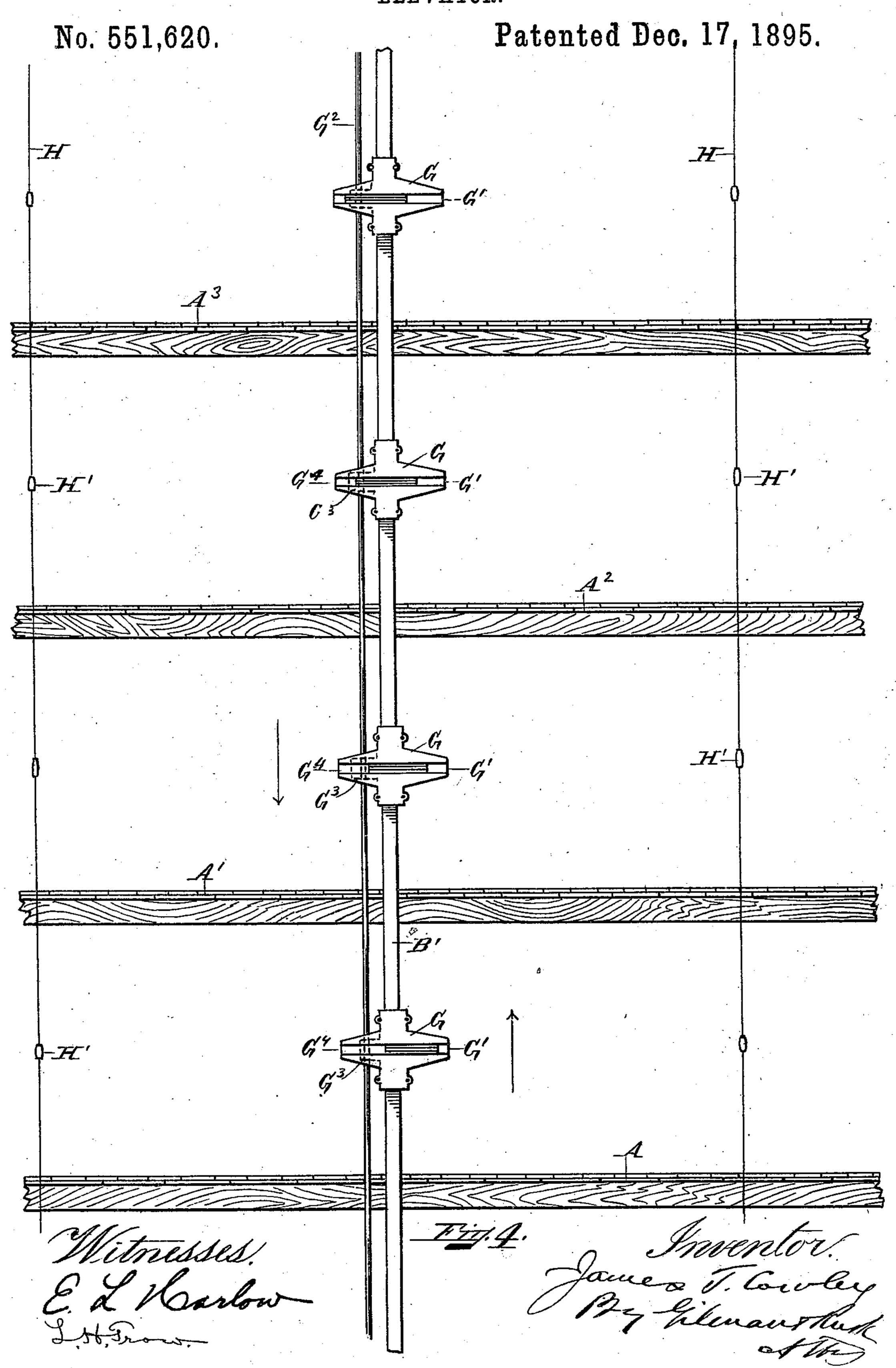

J. T. COWLEY. ELEVATOR.

No. 551,620.


Patented Dec. 17, 1895.

J. T. COWLEY. ELEVATOR.

J. T. COWLEY.
ELEVATOR.

United States Patent Office.

JAMES T. COWLEY, OF LOWELL, MASSACHUSETTS, ASSIGNOR TO THE LAMSON CONSOLIDATED STORE SERVICE COMPANY, OF NEWARK, NEW JERSEY.

ELEVATOR.

