(No Model.) ## J. ROBERTSON. HYDRAULIC PRESSING APPARATUS. No. 560,935. Patented May 26, 1896. ## United States Patent Office. JAMES ROBERTSON, OF MANCHESTER, ENGLAND. ## HYDRAULIC PRESSING APPARATUS. SPECIFICATION forming part of Letters Patent No. 560,935, dated May 26, 1896. Application filed November 30, 1895. Serial No. 570,674. (No model.) Patented in England March 4, 1893, No. 4,722. To all whom it may concern: Be it known that I, JAMES ROBERTSON, of Manchester, in the county of Lancaster, England, have invented certain new and useful 5 Improvements in Hydraulic Pressing Apparatus, (for which I have received Letters Patent in Great Britain No. 4,722, dated March 4, 1893,) of which the following is a specification. This invention relates to hydraulic pressing apparatus for use in shaping metals by the forging process, wherein liquid-actuating rams are reciprocated to transmit power to liquid-actuated rams of the press proper to 15 alternately raise and lower the forging-head. The particular object of the invention here disclosed is to provide auxiliary liquid-forcing means to be brought into operation as desired to vary the stroke of the forging-head 20 according to the work in hand, whereby I am enabled to employ a direct-acting steam-engine for driving the liquid-actuating rams and at the same time provide for differentlength strokes of the forging-head without 25 waste of steam. Using a short-stroke engine, the auxiliary liquid-forcing means are brought into play when a longer movement of the forging-head is desired than can be produced by the engine. The drawings which accompany and form part of this specification illustrate an em- bodiment of the invention. Figure 1 shows a sectionalized side elevation of the complete apparatus. Fig. 2 shows 35 an end elevation of the same. Fig. 3 shows a top plan view. Q' designates the base-frame of the press, in the overhanging portion of which there is arranged the cylinder J¹⁶, which receives the 40 ram K⁵ of the forging-head. On the upper side of this overhanging part of the frame there is mounted the cylinder P⁶, which receives ram P⁷, carried by cross-head P¹², this cross-head being connected by side rods P¹⁴ 45 with the forging-head. H² designates a direct-acting steam-engine, whose piston-rod H³ is connected with a rectangular frame A^4 , carrying rams A^5 and A^6 , projecting toward each other and entering, 50 respectively, cylinders I⁴ and I⁵, which are supported on a suitable base Q². Cylinder I⁴ is connected by suitably-valved pipe O⁵ with press-cylinder J¹⁶, whereas cylinder I⁵ connects by suitably-valved pipe P⁸ with press- cylinder P⁶. It will be obvious that the arrangement above described will operate to move the forging-head of the press up and down when a suitable supply of water has been introduced into the pipes and the engine is set in opera- 60 tion. Now this is all well enough for work capable of performance by the short stroke of the engine; but as frequently a longer movement of the forging-head is desired than can be imparted by this short stroke of the en- 65 gine I provide a set of auxiliary pumps of common form, of which there are here shown six, (designated S', S², S³, S⁴, S⁵, and S⁶,) and which may be employed, through means presently to be described, for the purpose of draw- 79 ing liquid from the cylinder J¹⁶ and forcing this liquid into cylinder P⁶ for the purpose of raising the forging-head higher than the position to which it is brought by the engine, and vice versa for moving it downward 75 through a greater distance. Three of the pumps, S⁴, S⁵, and S⁶, have their suction ends in communication with a pipe S⁸, which enters the forcing-cylinder J¹⁶ of the press, and the discharging ends of these 80 three pumps communicate with a pipe U, which enters the return-stroke cylinder P⁶ of the press. Thus with these pumps in action and the waterways properly opened liquid is drawn from the cylinder J^{16} and forced into 85the cylinder P⁶, thereby raising the forginghead to a higher position than reached under impulse of the engine. The other three pumps, S', S², and S³, connect by suction-pipe S" with cylinder P⁶ and by discharge-pipe U' 90 with cylinder J¹⁶, so that when these pumps are brought into operation liquid is drawn from cylinder P⁶ and forced into cylinder J¹⁶, thereby lengthening the downward movement of the forging-head over that produced 95 by the engine. Stop-cocks S⁹ and S¹⁴ are provided in the pipes S⁸ and S" to control communication between the pumps and the presscylinders, and these valves will have handles for the attendant to manipulate. When the work in hand only requires such movement of the forging-head as can be produced by the engine, then both cocks S⁹ and S¹⁴ are closed. When the pumps are used, 100 described. these cocks are alternately opened and closed to produce the lengthening of the forginghead's movement. It may be here stated that each of the siquid-forcing rams A⁵ and A⁶ is of but one-sixth the water-displacing mass of each of the forging-head pistons K⁵ and P⁷. What I claim as my invention is as follows: 1. In hydraulic pressing apparatus, the combination with the press having a forging-head carrying advancing and retracting liquid-actuated rams and cylinders inclosing the same, of a pair of connected liquid-actuating rams, cylinders inclosing the latter, suitable waterways connecting the said cylinders respectively with those inclosing the advancing and retracting rams of the press, means for reciprocating the liquid-actuating rams, and auxiliary pumping means communicating with the press-cylinders and arranged to transfer liquid from one to the other, substantially as and for the purpose 2. In hydraulic pressing apparatus, the combination with the press having a forg- 25 ing-head carrying advancing and retracting liquid-actuated rams and cylinders inclosing the same, of a pair of connected liquid-actuating rams, cylinders inclosing the latter, suitable waterways connecting the said cyl- 30 inders respectively with those inclosing the advancing and retracting rams of the press, means for reciprocating the liquid-actuating rams, a set of auxiliary pumps communicating by suction and discharge pipes with the 25 press-cylinder inclosing the retracting ram, a similar set of pumps communicating in like manner with the cylinder inclosing the advancing press-ram, and valves in the suctionpipes, substantially as described. In testimony whereof I have signed my name to this specification, in the presence of two subscribing witnesses, this 29th day of October, A. D. 1895. JAMES ROBERTSON. Witnesses: ARTHUR C. HALL, JOHN W. THOMAS.