G. L. BROWNELL. TWISTING MACHINE. No. 560,680. Patented May 26, 1896. ## G. L. BROWNELL. TWISTING MACHINE. No. 560,680. Patented May 26, 1896. ### G. L. BROWNELL. TWISTING MACHINE. Witnesses Walter 5. Bowen Clara A. Blake Toventor George Laomis Brownell. By his attorney Rufust Howler ### United States Patent Office. GEORGE LOOMIS BROWNELL, OF WORCESTER, MASSACHUSETTS. #### TWISTING-MACHINE. SPECIFICATION forming part of Letters Patent No. 560,680, dated May 26, 1896. Application filed May 22, 1891. Serial No. 393,784. (No model.) To all whom it may concern: Be it known that I, GEORGE LOOMIS BROW-NELL, a citizen of the United States, residing at Worcester, in the county of Worcester and 5 State of Massachusetts, have invented certain new and useful Improvements in Twisting-Machines, of which the following is a specification, reference being had to the accompa- nying drawings, in which— Figure 1 represents a side view of a portion of a twisting-machine embodying my invention. Fig. 2 represents a side elevation of the head or mechanism by which the individual strands are twisted into a cord and 15 wound upon a winding-spool, the larger portion of the supporting-framework having been removed. Fig. 2^a represents a central vertical sectional view of a part of the mechanism by which a traversing motion is im-20 parted to the cord as it is wound upon the winding-spool. Fig. 3 represents a detached view of the tubular sleeve having a spiral slot and by which the reciprocating movement of a rack-bar inclosed within said sleeve 25 is made to impart a rotary motion to the sleeve itself. Fig. 4 represents a detached view of the outer sleeve inclosing the sleeve shown in Fig. 3 and attached to the rotating flier-frame. Fig. 5 denotes a top view of the 30 circular plate or shell which is placed over and forms a housing for the gearing by which the fliers are rotated in twisting the individual strands. Fig. 6 represents a sectional view of the plate or housing shown in Fig. 5, 35 the section being taken upon line Z Z, Fig. 5. Fig. 7 represents a top view of the reciprocating drum by which the cord-guiding pulley is traversed, the flier-frame within which said drum is supported being taken on line 40 X X, Fig. 2. Fig. 8 represents a sectional view of one side of the flier-frame on line y y, Fig. 2, showing in top view the traversing carriage and the cord-guiding pulley supported thereon. Fig. 9 shows a side eleva-45 tion of the individual-strand spools having a connected stop-motion mechanism. Fig. 10 represents a top view of that portion of the stop-motion mechanism directly acted upon by the individual strands. Fig. 11 shows a 50 side view of that portion of the stop-motion mechanism represented in top view in Fig. 10. Fig. 12 represents a side view of the flanged disk, which is partly shown in top view in Fig. 10 and which is moved by the spring-actuated bell-cranks, one of which is shown in sec- 55 tional view in Fig. 12, the section having been taken upon line X' X', Fig. 10. Fig. 13 shows a longitudinal central sectional view of that portion of the stop-motion mechanism which is placed concentrically to the 60 driving-shaft; and Fig. 14 shows a detached view of the inner end of the hand-lever, showing the main driving-shaft in section and an end view of the actuating-nut shown in sectional view in Fig. 13. Similar letters refer to similar parts in the different figures. My present invention relates to that portion of a twisting-machine by which the twisted twine or cord is traversed or laid 70 upon a winding-spool, and also to the stopmotion by which the twisting and winding mechanism is stopped upon the breakage of one of the individual strands; and it consists in the construction and arrangement of 75 parts as hereinafter described, and specifically set forth in the subjoined claims. Referring to the accompanying drawings, A, Fig. 1, denotes a portion of the supportingframework, said figure showing in side eleva- 80 tion so much of the operating mechanism as pertains to one "head" or twisting mechanism by which several component strands are twisted into a single twine or cord. In Fig. 2 a portion of the framework has 85 been removed, disclosing more clearly that portion of the mechanism forming what is known as the "head" and comprising the individual-strand spools B, held concentrically with the fliers B', attached to the rotating spin- 90 dles B2. Each individual strand as it is drawn from its strand-spool is twisted by the rotation of the fliers in the usual and well-known manner, and the several strands of which the twisted cord is formed are carried together 95 through a condensing-tube B³ of any known form of construction, and through the hollowhub of a rotating flier-frame B4, over the conical and scored stretching-drums B5 to a rotating winding-spool