbefore referred to, and one of its vertical sides has a notch T², 60 Fig. 8, in position when said rod is suitably placed therefor to be engaged with a vertical arm U of a vertical and edgewise-placed ring U², which is contained within and concentrically encircles the flange of said flanged

will be hereinafter described. T³ T⁴ are two collars fixed on the horizontal

65 disk L and is constructed and operated as

rod T, and one, T³, is in position for engagement with a horizontal handle-lever Y, which is fulcrumed on the horizontal arm A⁵ of goose- 70 neck $A^4 A^5$, and when it is moved in the proper direction to strike said collar and thereby move said rod in a direction toward the rear of the machine. The other collar T⁴ is in a position on a rearward slide of the rod T, as 75 above stated, to strike the lower portion of a vertical stirrup-shaped frame T⁵, which lies on the opposite vertical sides of swings on the horizontal arm A^5 , and thereby to swing said frame T⁵ to bring it to a bearing on and 80 press against the front end of two horizontal rods T⁶ T⁷, which are located on opposite sides of the horizontal arm A⁴ and are supported and guided by fixed side earpieces A^{17} A^{18} on said arm A^{4} and to move said rods 85 rearward against coiled springs T⁸, one on each rod, confined between fixed collars T⁹ of the rear bearing-earpieces A^{18} . The sliderods T⁶ T⁷ at their rear end portions pass loosely through the fixed beveled clutching- 90 block o^2 , hereinbefore referred to. The sliding clutching-collar O at its end toward said block O² is interiorly suitably shaped to receive and closely fit over said clutching-block O², and at its other end toward the driv- 95 ing pulley-wheel B² it is externally suitably shaped to enter into and closely fit the inner peripheral wall of the rim of the said pulleywheel, entering the rim at its end toward said sliding clutching-collar O.

The axis of the slide-rods T⁶ T⁷ and driving-shaft B are parallel and in a common horizontal plane, and the slide-rods are axially at corresponding lateral distances from

100

105

the axis of the driving-shaft. T¹⁰ is a flat ring fixed on the rear ends of the slide-rods T⁶ T⁷ and lying within and engaging a peripheral groove of the hub of the sliding clutching-collar O, and thus the sliderods T⁶ T⁷ are engaged with the clutching-col- 110 lar, so that when the rods are moved in either direction the clutching-collar is correspondingly moved, while at all times it is free to rotate in unison with the shaft B, and thus by a slide of the clutching-collar O in one di- 115 rection the driving-shaft B and pulley-wheel B² are clutched and in the other direction the driving-shaft and fixed clutching-block O² are clutched. The slide of the clutching-collar O to clutch driving-shaft and pulley-wheel is 120 against the springs T⁸ about the slide-rods, and the slide of the clutching-collar to clutch driving-shaft and block O² is by the tension of said springs, and the slide of the collar to clutch driving-shaft and pulley-wheel can be 125 secured by straightening the toggle-lever R R² or by a proper swing of the handle-lever Y each way independent of the other.

The drawings show the driving-shaft B and its pulley-wheel B² as clutched by straighten- 130 ing the toggle-lever R R² and so held by the engagement of clutch-rod R⁵ with front legframe A, as described. Again, they show the platen P and pattern H as closed and having

clamped between them the sheet material to be cut out; also, two cutters to cut out the clamped sheet material, a cutter at each end of the pattern along its longest axis, and the cut-5 ters and their carriers as in their lowest position; also, the horizontal rod T connected to the toggle-lever and to the sliding clutchingcollar O2, as engaged by its side notch T2, with the upright U of the ring U² contained withto in the flanged disk L. In other words, all parts of the machine so far as has been described are shown as in the position required from the particular arrangement of the machine described to begin and to proceed with 15 the cutting out from the clamping sheet material of a piece thereof of dimensions and outline substantially corresponding to those of the pattern and under an operation of the parts to be explained, but before doing so 20 the ring U², before referred to, its particular construction and arrangement, and the parts for operating it will be described. Entirely around the lower edge of the ring U² are ratchet-teeth U³, Fig. 9, and diametrically op-25 posite to the arm U, which engages the rod T for operating as has been described, the ring has another upwardly-projecting arm U⁴, and this arm and said arm U pass through separate and similar slots U⁵ of the top of the 30 flanged disk L, said slots extending in a circular direction, having its center coincident with the axis of rotation of the tubular shaft B⁵.

