2 Sheets—Sheet 1. ## J. E. SCHUMACHER. HYDRAULIC OR OTHER ENGINE. No. 571,129. Patented Nov. 10, 1896. ## J. E. SCHUMACHER. HYDRAULIC OR OTHER ENGINE. No. 571,129. Patented Nov. 10, 1896. Mitnesses: MBMCGvir. Kaur L. Dyer Inventor. J.E.Schumacher. By. hanard H. alyer Atty. ## United States Patent Office. JAMES EDWARD SCHUMACHER, OF YORK, ENGLAND. ## HYDRAULIC OR OTHER ENGINE. SPECIFICATION forming part of Letters Patent No. 571,129, dated November 10, 1896. Application filed September 24, 1894. Serial No. 524,010. (No model.) To all whom it may concern: Be it known that I, JAMES EDWARD SCHU-MACHER, a subject of the King of Prussia, Emperor of Germany, residing in the city and 5 county of York, England, have invented new and useful Improvements in or Relating to Hydraulic or other Engines, of which the fol- lowing is a specification. This invention relates to improvements in 10 hydraulic and other engines; and the objects of my improvements are, first, to provide a continuous revolving valve making, say, one revolution to three strokes of the piston or pistons; second, to afford facilities for the 15 proper adjustment of the stroke of each piston, whereby when, say, two cylinders and pistons are controlled by the same valve the stroke may, if desired, be slightly varied; third, to enable the engine to be readily re-20 versed. I attain these objects by the mechanism illustrated in the accompanying drawings, in which— Figure 1 is a sectional elevation of a vertical engine provided with two cylinders con-25 trolled by one valve; Fig. 2, a front elevation of the same; Fig. 3, a sectional plan of the valve-seat on line x x, Fig. 1. Fig. 4 is a sectional elevation of the valve-seat; Fig. 5, a sectional elevation of the valve. Figs. 6 30 and 7 are plans of the top and bottom faces of the valve. Figs. 8 and 9 are respectively a sectional elevation and end elevation of re- versing-gear. Like parts in all the views are marked with 35 similar letters of reference. A is the bed-plate, and B are the standards. These constitute the framework of the engine and may be of any suitable and ordinary construction. On the top of the stand-40 ards B are fixed the pedestals C, which form the bearings of the fly-wheel shaft D, on which is mounted the fly-wheel E, slotted cranks F F', weighted at F² F³, to be hereinafter described, and bevel-pinion G, gearing 45 with bevel-wheel G', mounted on the valveshaft H, which is supported by bearings I, fixed to the standards B. All the above parts, with the exception of the cranks F F', may be of ordinary and well- 50 known construction. On the bed-plate A are bolted or otherwise fixed one or more double-acting cylinders J J', somewhat similar in construction to that of a steam-cylinder. The top of the bed-plate A is preferably, though not necessarily, so 55 arranged to form the bottom cover for each of the cylinders. In each cylinder are provided two ports J[×] J^{××} or J² J³, communicating, respectively, with the ends of each of their cylinders and connected by suitable 60 pipes or passages K K' K X K2 with a valve-box M, to be hereinafter described. In each of the cylinders J J' reciprocates a piston J4 J^{×××} of ordinary construction, mounted on a piston-rod J⁵, working through the gland J⁶ 65 and connected to the weighted slotted cranks F F' by cross-heads J', forked or other rods J⁸, and pins J⁹, capable of adjustment in the slots f of the cranks. According to the position of the crank-pins J^9 in the slots f will 70 the stroke of the pistons $J^4 J^{\times \times \times}$ be increased or diminished. The crank-pins are retained in position in the said slots by nuts J^{10} or their equivalents. The circular valve L, mounted on shaft H, 75 and its case M, fixed to the bed-plate A, are constructed as follows: Within a metal casing or ring, hereinafter termed the "outer" casing M, is inclosed a tube or ring N, hereinafter termed the "valve-seat," of any suit- 80 able diameter, length, and thickness. In the periphery of the valve-seat N are cut or otherwise formed any desired number of circumferential grooves or recesses, say, for example, four, N' N² N³ N⁴; but I distinctly wish 85 it to be understood that I do not limit myself to this or any other number hereinafter mentioned. In the thickness or ring portion n of the said valve-seat N and around its central orifice N⁵ are also provided a number of ver- 90 tical holes or apertures, hereinafter termed "valve-ports," communicating with the said circumferential grooves, say, for example, three ports to each circumferential groove. That is to say, valve-ports N⁶ communicate 95 with circumferential groove N' and port J2 of cylinder J'; valve-ports N' with circumferential groove N² and