B⁶. These several parts 100 in their general construction and arrangement form no part of my present invention, having already been shown and described in prior patents of the United States granted to me. The mechanism by which the twisted cord (represented at a in Figs. 1 and 2) is traversed or laid upon the winding-spool B⁶, as hereinafter described, I believe to be new. 5 The twisted cord a, after leaving the stretching-drums B⁵ B⁵, is carried over a guide-pulley b, turning upon a stud b', Fig. 8, held in one of the prongs b^2 of the traversing carriage b^3 , which is capable of a sliding motion along To the side b^4 , forming one of the sides of the flier-frame B^4 . The carriage b^3 is attached to a cord b^5 , which passes around the guide-pulley b^6 and over the two guide-pulleys b^7 and having its 15 ends carried around and attached at b⁸ b⁸ to the reciprocating drum b^9 . By imparting a reciprocating motion to the drum b^9 the traversing carriage b^3 will be made to move along the side b^4 of the rectangular frame B^4 . A 20 reciprocating motion is imparted to the drum b^9 by means of the mechanism shown in elevation in Fig. 2 and in sectional and detailed views in Figs. 2a, 3, and 4. The upper rail B7 of the flier-frame B4 is provided with a boss 25 or hub B⁸, to which is attached by means of a screw B⁹ the sleeve B¹⁰, provided upon diametrically opposite sides with the longitudinal slots B¹¹. Inclosed within the sleeve B¹⁰ is a sleeve 30 B¹², having a spiral slot B¹³. The sleeve B¹² is attached by a pin B¹⁴ to the short spindle B^{14a}, journaled within the hub B⁸ and having the scored drum b^9 attached to its lower end. Inclosed within the sleeve B¹² is a sliding 35 rack-bar B¹⁵, having teeth B¹⁶, engaged by a pinion B¹⁷ upon a shaft B¹⁸, which has a reciprocating motion as actuated by the manglewheel B¹⁹ and driving-pinion B²⁰ in the usual manner. The sliding rack-bar B¹⁵ is provided with a groove (shown by the broken lines B21, Fig. 2^a) and receiving the end of the screw B²², held in the fixed framework of the machine and by which the rack-bar B¹⁵ is held from 45 rotating. Within the sleeve B¹² and below the reciprocating rack-bar B¹⁵ is placed a cylindrical shell B²³, containing a block B²⁴ and carrying projecting pins B²⁵ B²⁵, which pass through the spiral slots B¹³ in the sleeve B¹² 50 and enter the straight longitudinal slots B^{11} in the sleeve B¹⁰. The shell B²³ incloses a chamber B²⁶, within which is contained the two rows of friction-balls B²⁷ B²⁷, separated by the flange B²⁸, upon the spindle B²⁹, which 55 is journaled in the block B²⁴ and attached by a pin B³⁰ to the lower end of the reciprocating rack-bar B¹⁵. A swiveled connection is thereby made between the reciprocating rackbar B¹⁵ and the shell B²³, in which are carried 60 the pins B²⁵ B²⁵, allowing the shell and pins to be rotated as they are moved up and down within the rotating shells B¹⁰ B¹². The shell B¹² is attached to the upper end of the spindle B^{14a}, and as the pins B²⁵ are 65 moved up and down by the rack-bar B¹⁵ a rotating reciprocating motion will be imparted by means of the spiral slots B¹³ to the shell B^{12} , spindle B^{14a} , and attached scored drum b^9 , causing and up-and-down traversing motion of the cord-guiding carriage b^3 and cord-guide 70 pulley b and laying the twisted cord evenly upon the winding-spool B⁶. The friction-rolls B^{27} B^{27} , interposed between the block B²⁴, flange B²⁸, and the end wall of the shell B²³, serve to reduce the fric- 75 tion between the moving surfaces with which they are in contact. The upper portion of a side b^4 of the rotating frame B4 is provided with the projecting lugs b¹⁰ b¹⁰, forming such an angle with each 80 other as will bring them into planes tangential with the opposite sides of the scored reciprocating drum b^9 . The traversing yarnguiding carriage b^3 is likewise provided with the projecting lugs b^2 , placed at a similar 85 angle, allowing the cord-guiding pulley b to be supported upon either one or the other of the lugs b^2 , as it may be desired to guide the yarn upon either the right or left hand side of the winding-spool B⁶. A rapid rotative move- 90 ment is imparted to the flier-frame B4 as the individual strands are being twisted into the cord or twine in the usual manner, the shell B¹⁰, attached to the hub B⁸ of the upper rail B⁷ of the flier-frame, forming the upper jour- 95 nal of the flier-frame and held in and rotating within the bearings B³¹ B³¹. The inclosed shell B¹², with its attached spindle B¹⁴ and scored winding-drum b^9 , together with the pins B^{25} , have a common rotating motion with the flier- 100 frame B⁴ and shell B¹⁰. If, however, a reciprocating movement be imparted to the toothed rack-bar B¹⁵, causing the pins B²⁵ to move up and down along the longitudinal slots B¹¹ in the shell B¹⁰, a reciprocating rotative move- 105 ment will be imparted to the shell B¹² by the action of the pins B²⁵ within the spiral slots B¹³, producing a corresponding reciprocating motion of the scored winding-drum b^9 , alternately winding the cord a in opposite direction tions and imparting a traversing motion to the cord-guiding carriage b^3 , moving it along the sides b^4 with a positive motion a distance equal to the length of the winding-spool B⁶. The spindles B², carrying the fliers B', are 115 driven by a rotating driving-gear C, turning loosely about the post F and engaging pinions C², attached to the short rotating spindles C³, which form the steps for the flier-spindles The gearing mechanism by which the 120 flier-spindles B² are driven is covered by a plate or shell C4, having the dependent hollow lugs C⁵ containing the spindles C³, the plate C⁴ and lugs C⁵ forming a housing for the driving-gears, by which they are completely 125 protected from dirt and lint. The arrangement of the driving - gear C, pinions C², step-spindles C³, and flier-spindles B² form no part of my present invention, it being fully shown in the Letters Patent of the 130 United States, No. 499,204, dated June 13, 1893, my present invention relating only to the employment of the shell or plate C4, forming a cover or housing for the driving-gears. 560,680 The flier-spindles B² are supported at their lower ends upon the step-spindles C³ in the manner described in my application above. referred to, and the upper ends of the flier-5 spindles are supported by the arms of a spider c, Fig. 2, in the same manner as the flier-spindles are supported in the twisting-machine described in said application. In Figs. 1 and 9 I have added to the mech-10 anism by which the individual strands are twisted the stop-motion mechanism by which the machine is stopped upon the breakage of one of the individual strands of which the twisted cord is composed, and in Figs. 10 to 15 14, inclusive, I have shown in detail the several parts of the stop-motion mechanism. D, D', and D² denote three parallel drivingshafts journaled in the framework of the machine. The shaft D² receives rotary motion 20 from a counter-shaft or main line of shafting through a belt connection in the ordinary manner, and the shafts D and D' are driven by a belt or other connection from the shaft D². The stoppage, therefore, of the shaft D² 25 will cause the simultaneous stoppage of the shafts D and D'. The strand-twisting mechanism is driven by a belt from the shaft D. The winding-spool receives rotary motion from the shaft D' and the flier-frame is driven 30 through a belt connection from the shaft D², as shown in my application aforesaid, Serial No. 383,726. The stoppage of the main driving-shaft D², as determined by the breakage of either of 35 the individual strands from which the cord is twisted, is effected by means of the mechanism shown in Figs. 9 to 14, inclusive. In Fig. 13 the driving-shaft D² is represented with the mechanism carried thereon shown in 40 central sectional view. D³ denotes the main driving pulley provided with an elongated hub D4, forming a sleeve inclosing the shaft D2, upon which the pulley D³ revolves loosely. The shaft D² is 45 hollow and incloses the concentric spindle D⁵, having attached thereto a friction-disk D⁶, provided with an elongated hub D⁷, entering the end of the hollow spindle D². Surrounding the spindle D⁵ is an annular chamber D⁸, 50 containing a spiral spring acting against the end wall of the annular chamber and the end of the hub D⁷ to push the hub D⁷ out of the hollow shaft and carry the friction-surface of the disk D⁶ out of contact with the web D¹⁰ of the driving-pulley D^3 . A spline D^{11} serves to connect the hub D' with the hollow spindle D², causing the rotation of the disk D⁶ as it is driven by frictional contact with the web D¹⁰ of the driving-pulley D³ to be imparted to 60 the driving-shaft D². The driving-shaft D² is journaled in bearings D¹² D¹³ and carries the driving-pulleys D¹⁴ D¹⁵, by which rotary motion is communicated to the pulley D¹⁶ upon the flier-frame, Figs. 1 and 2, and also 65 to a belt-pulley upon the shaft D'. Carried upon the end of the spindle D⁵ is a hand-wheel D¹⁷, having a screw-threaded hub D¹⁸, carrying a nut D¹⁹, provided with a spur D²⁰, the inner end of the nut resting against a washer D²¹, which bears against the 70 end of the shaft D². The twisting mechanism is put in operation by rotating the handwheel D¹⁷, withdrawing its screw-threaded hub D^{18} from the nut D^{19} , and sliding the spindle D⁵ within the hollow shaft D², caus- 75 ing a compression of the spiral spring D⁹ and bringing the side of the disk D⁶ into frictional contact with the web D¹⁰ of the driving-pulley D³, causing the rotation of the driving-shaft D². Upon