The flange L² of the disk L at its front side 35 has an opening at which is a flat spring U⁷, fixed at one end to said flange or disk and at its other free end in position to bear upwardly against the under side of the toe V² of a pawl V, which is fulcrumed at its heel V³ on the 40 inside of a plate W, arranged to slide on and about the perimeter of the flange L³ of the disk L, and whereon it is confined and guided by its lengthwise slots W² and fixed pins W³ on said flange L³ and which engage said slots.

W⁴ is a pin projecting horizontally from the slide-plate W and in position to be struck by the upper end portion of a vertical arm X of a horizontal shaft X2, which turns in bearing-blocks X³, fixed on the upper side of the 50 grooved and rack plate M, and has the vertical plane of its axial line coincident with that of the central longitudinal line of and projects beyond the end of said plate, where it is provided with a vertical depending arm X^4 , 55 that has its lower end portion in position to be struck and acted on by the upper side of the bearing-block N⁷ or other suitable projection of the upper side of a sliding frame D D² D³ as said frame turns, as before explained, 60 about the axis of the tubular shaft B5, before referred to.

The parts above explained and which are between the turning two-part cutter-carrier support of the machine and the slide-plate W 65 of the disk L are constructed and arranged so that by the turn of said support and the abutment and action of its said bearing-block

N⁷ on the dependent arm X⁴ of the horizontal shaft X² said shaft is rotated in a direction to carry the upper arm X of said shaft X2 into 70 a position to act on the pin W' of the slideplate W to move said slide W in the direction of the arrows, Figs. 8 and 9, carrying the pawl V in the same direction. The movement of the pawl V, by the movement of plate 75 W, causes the spring U7 to force the pawl in engagement with the ratchet-teeth of the ring U², and thus said ring and its upright arms U U4 are moved around on the disk L and causes the arm U to be disengaged from the 80 slide-rod T, connected with the sliding clutching-collar O, as has been explained, which by the action of the springs causes the collar O to be moved away from pulley B2, as has been described, thus stopping the rotation of 85 the driving-shaft B. As the bearing-block N^7 moves past the dependent arm X^4 of the horizontal shaft X2 the slide W and the ratchet-ring U² are each returned to their normal positions, the slide W by the tension 90 of a spiral spring W⁵, fixed at its opposite ends on said slide and on the flanged disk L, and the ratchet-ring U² by the tension of a spiral spring U⁶, fixed at its opposite ends on the front arm U4 of said ring and on the cham- 95 bered head A^6 of the gooseneck A^4 A^5 .

The pawl V, carried by the slide W, as explained, in the normal position of the slide has its toe V² at rest against under side of a fixed shelf L⁵ of the flanged disk L, all so that 100 the pawl is thereby held out of engagement with the teeth of the ratchet-ring U², while free to engage with said teeth as the slide W begins to move, and continues its movement, as aforesaid, for the reason that by such move-105 ment the pawl moves away from said shelf L⁵ and so is released from its restraint, and as it is pressed upward by the spring U⁷ necessarily it is engaged and held in engagement with the teeth of said ratchet-ring, which 110 thereby is carried with the slide W on its continued movement.

Fig. 4 shows by a heavy line a sheet Z of leather clamped in position for being cut out by the knife G in accordance with the sole- 115 pattern H, and, furthermore, said figure shows means for holding the pattern in position by the under plate H2, against which the leather Z is directly clamped, as has been explained. These means may consist of vertical pins f 120 at opposite ends of and fixed to the plate H² and projected upward through holes suitably located on the pattern. Above the pattern each pin is grooved peripherally and at its groove is engaged with a horizontal spring- 125 bolt q at each end of the lower portion of the block I in suitable position to engage the pins, as aforesaid. By pushing back the springbolts g the pattern is released for removal and placing thereon of another, all as is ob- 130 vious without further explanation, and with the bolts engaged with the pins the plate H² is held in close contact with the pattern and the pattern held on the block I.