SPECIFICATION forming part of Letters Patent No. 551,620, dated December 17, 1895.

Application filed May 18, 1895. Serial No. 549,817. (No model.)

To all whom it may concern:

Be it known that I, JAMES T. COWLEY, of Lowell, county of Middlesex, and State of Massachusetts, have invented new and useful 5 Improvements in Elevators; and I do hereby declare that the following is a full, clear, and exact description of the invention, which will enable others skilled in the art to which it appertains to make and use the same.

My invention relates to new and useful improvements in elevators, and especially relates to mechanism which can be adjusted to automatically stop the elevator-carriage at

any predetermined point.

My invention consists of certain novel features, arrangements and combinations hereinafter described, and particularly pointed out in the claims.

In the drawings which form a part of this 20 specification, Figure 1 is a side elevation of the elevator, showing two floors in section and the elevator-carriage in position at the lower floor. Fig. 2 is an end elevation of a section of the elevator guide-rods with the 25 elevator-carriage mounted on said rods. Fig. 3 is a plan view of the elevator and elevatorcarriage. Fig. 4 is a partial sectional view taken on the line x, Fig. 3, looking in the direction indicated by the arrow, and showing 30 the graduated slides used to stop the elevator in its travel between the floors. Fig. 5 shows a side elevation of the elevator-lifting mechanism. Fig. 6 is a plan view of the same.

Like letters of reference refer to like parts

throughout the several views.

A, A', A², and A³ represent four floors (see Fig. 4) between which the elevator-carriage is intended to operate, and C represents, Fig. 40 1, suitable shelves located at each floor at which the elevator-carriage is intended to stop.

B represents the elevator guide-rods placed at each side of the elevator, and upon which 45 the elevator-carriage D is adapted to travel, and supported at their tops by a cross-brace B2, and braced at each floor by suitable sup-

ports C'.

B' is a guide-rod, Figs. 1 and 3, placed at 50 one side of the elevator near one of the elevator guide-rods B, and is also supported at |

its top by cross-brace B², and is also braced at each floor by suitable supports C².

The elevator-carriage platform D' is provided with longitudinal braces D². These 55 braces are fastened, Fig. 2, to the casting D³ by suitable bolts which pass through the lugs D^6 , formed at the sides of the said casting D^3 . This casting D³ is also provided with downwardly-extending ears C³, between which is 60 mounted the arm D⁵, pivoted upon the stud D⁷. The outer ends of this arm are provided with eyes D⁸, to which the elevator-carriageoperating cables E and E' are attached. The casting D³ is provided with recesses at each 65 end, which are entered by the projections D^{10} on the elevator-guides D⁹. One of these elevator-guides D⁹ is firmly fastened to the casting D³ by the pins C⁴ passing through the projections D^{10} . The other guide D^9 is adapted 7° to play loosely in the other recess, so that the loose guide D⁹ may accommodate itself to any irregularity in the elevator-guides B.

The brace D² of the elevator-platform D' is braced by suitable braces D4, which are fas- 75 tened at the ends to the longitudinal brace D², and at the center to the casting D³. Mounted on the side of one of the longitudinal braces D⁴ are suitable supports D¹⁵ and D¹⁶, (see Fig. 3,) through which the rod D¹¹ 80 passes, and the said rod D¹¹ is provided at each end with a handle D¹², (see Figs. 1 and 3,) having an index D¹³ adapted to register with suitable index-plates D¹⁴ placed on the elevator-carriage platform D'. This rod is 85 also provided with collars D¹⁹ and D²¹, which are secured to said rod by suitable screws.

Upon the shaft D¹¹, between the collars D¹⁹. D^{21} , is a spring D^{20} , one end of which is fastened to a dog D¹⁷ and the opposite end to 9° another dog D¹⁸. These dogs are mounted upon the shaft in a reversed position, as shown in Fig. 2, and the tension of the spring D²⁰ is such as to keep them in the position shown in Fig. 2. Each of these dogs has 95 projections C⁵ and C⁶ which are adapted to bear on the ribs C⁷, connecting the supports D¹⁵ and D²² together, and the spring D²⁰ holds these projections C⁵ and C⁶ in contact with the ribs C⁷ and maintains them in the posi- 100 tion shown in Fig. 2, but allows the dogs D^{17} and D¹⁸ to be rotated against the tension of

the spring D²⁰ to carry the projections C⁵ and C⁶ away from contact with the ribs.