the side of the frame A, Fig. 1, is a 80 hand-lever E, pivoted upon a stud E' and having a projecting spur E² arranged to be brought in the path of the spur D²⁰ upon the nut D^{19} . By depressing the handle E³ the inner end 85 of the lever E is raised, bringing the spur E² into the path of the spur D²⁰, as shown in Fig. 14, thereby stopping the rotation of the nut D¹⁹ and causing the screw-threaded hub D¹⁸ to enter the nut, allowing the spiral spring 90 D⁹ to slide the spindle D⁵ along the hollow shaft D² and carry the disk D⁶ out of frictional contact with the web D¹⁰ of the drivingpulley D³ and also to bring the opposite side of the disk D⁶ into contact with a fixed plate D²¹, 95 Fig. 13, causing the disk D⁶ to act as a brake to check the momentum of the rotating shaft D^2 . The hand-wheel D^{17} is held upon the spindle D⁵ by means of the cotter-pin D²², the thrust of the spiral spring D9 drawing the 100 cotter-pin D^{22} against the metallic washer D^{23} , which rests upon a washer D²⁴, made of rawhide or vulcanized fiber. The frictional contact between the cotter-pin D²² and the washers D²³ D²⁴, and also between the inner end of 105 the nut D¹⁹, washer D²¹, and the end of the rotating shaft D², will cause the hand-wheel D¹⁷, with its screw-threaded hub D¹⁸ and nut D¹⁹, to rotate with the shaft. As already described, the stoppage of the 110 driving-shaft D² is effected by bringing the spur E² upon the pivoted lever E into the path of the spur D²⁰ upon the rotating nut D¹⁹, and this motion of the pivoted lever E is determined by means of the stop-motion mechan- 115 ism controlled by the individual strands. To the inner end of the lever E, I attach a chain E⁴, Fig. 14, which is carried over the guidepulleys E⁵ E⁵, turning upon studs held in the frame Λ and around the guiding-segment E^6 , 120 held upon the arm E⁷, to the flanged disk E⁸, to which the opposite end of the chain E4 is attached at E⁹. The flanged disk E⁸ is capable of rotating about the central post F and is placed just 125 above the spider c, in whose arms are placed the upper bearings for the flier-spindles B². Upon the lower side of the disk E⁸ is a flange E⁹, provided with notches E¹⁰ to receive the spokes c' of the spider c. Pivoted upon 130 each of the arms c' of the spider c are the bell-crank levers, one of which is shown in top view in Fig. 10, a portion of the disk E⁸ having been removed for that purpose. The bell-crank d is pivoted to the spiderarms c' at d', and to the end d^2 of the shorter 5 arm of the bell-crank I connect the spiral spring d^3 , attached at its opposite end at d^4 to the rim d^5 , forming a part of the spider, the line of draft of the spring E³ passing between the pivotal pin d' and the end of the 10 longer arm of the bell-crank, which is turned upward at d^6 , forming a support for the guidepulley d^7 . As the individual strands e are carried from the flier-spindles B² to the condensing-tube B³ they are carried around the 15 rolls d^7 and thereby deflected from a right line, the tension of the strands e tending to rotate the bell-crank d upon its pivot d' and against the tension of the spiral spring d^3 . Whenever either of the strands e is broken 20 and its tension removed from its guidingpulley d^7 , the corresponding bell-crank d is rotated upon its pivot by the action of its spring d^3 , bringing the longer arm of the bellcrank into contact with the edge of the flange 25 E⁹, inclosing the notch E¹⁰, and causing a slight rotating movement of the flanged disk E⁸, winding up the chain E⁴ and lifting the inner end of the pivoted lever E, bringing the spur E² into the path of the spur D²⁰, pro-3c jecting radially from the rotating nut D¹⁹ and causing the immediate stoppage of the driv- ing-shaft E², as already described. The shorter arms D² of the bell-crank levers D carry studs which extend below the 35 spider-arms c', to which the spiral springs d^3 are attached, thus bringing the springs below the spider-arms c', as shown by the broken lines in Fig. 10. When the bell-crank levers are held by the tension of the strands e 40 against the tension of the springs d^3 , the line of strain of the springs between the points d^2 and d^4 is made to pass near the center of the pivot d', so that the force of the spring d^3 is resisted by a slight pressure applied by 45 the individual strand e to the guide-pulley d^7 . Whenever the individual strand e breaks, allowing the lever d^3 to rotate about its pivot d', the line of strain exerted by the spring d^3 between the point d^4 and the end of the 50 shorter arm of the bell-crank moves farther from the center of the pivot d', causing an increasing force to be applied through the longer arm of the bell-crank to rotate the flanged disk E⁸ and wind up the chain E⁴. I am aware that the intermediate mechanism between the