The operation of the machine and its several parts, with a leather sheet clamped on the cutting-block, all as described, on a rotation of the driving-shaft B, is as follows: The two-5 part support holding the two cutting-carriers, and consisting of head-block C and slideframes D D² D³ on said block, is, with its supporting-sleeve C², rotated around the axis of the vertical tubular shaft B⁵ by means of 10 meshing gear-wheels B3 B4 on said shafts and the driving-shaft B, a worm gear-wheel B⁶ on the lower end of shaft B⁵, two worms B⁷, meshing said worm-wheel B⁶ on its opposite sides and free for the longitudinal slide there-15 through of separate horizontal splined shafts B⁸, supported and turning in suitable bearings of said slide-frames D D² D³. The rotation of the splined shafts B⁸, as explained in each case, imparts a vertical reciprocation to 20 the vertical cutting blades or chisels G to and through the leather clamped on the cuttingblock, and as the two-part support for the cutter-carriers rotates, as explained, cutting the leather along a line which corresponds 25 in direction and shape to the outline of the fixed pattern II. This up-and-down movement of the cutting-blades G is secured by means of the cranks B⁹ on the splined shafts B⁸, stirrup-shaped pitmen B¹⁰, hung on said 30 cranks, vertical sleeves B¹³, suspended on said pitmen and moving up and down and swinging on fixed vertical guide-rods E of the slideframes D D² D³, carrying said splined shafts B⁸, in combination with upper radial arms F, 35 held on and swinging with said sleeves B¹³, and lower radial arms F⁶, held on vertical rods F⁷, turning within said guide-rods E for said sleeves B¹³, vertical blocks F² F⁴, held and swiveling on said radial arms and vertically 40 joined by said cutting-blades G, which swivel in conjunction with said blocks as they are moved up and down through the lower swiveling blocks, as before stated. This swiveling of the blocks is caused by the bearing of 45 the lower blocks against and their travel around the edge of the pattern H, and to this edge they are confined with an elastic pressure exerted by coiled springs E⁵, connected to them and the sliding frames, as explained, 50 and, furthermore, the lower swiveling blocks and the upper swiveling blocks and the parts connecting them, and the splined shafts B⁸, and slide-frames supporting said shafts, all as has been explained, are moved toward and 55 away from the vertical axial line of the pattern, or, in other words, the vertical axial line of rotation of the two-part support of the cutter-carriers, by means of the gear-wheels N¹² of the splined shafts B⁸, a stationary 60 toothed rack M³ and pinion gear-wheels N³, meshing said rack, and intermediate gearwheels meshing each other, and said gearwheels N¹² and pinion gear-wheels N³ and their shafts or studs severally located between said 65 gear-wheels N¹² and said pinion gear-wheels N³, as follows, to wit: Gear-wheels N¹⁰, mesh-

ing said gear-wheels N^{12} , turning on studs N^{11} ;

gear-wheels N⁹, fixed on shafts N⁶, turning in bearing-blocks N⁷ N⁸ of the sliding frames D D² D³; worms N⁵, fixed on said shafts N⁶, and 7° worm gear-wheels N⁴, turning on studs N² and carrying said pinion gear-wheels N, mesh-

ing said toothed rack M³.

The result of the operation of the machine, as explained, is the cutting out from the 75 clamped leather sheet of a piece corresponding substantially in outline and size to those of the pattern H. This result is accomplished in the machine of the drawings by a half-rotation of the two-part supports C and D D² D³ for 80 the cutter-carriers, for the reason that two cutters are simultaneously cutting the leather sheet at opposite points thereof and continuously moving at the same time and in the same direction around the pattern and each for one-85 half or thereabout of the entire length of the

outline of the pattern.

On the completion of the cutting out of the leather, as explained, the run of the machine is then arrested by an automatic unclutching 90 of driving-shaft B and driving-pulley wheel B² by the release of the upright arm U of ratchet-ring U² from engagement with the sliding rod T, forming part of the collar O of the clutching mechanism, all as described. 95 This release of arm U is caused from a partial rotation of ratchet-ring S2 by the pawl V of the slide-plate W, which then is moved on and about the vertical edge of the horizontal circular disk L by the action of the upper 100 lever-arm X on the pin W⁴ of said sliding plate W. This movement of said plate W is produced by a partial rotation or rock of the shaft X2, carrying lever-arm X in bearingblocks X³ of the plate M, having the toothed 105 rack M³, and it is secured by the impingement and riding against the dependent or lower lever-arm X⁴ on shaft X² of a bearingblock N⁷ on a slide-frame of the two-part and rotating cutter-carrier supports C and D 110 $D^2 D^3$.