Upon the rod B', at each point where it is designed to stop the elevator-carriage, is 5 placed a suitable slide G, which is formed to slide upon said rod B'. One of these slides is provided for each floor, (see Figs. 1 and 4,) and they are all connected together by a rod G² passing through a suitable lug G³ on 10 the said slide and firmly held in this position by a suitable set-screw. This slide G is also provided with a graduated rib G' at one end, and another graduated rib G⁴ at the opposite end. (See Figs. 1, 3 and 4.) These 15 graduated ribs are adapted to be engaged by the dogs D¹⁷ and D¹⁸ on the shaft D¹¹, attached to the elevator-carriage, and to be raised and lowered by the same according to the direction in which the elevator-carriage 20 is moving.

The elevator-operating cables E and E', Fig. 1, pass upwardly over suitable pulleys F and F², supported by the brackets F' and F³ mounted on the brace B2, and passing down-25 wardly around the drums J³ on the elevatoroperating mechanism, Figs. 5 and 6.

A suitable elevator-starting cable H is provided, Figs. 4 and 5, which passes by each floor and is provided at each floor with suit-30 able handles H'. This elevator-starting cable passes over suitable pulleys H2, Fig. 5, and is attached at each end to the rod G², upon which the graduated slides G are mounted. (See Figs. 4 and 5.) This elevator-starting 35 cable H passes through the eye K²³ on the elevator-operating mechanism, and is provided with suitable collars H4, one on each side of the elevator-starting lever K²². This elevator-starting cable is also provided with a 40 counterbalance-weight H³, the object of which is to counterbalance the combined weight of the slides G on the rod B'.

Referring now to the elevator-operating mechanism, Figs. 5 and 6, a suitable base J is 45 provided, upon which are mounted the stands J', in which is journaled the shaft J2, carrying at its ends the drums J³, around which the lifting-cables E and E' are wound. Upon this shaft J² at its center is mounted a worm-50 wheel J4, which engages with a worm-wheel J⁵, mounted loosely upon the shaft J⁶, journaled in the stand J7, which is also mounted on the base J. Mounted also upon the base J at each end are suitable bearings K, in 55 which is journaled the shaft K'. This shaft K' is provided with a right and left hand worm K² and K³, which are adapted to mesh respectively with the worm-wheels J4 and ${
m J}^5$ on the shafts ${
m J}^2$ and ${
m J}^6$. This shaft ${
m K}'$ 60 is also provided with two loose pulleys K⁴ and K⁵ and the tight pulley K⁶ and a collar. K⁷. Around the pulley K⁴ a straight belt is adapted to work, and around the pulley K⁵ a cross-belt is arranged, which passes upwardly 65 over a suitable driving counter-shaft, from which they receive power. The base U is provided with a stand K¹³ in which is mounted

one end of the shaft K¹², the opposite end of which passes through a lug K²⁴ on the stand J⁷. This shaft K¹² is provided with a belt- 70 shifting arm K⁹, which is adapted to engage with the straight belt on the pulley K4. The shaft K¹² is also provided with a collar K¹⁵, upon which is mounted one end of the link K^{16} . The opposite end of this link K^{16} is jour- 75 naled to the downwardly-projecting arm K¹⁷ mounted on the shaft J⁶, and is adapted to move the shaft K¹² and carry with it the beltshifting arm K⁹ when the shaft J⁶ is rotated. On the opposite side of the base is mounted a 80 lug K¹⁴ and shaft K¹¹ and belt-shifting arm K¹⁰. The lug K¹⁸ and link K¹⁹ are similar in construction to the ones just described on the opposite side of the machine, and used in the same manner to engage with and move the 85 belt K⁹ on the pulley K⁵ in the same manner as described for the belt K⁸ on the pulley K⁴. From the top of the arm K²⁰ projects a hub K^{21} , in which is mounted an arm K^{22} provided with an eye K²³, through which passes the ele- 90 vator-starting cable H.

When the handles H', mounted on the elevator-starting cables H, are moved the collars H⁴ on the elevator-starting cable H engage with the elevator-starting lever K²² on the 95 elevator-operating mechanism (see Fig. 5) and move the same in the direction in which the cord is pulled. This movement rotates the shaft J⁶, which, through the connections on the arms $\,\mathrm{K^{17}}$ and $\,\mathrm{K^{20}}$ and links $\,\mathrm{K^{16}}$ and $\,\mathrm{K^{19}}\,$ 100 and shafts K¹¹ and K¹², shifts one of the belts K⁸ or K⁹ onto the tight pulley K⁶, and the elevator-starting mechanism is started and the elevator-lifting cables E and E' are wound upon the drums J³ and the elevator-carriage 105 is raised or lowered according to the direction in which the handles H' are pulled, the straight belt K⁸ operating to move the elevator-carriage in one direction and the crossbelt K⁹ operating to move it in the other di- 110. rection.