individual strands e and the driving-pulley D³ can be modified in many particulars by the substitution of other and well-known devices by which the tension of 60 each of the individual strands of which the twisted cord is to be formed can be made to determine the action of the stop-motion mechanism. I do not therefore confine myself to the specific construction and arrangement of 65 parts as herein shown and described, the employment of a spring-actuated vibrating l lever restrained by the tension of the individual strands being, so far as I am aware, new in machines of this class. The rotating flier-frame carries a stud upon 70 which is journaled the guide-pulley b^6 , and it is also provided with the prongs b^{10} , carrying studs upon which are placed the guidepulleys b^7 , and the weight of the guide-pulley b with its stud is counterbalanced by the en- 75 largement of the flier-frame upon the opposite side at f, the enlargement f being placed in the same plane of rotation as the guidepulley b^6 , and in like manner the weight of the prongs b^{10} and guide-pulleys b^{7} are coun- 80 terbalanced upon the opposite side of the flier-frame by the enlargement f', placed in the same plane of rotation, and the traversing carriage b^3 is counterbalanced upon the opposite side of the flier-frame by the en- 85 largement of the frame f^2 . I do not herein claim, broadly, the counterbalancing of the flier-frame, but the enlargements of the flier-frame are placed in the same plane of rotation as the weight to be 90 counterbalanced. What I claim as my invention, and desire to secure by Letters Patent, is— 1. In a twisting-machine, the combination with a rotating flier-frame having a hollow 95 journal and a spool-support carried in said frame, of a cord-guiding carriage having a traversing motion by which the twisted cord is laid upon the winding-spool, a reciprocating drum, a connection between said drum 100 and said carriage, a spindle carrying said drum and journaled concentrically within the hollow journal of said flier-frame, and connected actuating mechanism by which a reciprocating rotary motion is imparted to 105 said spindle and through the intermediate connecting mechanism a traversing motion is given to the cord-guiding carriage, substantially as described. 2. In a twisting-machine, the combination 110 with a flier-frame provided with a hollow journal, of a reciprocating rotating spindle journaled within said hollow journal and carrying a drum or pulley within said flier-frame, a sleeve attached to said spindle and provided 115 with spiral slots, a block having a reciprocating sliding movement within said sleeve, pins carried by said block and entering the spiral slots in said sleeve, connected actuating mechanism, substantially as described, by which a 120 sliding reciprocating motion is imparted to said block, a cord-guiding carriage capable of a traversing motion and operatively connected with said drum or pulley and a spool-support adapted to carry a winding-spool upon which 125 the twisted cord is laid, substantially as described. 3. In a twisting-machine, the combination with a rotating flier-frame provided with a hollow journal, a spool-support carried in said 130 flier-frame, a traversing cord-guiding carriage, a drum or pulley having a reciprocating 560,680 rotary motion and operatively connected with said traversing carriage, a spindle journaled concentrically in the hollow journal of said flier-frame and carrying said drum or pulley, 5 a sleeve attached to said spindle and provided with spiral slots, a block carrying pins which pass through said slots and enter grooves in the hollow journal of the flier-frame and having a reciprocating motion within said sleeve, 10 a rack-bar inclosed in said sleeve and having a swivel connection with said block and a pinion having a reciprocating rotary motion and engaging said rack-bar, substantially as described. 4. In a twisting-machine, the combination with a flier-frame provided with a hollow journal having longitudinal grooves or slots, of a sleeve inclosed within said journal and provided with spiral slots, a rack-bar having a 20 reciprocating sliding motion, connected actuating mechanism for reciprocating said rackbar and inclosed within said sleeve, a block having a swivel connection with said rackbar, pins carried by said block and passing 25 through said spiral slots into the longitudinal grooves in said hollow journal, a spindle attached to said sleeve, a traversing cord-guiding carriage operatively connected with said spindle and a spool-support upon which the 30 twisted cord is carried, substantially as described. 