The unclutching, as stated, of the driving-shaft B and pulley-wheel B² is because of the slide on the shaft of the clutching - collar caused by coiled springs T⁸, and immediately 115 as they are unclutched the shaft is clutched to the collar O² of the supporting-framework of the machine, and thereby is secured an absolute and instant arrest of the rotation of the driving-shaft B and the stopping of the 120 machine.

With the machine stopped, as explained, the cutting-block P, constituting, with the pattern-plate H, the holding-clamp of the leather to be cut, all as stated, is then released for 125 the removal of the cut-out piece of leather and for the insertion of a new piece therebetween, which is then clamped to and between the pattern-plate H and cutting-block, as now to be explained.

The unclamping of the cut-out piece is secured by a downward movement of the cut-ting-block P, in part because of its own weight, but positively because of the bend of the tog-

589,409

gle-lever R R² from the recoil or tension of its coiled spring R4, as said lever is released by depressing the treadle-lever R¹¹ sufficiently to disengage the catch-rod R⁵ from the ma-

5 chine-supporting leg-frame A.

The clamping of the leather sheet is secured by depressing the treadle-lever R³, which straightens out the toggle-lever R R2, and thus raising the cutting-block P the leather sheet ro is clamped between it and the pattern and to the latter, on which the whole is made fast by the then automatic engagement of the catchrod R⁵ with the leg-frame A, all as is obvious

without further explanation.

The toggle-lever R R², as particularly shown and described, is connected with the clutching mechanism of the driving-shaft B and pulley-wheel B² for the bend of the togglelever R R² to secure an unclutching of said 20 shaft and pulley-wheel and to allow said shaft to be clutched to the supporting-frame of the machine, as before explained, and for the straightening of said toggle-lever to secure the clutching of said shaft and the pulley-25 wheel.

The unclutching above stated results from the bend of the toggle-lever R R2, which releases the bearing-pressure of the arm S of the toggle-lever on the lever S³, and, through 30 said lever S³, vertical rod S⁴, bell-crank lever S⁵ S⁶, slide-rod T, and stirrup-frame T⁵, the springs T⁸ of the clutching-collar O to action to move said collar and rod in a direction freeing or unclutching said collar from the

35 loose pulley-wheel B.

The clutching above stated results from the straightening of the toggle-lever R R², which through its arm S brings pressure on and movement of the lever S³ in a direction 40 and also a movement of vertical rods S4, bellcrank lever S⁵ S⁶, slide-rod T, collar T⁴, stirrup-frame T⁵, and rods T⁶ T⁷ of clutching-collar O², all so that the clutching-collar O is pressed against its springs T⁸ into contact 45 with the loose pulley-wheel B2, and thereby said wheel and shaft B clutched and so held by the then fastening, as has been explained, of the toggle-lever in its straightened position, and also by the then engagement, as 50 before explained, of said slide-rod T and an upright arm U⁴ of the ratchet-ring U². The machine, as has been explained, plainly has two means for clutching the driving-shaft B and pulley-wheel B2—to wit, the means in 55 connection with the toggle-lever R R² and the sliding clutching-collar O and the handlelever Y; and, again, also two means for holding the driving-shaft B and pulley-wheel B² clutched—to wit, the means in connection 60 with the toggle-lever R R² and the sliding clutching-collar O, and the means consisting, among others, of the upright arm U to engage the slide-rod T and of ratchet-ring U² and pawl V for said ring, all as has been fully 65 explained; and, again, for automatically unclutching the driving-shaft and pulley-wheel means to release said arm U from engagement

with the slide-rod T as the two-part supports C and D D² D³ rotate, provided all else is suitable therefor, and for unclutching the driv- 70 ing-shaft and pulley-wheel as the clamped leather sheet material is unclamped, pro-

vided all else is suitable therefor.