port J[×] of cylinder J; valveports N⁸ with circumferential groove N⁸ and port J³ of cylinder J'; valve-ports N⁹ with cir- 100 cumferential groove N⁴ and port J^{××} of cylinder J. The whole of the valve-ports N⁶ N⁷ N⁸ N⁹ are arranged at or about a right angle to the circumferential grooves N' N² N³ N⁴ and are open to the action of the valve L. The outer casing M is fixed around the periphery of the valve-seat N, so as to be water or fluid tight, for preventing the water or other fluid 5 passing from one circumferential groove to another. In the periphery of the outer casing are provided a number of openings k k', corresponding with the number of circumferential grooves, that is to say, one opening for each 10 groove, which is connected by a pipe or passage with one of the ports in each cylinder as follows: passages K K[×], respectively, with circumferential grooves N² N⁴ and ports J[×] $J^{\times\times}$; passages K' K², respectively, with cir-15 cumferential grooves $N' N^3$ and ports $J^2 J^3$. On the top of these valve-ports N⁶ N⁷ N⁸ N⁹ is arranged to rotate within the outer casing M a circular disk or valve proper, L, in which are provided a number of vertical openings 20 or orifices corresponding in number with the number of ports communicating with each circumferential groove. That is to say, if there are three valve-ports, as shown in the drawings, communicating with each circum-25 ferential groove, then there will be three vertical openings $l l' l^2$, arranged to perforate the flange or disk portion l^{\times} of the valve L. These openings or orifices l l' l2 are of slightly larger area than that of the valve-ports N⁶ N⁷ N⁸ N⁹. 30 On the inner face of the disk or flange l^{\times} are also formed or provided a number of apertures or recesses $l^3 l^4 l^5$, (of the same number as the ports communicating with each circumferential groove,) arranged to communi-35 cate with a central circular or other recess l^6 , formed in the under face of the said disk or flange l^{\times} and about the same (or nearly so) diameter, and immediately over the central orifice N⁵ of the valve-seat. It will be readily understood if, say, two cylinders, such as J J', each having a port, such as $J^{\times}J^{\times\times}J^2J^3$, communicating with each end of the cylinder, are connected with the circular valve-disk, such as L, and its casing, 45 such as M, four circumferential grooves would preferably be provided in the outer casing M, and, say, twelve ports, such as N⁶ N⁷ N⁸ N⁹, would be provided in the valve-seat N and the four perforations, such as k k', in the 50 outer casing M would be connected, respectively, by four pipes, such as K K K K' K2, with the four ports, such as $J^{\times} J^{\times \times} J^2 J^3$, in the cylinders, one pipe for each port. The herein-described ports J[×] J^{××} J² J³ in 55 the cylinders J J' and valve-ports N⁶ N⁷ N⁸ N⁹ are alternately employed for inlet and exhaust purposes. The inlet water or fluid may be arranged to enter the hood or valvecovering M', which forms a part of the outer 60 case M at O, above the circular valve-disk L, and passes through the vertical holes or apertures l l' l² therein to the valve-ports and circumferential grooves in the valve-seats, and from thence to the ports in the cylinder, that 65 is to say, when the valve L is in the position shown in the drawings the inlet-water passes into the hood M', through openings l', into valve-ports N⁹, thence into circumferential groove N^4 , passage K^{\times} , port $J^{\times\times}$, to bottom of cylinder J for raising piston J⁴ to 7° the top of its stroke, while the exhaust is forced by the descent of piston J^{×××} from the cylinder J' into the circumferential groove N³ and up the valve-ports N⁷ into the recesses l^3 l^4 l^5 and central circular recess l^6 , formed in 75 the inner face of the circular valve-disk, by which it is directed to the central orifice N⁵ in the valve-seat for conveyance away by a pipe O' or its equivalent. The circular valve is caused to rotate con-80 tinuously by gearing mounted, say, on the shafts D and H or other equivalent means for gradually opening and closing the valveports; but the rotation of the circular valve L is slower than the traverse of the pistons, 85 that is to say, the pistons J⁴ J^{×××} may be arranged to make, say, three strokes to one rev- olution of the valve. To reverse the action of the valve and of the engine, one of the gear-wheels, say wheel 90 G', is arranged to revolve loosely on its shaft H, and on the same shaft is mounted, so as to slide freely on a square portion or key, a clutch P, armed with one or more pins P'. In the boss G² or other portion of the gear- 95 wheel is or are provided one or more