5. In a twisting-machine, the combination with a rotating flier-frame, of a spool-support carried in said frame, a traversing cord-guid-35 ing carriage, prongs projecting from said traversing carriage toward opposite sides of said winding-spool and forming an angle with each other and a guide-pulley adapted to be held alternately on said prongs as the direction of 40 the winding-spool is changed, substantially as described. 6. In a twisting-machine, the combination of a flier-frame having a hollow journal, a rack-bar having a longitudinal sliding motion 45 within said hollow journal, means for actuating said rack-bar a pin held in said rack-bar and having an annular flange, a sliding block provided with a chamber inclosing said flange, a series of friction-rolls between said flange 50 and the walls of said chamber, a spool-support, a traversing carriage by which the twisted cord is laid upon the spool and intermediate connecting mechanism, substantially as described, between said traversing carriage and 55 said sliding block, substantially as described. 7. In a twisting-machine, the combination of a driving-shaft D² hollow throughout its entire extent, a sliding spindle D⁵ extending through said hollow shaft and having a 60 spline connection therewith, a driving-pulley D³ turning loosely on said hollow shaft, a friction-disk D⁶ attached to one end of said sliding spindle and arranged to be brought into contact with said driving-pulley, a screw-65 threaded sleeve D¹⁸ held on the end of said spindle opposite said friction-disk and having a frictional connection with said spindle, a nut D¹⁹ held on said sleeve and held from longitudinal movement, whereby said sleeve and spindle are moved endwise and the friction- 70 disk brought into engagement with said driv- ing-pulley, substantially as described. 8. In a twisting-machine, the combination of a hollow driving-shaft, a driving-pulley turning loosely on said shaft a spindle sliding 75 in said shaft and having a spline connection therewith, a friction-disk carried on said spindle and arranged to be brought into frictional contact with said driving-pulley, a screwthreaded sleeve held on said spindle and hav- 80 ing a frictional connection therewith, a nut carried on said sleeve and held from longitudinal movement, a radially-projecting spur extending from said nut and a pivoted lever provided with a spur, which is arranged to be 85 brought into the path of the spur on said nut, whereby the rotation of said nut is checked, causing the spindle to be moved longitudinally and its friction-disk thrown out of engagement with said driving-pulley, substan- 90 tially as described. 9. In a twisting-machine, the combination of a driving-shaft, a driving-pulley running loosely on said shaft, clutching mechanism, substantially as described, whereby said pul- 95 ley is connected and disconnected with said driving-shaft at will, embracing a sliding spindle held in said driving-shaft and carrying a screw-threaded sleeve, a nut carried on said sleeve and held from longitudinal move- 100 ment a spur projecting radially from said nut a lever pivoted upon the framework and provided with a projecting spur arranged to be brought into the path of the spur upon said nut by the angular movement of said lever 105 by which said nut is checked from rotation, substantially as described. 10. In a twisting-machine, the combination with spool-supports adapted to support spools for carrying the strands to be twisted into a 110 cord, of a series of pivoted bell-cranks provided with guide-rolls over which the strands are carried and by which they are deflected from a straight line, springs applied to said bell-cranks and against the tension of said 115 strands, a disk having a flange provided with notches, which are adapted to be engaged by said bell-cranks as their springs are released by the breakage of the strands and clutching mechanism by which the operative portions 120 of the twisting-machine are connected with the driving-power, and intermediate mechanism, substantially as described, between said clutching mechanism and said disk, whereby the clutching mechanism is released by the 125 breakage of the strand, substantially as described. 11. In a twisting-machine, the combination with clutching mechanism, by which the driving-power is connected with the machine, of 130 a series of bell-crank levers, guide-rolls carried upon one arm of each of said levers, a spring applied to the other arm of each of said levers with its tension exerted in a line passing near the axis of said bell-crank levers, a disk arranged to be rotated by the angular motion of either of said bell-cranks as their springs are released by the breakage of a strand, and intermediate connecting mechanism between said disk and said clutching mechanism, substantially as described. Dated at Worcester, in the county of Worcester and State of Massachusetts, this 16th day of May, 1891. GEORGE LOOMIS BROWNELL, Witnesses: RUFUS B. FOWLER, CLARA A. BLAKE.