If for holding the driving-shaft and pulleywheel clutched both mechanisms described 75 are used or arranged in one machine, then to unclutch the driving-shaft and pulley-wheel by either of them the other must first be released. The means most preferably are those acted upon by the rotating two-part support 80 for the cutter-carriers, in which case the handle-lever Y, arranged as described, suffices for the purpose of clutching the driving-shaft and pulley-wheel.

The rotating block C, forming one part of 85 the two-part support for the cutter-carriers, is shown as provided with two sliding frames D D² D³; but it is obvious that but one such carrier may be used or that more than two may be used, each being suitably adapted, as 90 also the block C, to receive them all, as has

been explained.

With two sliding frames D D² D³ for the cutting operation only a half-rotation of the block C is necessary to complete the circuit 95 of the pattern H, whereas with one sliding frame D D²D³ a complete rotation of the block C would be necessary, and with three or more sliding frames D D² D³ the necessary rotation of the block C would be proportionately re- 100

duced from a complete rotation.

Again, each sliding frame D D² D³, as shown, is adapted for separate and distinct operations from a common toothed rack M³ of plate M, to which both are geared, all as described. 105 However, in lieu of this arrangement one frame only may be geared to said plate M and the other operated from the one so geared for illustration, Fig. 10--by providing each sliding frame with a toothed rack-bar Z2, both 110 parallel to and having their toothed edges presented toward each other, and the block C, with the gear-wheel Z³, turning on a fixed stud Z⁴ of said block and in mesh with both of said bars Z², all so that the movement of 115 the sliding frame, from its mesh with said plate M, is directly and immediately imparted to the other sliding frame.

In Fig. 7 the bearings N⁷ N⁸ for the shaft N⁶, carrying the worm N⁵ and pinion gear- 120 wheel N⁹, are shown as severally carried by a plate N¹³, which at one end is of a semicircular shape and at the other end is straight and attached to the top rail D² of a sliding frame D D²D³ by a set-screw N¹⁶, on which, loosened, 125 the frame turns as a fulcrum, so as thereby to adjust the mesh of the worm N5 with the worm-gear N⁴, the plate then moving, by its slot N¹⁴, on a set-screw N¹⁵, screwed into said rail D² and suitably loosened therefor. By 130 tightening up the set-screws N¹⁶ N¹⁵ the said plate N¹³ is fastened to said rail, thus fixing

the worm N⁵ adjusted.

According to the number of sliding frames

D D² D³ of the machine, and if the drivingshaft B and gear-wheel B² are to be held clutched by the engagement of a projecting arm, such as U or U⁴ of the ratchet-ring U, 5 and a slide-rod T of the clutching mechanism, all as explained, said ratchet-ring obviously should be provided with a corresponding num-

ber of said arms, suitably located. The swiveling of the cutter-blade G, as de-10 scribed, secures the presentation of the cutting edge of the blade always in a line parallel with the line of direction of the edge of the pattern at the part of which it may be at any given time operating as it is traveling about 15 the pattern. Again, by the means of the swinging arms F F6, under spring-pressure and having a cutter-blade swiveled thereon, all as explained, the cutter-blade through its lower swivel-block at a bearing against the 20 edge of the pattern H is allowed, but necessarily within given limits, to move in and out in conformity to the varying outline of the pattern and independently of the slide of the sliding frame D D²D³, carrying it, and by which 25 in turn is automatically accomplished the placing of the cutter in position to conform to extreme varying distances of points at the edge from the center point of the pattern, and which is produced by the operation of the 30 gearing meshing the sliding frame and the toothed rack M³ of the plate M, which is generally of the outline and diameters substantially agreeing with those of the pattern generally considered—that is to say, considering 35 the pattern without reference to the in-andout variations in shape which its outline may have to suit a given or special outline within

It will be noted that a plate M, having a toothed rack M³ of given dimensions, may be used with a series of patterns of varying dimensions, and in the operation of the machine, as explained, the cutting out desired secured 45 from the particular pattern which may be used, and the reverse is also true—that is to say, that plates M, each having a toothed rack M³ of varying dimensions as to each, may be used with a single pattern of given dimensions. 50 and the cutting desired from the pattern accomplished in the operation of the machine, as explained.

given general limits—for illustration, a boot

or shoe sole.