Referring now to the operation of the elevator-carriage D and the graduated mechanism which operates to stop the same, as shown in Figs. 3 and 4, the ribs G' and G4 are con- 115 structed of different lengths, the rib G' for the first floor being of a suitable length and each successive rib G' increasing in length according to the number of floors at which it may be desired to stop the elevator. The 120 ribs G4 are arranged to decrease in length as the ribs G' are increased and in the same proportion. Now if the elevator-carriage should be at one of the lower floors and it is desired to send it to a higher floor—the sixth, for in- 125 stance—the handle D¹² on the elevator-platform is moved so that the index will be moved to the number corresponding to the floor at which it is desired the elevator should stop i. e., the sixth. This movement of the han- 130 dle D¹² carries with it the shaft D¹¹, upon which are mounted the dogs D¹⁷ and D¹⁸. The elevator-carriage is then started by lifting upon the handle H', mounted on the ele-

vator-starting cable H. This movement starts the elevator-carriage in its upward movement. The dog D^{17} will pass by the ribs G' on all of the slides G until it approaches 5 the slide at the sixth floor, when the dog D¹⁷ will engage with the rib G' on the slide G and lift the same, and through the connections of the rod G² and lever K²² the elevator-operating mechanism will be stopped, the gradua-10 tions of the ribs G' being such that the dog D¹⁷ will pass by each of the ribs until it approaches the one to which the index was set when starting the elevator. When it is desired to again return the elevator-carriage to 15 a floor below, the index is set to the number which indicates the floor to which the elevator-carriage is to be sent. The elevator-carriage is started on its downward movement, as before described for the upward movement, 20 and the dog D^{18} will pass by each of the graduations G⁴ until it approaches the one with which it was intended to engage, and the elevatorcarriage is again stopped, the movements being identical with the movements before de-25 scribed for the upward movement of the elevator-carriage.

I do not limit myself to the arrangement and construction shown, as the same may be varied without departing from the spirit of

30 my invention.

Having thus ascertained the nature of my invention and set forth a construction embodying the same, what I claim as new, and desire to secure by Letters Patent of the

35 United States, is—

1. In an elevator, means for starting and stopping the same, a series of graduated stops, an adjustable stopping device on the elevator carriage common to all the graduated stops and adapted to be adjusted to engage with any one of the said graduated stops for stopping the elevator.

2. In an elevator, means for starting and stopping the same, a series of graduated stops, an adjustable stopping device on the elevator carriage common to all the graduated stops and adapted to be adjusted to engage with any one of the said graduated stops for stop-

.

ping the elevator, and means for actuating said elevator adapted to be thrown out of action upon the engagement of the said stopping device on the elevator and any of the

graduated stops.

3. In an elevator, means for starting and stopping the same, a series of movable gradu- 55 ated stops, an adjustable stopping device on the elevator carriage common to all the graduated stops and adapted to be adjusted to engage with any one of the said graduated stops for stopping the elevator, and means for guid- 60 ing the said graduated stops in their movements.

4. In an elevator, means for starting and stopping the same, a series of graduated stops connected together, an adjustable stopping 65 device on the elevator carriage common to all the graduated stops and adapted to be adjusted to engage with any one of the said graduated stops for stopping the elevator.

5. In an elevator, means for starting and 70 stopping the same, a series of graduated stops, means on the elevator carriage capable of adjustment to engage with any predetermined graduated stop for stopping the elevator, an index registering with an index plate on said 75 elevator, and a rod to which said index is connected upon which is mounted the said adjustable means.

6. In an elevator, means for starting and stopping the same, a series of graduated stops, 80 an adjustable stopping device on the elevator carriage common to all the graduated stops adapted to be adjusted to engage with any one of the said graduated stops for stopping the elevator, and mechanism at each side of 85 the elevator for adjusting the said adjustable stopping device for stopping the elevator.

In testimony whereof I have signed my name to this specification, in the presence of two subscribing witnesses, on this 8th day of 90

May, A. D. 1895.

JAMES T. COWLEY.

Witnesses:

DELIA S. PETERSON, S. H. TROW.