grooves, say two grooves P² P³, of the same or varying lengths, as shown in the drawings. At the ends of each groove is a hole P⁴ and P⁵, into which the pin P', or one of the pins when 100 more than one pin is employed, enters when the clutch is meshed with the gear-wheel. During the time the pin is traveling in the groove P² or P³ of the wheel no motion is transmitted to the circular valve. A suitable 105 spring P⁶ and lever P⁷ or equivalent mechanism may be employed for meshing and unmeshing the clutch. To reverse the engine, the pin P' is withdrawn from the hole, say P4, and the action 110 of the engine is immediately stopped. On rotating the pin to place it in the hole P⁵ the position of the valve over the ports will be changed and thus causing a reversing action 115 to take place. It will be readily understood that when required the cylinders, valves, and valve-seat may be arranged in a horizontal position; also that instead of arranging the valve to work in the horizontal position, as shown in the 120 drawings, it may be arranged to work in a vertical position, that is, with its shaft or spindle H in a horizontal instead of the vertical position illustrated. One or more cylinders may be operated 125 from one valve and its seats, two circumferential grooves and any desired number of valve-ports—say three for each groove—being required for each cylinder. The above-described engine may be oper- 130 ated by gas, compressed air, steam, water, and other fluid, preferably water, and may be applied for a great variety of purposes. The action of the engine is as follows: Com- 571.129 mencing with the admission of water to cylinder J to raise piston J4 to, say, its half-upstroke, water or other fluid under pressure enters the hood M', through the pipe O, above 5 the valve L, from any suitable source—such as, say, the water mains or reservoir—and passes through the openings l l' l2 to the valveports—say to the three valve-ports N⁹ N⁹ N⁹ to circumferential groove N4, and from thence 10 through passage K[×] for imparting the full power or pressure to piston J⁴ for its upstroke. At the same time port J[×], passage K, circumferential groove N² and valve-ports N⁷, and covered recesses l³ l⁴ l⁵ l⁶ will be in commu-15 nication with the central orifice N⁵ for conveying away the exhaust from cylinder J. At the commencement of the action in cylinder J, that is, when the piston is in the position shown in Fig. 1, the valve-ports N⁶ and N⁸ 20 are closed by the solid or faced portions of the under side of flange l^{\times} of the valve L against the admission of water to the cylinder J'. At the commencement of the action in cylinder J' the exhaust from below the pis-25 ton will have passed out through port J³, passage K², to circumferential groove N³, valveport N⁸, recessed portions l³ l⁴ l⁵ l⁶, to central orifice N⁵, it being understood that the valve would not have reached the position illus-30 trated until the piston J^{×××} had reached the bottom of its cylinder. When, say, the halfupstroke of the piston J⁴ in cylinder J is reached, and continuing to admit the water to said cylinder J through openings l l' l2, 35 valve-ports N⁹, and circumferential groove N⁴, none of the valve-ports will then be practically closed, as valve-ports N⁷ will be then partially and decreasingly closed to the exhaust from cylinder J, while the valve-ports 40 N⁶ will be partially and increasingly opened to the exhaust from cylinder J'. When this stage is reached that both of the pistons J⁴ and J^{×××} are rising in their respective cylinders, it will be readily understood that the 45 admission of water through the openings $l \ l'$ l² of the rotating valve L to valve-ports N⁹ and circumferential grooves N4 will gradually decrease, while the admission to valve-ports N⁸ and circumferential groove N³ will be si-50 multaneously and correspondingly increased. On the completion of the stroke of piston J⁴ in the upper half of the piston J and when the piston J^{×××} is, say, at its half-stroke in cylinder J' valve-ports N' and N' are closed, 55 and the valve-ports N⁸ communicating with circumferential groove N³ are fully opened to cylinder J', and at the same time valveports N⁶, communicating with circumferential groove N', are fully opened to the exhaust 60 from that cylinder; but when the piston J××× has passed over, say, its half-stroke and is continuing its motion upward at the same time piston J⁴ is descending, say, to its halfstroke valve-ports N⁸ will be closing decreasingly to pressure at the same time that valveports No are being closed decreasingly to the ! exhaust from cylinder J'. Simultaneously therewith valve-ports N⁷ will increasingly open to pressure, and N⁹ will also be increasingly