If the pattern and the toothed rack of the plate M are of exactly corresponding outlines, 55 varying only as to dimensions, the arms F F⁶ may be rigid, for the reason that the necessary in-and-out movement of the cutters would be then accomplished by the slide of the sliding frame D D² D³ of and rotating with the 60 head-block C.

The leather sheet when clamped as stated is under elastic pressure exerted on the pattern H by the then compression of the coiled spring K7, which is about and confined end-65 wise on the vertical shaft K, to which the pattern is secured, as explained.

With the leather-clamping parts of the machine opened as explained, then the two-part support C and D D² D³ as a whole, together with the toothed rack-plate M, flanged disk L, and 70 gear-wheel K⁶, can be swung about the vertical axial line of shaft K, causing thereby a rotation of pinion gear-wheel K⁵ and through its shaft K⁴ and the pinion gear-wheel K³ on said shaft in mesh with gear-wheel K² of the 75 shaft K a rotation of said shaft K and with it the pattern II, by all of which the pattern can be placed in any given direction, according as may be desired.

Having fully described the construction of 80 my machine and its mode of operation, I claim as new and desire to secure by Letters Patent of the United States—

1. In a machine for cutting sheet material, the combination with a pattern of a recipro- 85 cating cutter, a cutter-guide through which the cutter reciprocates arranged to bear against the edge of the pattern, and mechanism for causing the cutter and its guide to travel along the pattern, substantially as de- 90 scribed.

2. In a machine for cutting sheet material, the combination with a pattern, of a reciprocating swiveling cutter, a freely-revoluble guide turning on the swiveling axis of the 95 cutter, and arranged to bear against the edge of the pattern, substantially as described.

3. In a machine for cutting sheet material the combination with a rotary block, of a slide moving radially thereon, and a recipro- 100 cating knife carried by said slide, and connected mechanism for actuating the knife and slide, substantially as described.

4. In a machine for cutting sheet material, the combination with a rotary block, of a 105 slide moving radially thereon, swinging arms on said slide, and a reciprocating knife mounted in said arms and connected mechanism actuating the knife and slide, substantially as described.

5. In a machine for cutting sheet material, the combination with a rotary block, of a slide moving radially thereon, swinging spring-pressed arms on said slide, a reciprocating cutter mounted in said arms, and con-115 nected mechanism for actuating the knife and slide, substantially as described.

6. In a machine for cutting sheet material the combination with a radially-movable knife-carrier, of a reciprocating swiveling 120 knife carried thereby and connected mechanism for actuating the knife and radially moving the knife-carrier, substantially as described.

7. In a machine for cutting sheet material 125 the combination with a rotary block, of slides movable thereon and reciprocating cutters carried by said slides, and connected mechanism for actuating the cutters and slides, substantially as described.

8. In a machine for cutting sheet material, the combination with swinging arms, of freely-

IIO

130

revoluble blocks carried thereby, and a reciprocating cutter movable in said blocks,

substantially as described.

9. In a machine for cutting sheet material 5 the combination with swinging spring-pressed arms, of freely-revoluble blocks carried thereby, and a reciprocating cutter movable in said blocks, substantially as described.

10. In a machine for cutting sheet material 10 the combination with a power-driven cutter, of a clamp to clamp the material to be cut, and connected mechanism operating to actuate said cutter upon the clamping of the material, and to stop the operation thereof at 15 a predetermined point, substantially as described.

11. In a machine for cutting sheet material the combination with a rotary block of radially-movable cutters carried thereby, and 20 connected mechanism for simultaneously radially moving said cutters in opposite direc-

tions during the cutting operation, substantially as described.

12. In a machine for cutting sheet material the combination with a pattern-support and 25 pattern, and apertures in said pattern, of a spacing-plate, and bolt and stud connections between said plate and support, for clamping the pattern, substantially as described.

13. In a machine for cutting sheet material 30 the combination with a reciprocating cutter and a swiveling grooved block through which said cutter passes, of a pattern having an exposed edge fitting the groove in said block, substantially as described.

In testimony whereof I have hereunto set my hand in the presence of two subscribing

witnesses.

JAMES J. BREACH.

Witnesses:

ALBERT W. BROWN, MARION E. BROWN.