opened to the exhaust from cylinder J. 70 On the completion of the stroke of the piston $J^{\times\times\times}$ and when the piston J^4 is at, say, its half-downstroke in cylinder J valve-ports N⁶ and N⁸ will be closed, thereby completely shutting off the pressure and exhaust to and 75 from cylinder J'. At the same time valveports N⁷ and N⁹ will be fully opened for respectively imparting pressure to the piston J⁴ and receiving the exhaust from cylinder J; but by the continued descent of the piston J4, say, 80 from its half-stroke to the bottom of cylinder J, valve-ports N⁶ will be increasingly opened for admitting pressure to the top of cylinder J', and valve-ports N⁸ will open increasingly for receiving the exhaust from the cylinder 85 J'. Simultaneously therewith valve-ports N⁷ will be closed decreasingly to pressure in cylinder J and valve-ports N⁹ closed decreasingly to the exhaust from the same cylinder. By the continuous rotation of the valve, 90 before comparatively any pressure is obtained. in the closed valve-ports which would tend to lift or force the valve from its seat, the valve will have been moved partially over the adjoining valve-ports, say, for instance, 95 N⁶ and N⁸, gradually opening them and closing the previously-opened ones, so that when the openings $l \ l' \ l^2$ and recesses $l^3 \ l^4 \ l^5$ are respectively midway between two sets of valveports, say, for example, between N⁹ N⁶ and 100 N⁷ N⁸, water or other fluid for completing the upward stroke of piston J⁴ and downward stroke of piston J^{×××} would be able to pass simultaneously through openings l l' l2 to valve-ports N⁹ N⁶. At the same time the 105 water above piston J⁴ and below piston J^{×××} will respectively be forced, say, through ports J× J³ of cylinders J J', along passages, say, K K², up valve-ports, say, N⁷ N⁸, and conveyed by recesses $l^3 l^4 l^5$ to central recess l^6 and thence 110 down exhaust N⁵ and away through pipe O'. It will thus be seen that on water or other fluid pressure being admitted to the hood M' above the valve L it will find, as described, three supply valve-ports fully open to pres- 115 sure and which communicate with the ports in the cylinder J, (while the valve-ports of cylinder J' are closed,) whereby the piston J⁴ is caused to reciprocate in its cylinder, and in so doing and by the connection of the pis- 120 tons with the shaft D, by means of pistonrods J⁵, cross-heads J⁷, connecting-rods J⁸, crank-pins J9, and cranks FF', a rotary motion is imparted to the said shaft and by it transmitted through gear-wheels G G', boss G2, 125 clutch P, sliding on valve shaft or spindle H, to valve L, causing it to rotate and thus changing the position of the valve for operating both pistons simultaneously, as described, thereby permitting of another set of three 130 valve-ports being opened to the exhaust. By the gradual simultaneous opening and closing of the inlet and exhaust valve-ports an easy and uniform motion is imparted to the moving parts of the engine. Having now particularly described the na-5 ture of my invention, what I claim, and desire to be secured by Letters Patent, is— 1. In an engine, the combination with a bed-plate, cylinders mounted on said bedplate, a valve-case arranged adjacent to said to cylinders, and communicating therewith, a valve-seat within the casing, circumferential grooves formed on the valve-seat, each groove communicating with a single port of one cylinder, and with one or more openings in 15 the face of the valve-seat, a hood covering the face of the valve-seat a rotating valve mounted within the hood, perforations within the valve connecting the hood and circumferential grooves, and recesses on the face of the 20 valve, connecting the grooves with the cen- 2. In an engine such as described the com- tral orifice, substantially as set forth. bination of the outer casing M perforated as described, the valve-seat N fitted within said outer casing having a number of circumfer- 25 tial grooves N' N² N³ N⁴ cut in its periphery, valve-ports N⁶ N⁷ N⁸ N⁹ communicating with said circumferential grooves as described, an orifice N⁵ in the center of said valve-seat, a valve L working in the hood M' and upon the 30 valve-seat N, and having a number of openings l' l^2 l^3 for inlet purposes, and recesses l^3 l^4 l^5 communicating with a central circular recess l⁶ over the central orifice N⁵ for exhaust, said valve receiving a continuous rotary mo- 35 tion through gear-wheels G, G', and shaft H from the fly-wheel shaft D as set forth. In testimony whereof I have hereunto signed my name to this specification in pres- ence of two subscribing witnesses. JAMES EDWARD SCHUMACHER. Witnesses: ELIZABETH SCHUMACHER, W. FAIRBURN HART.