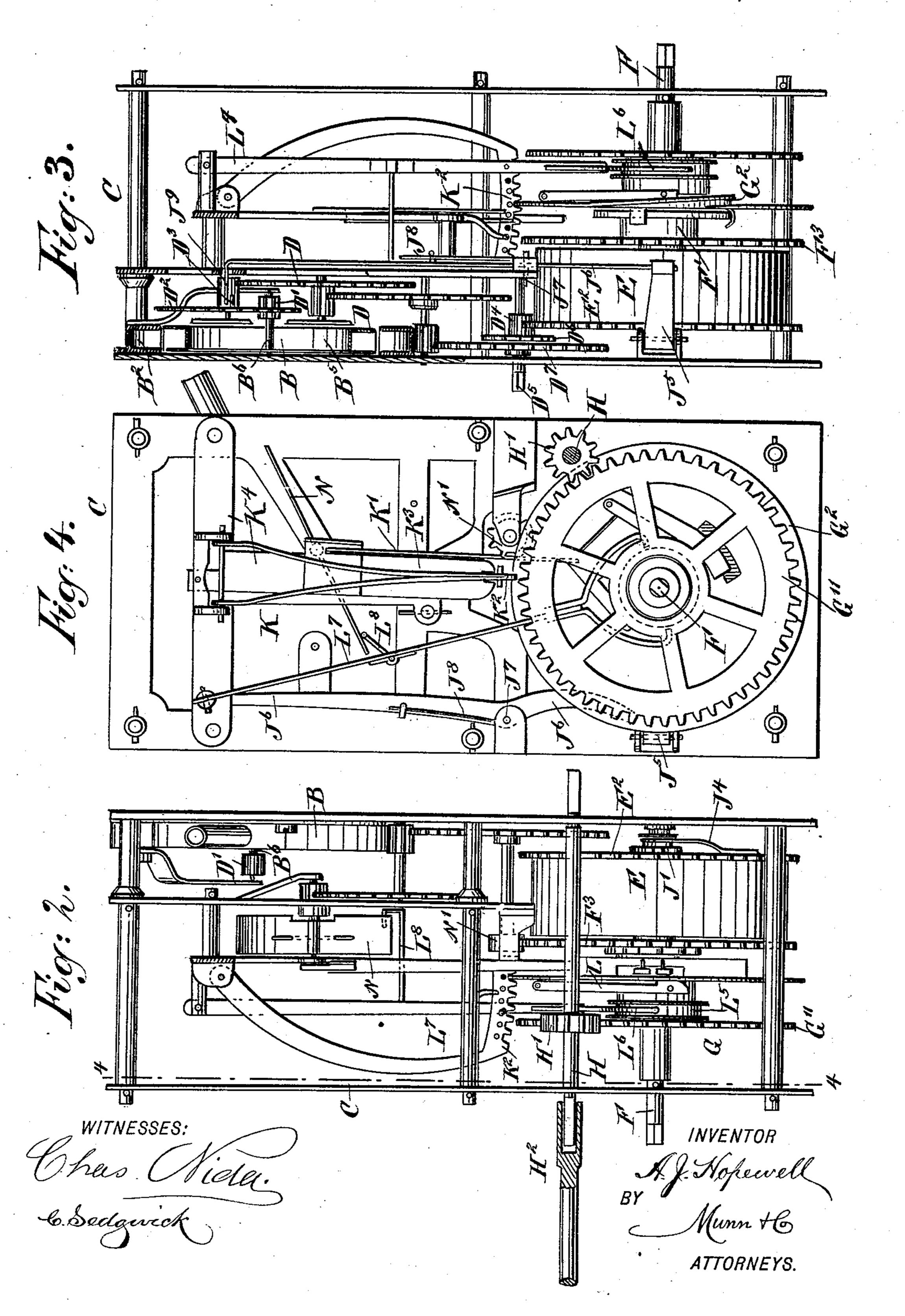
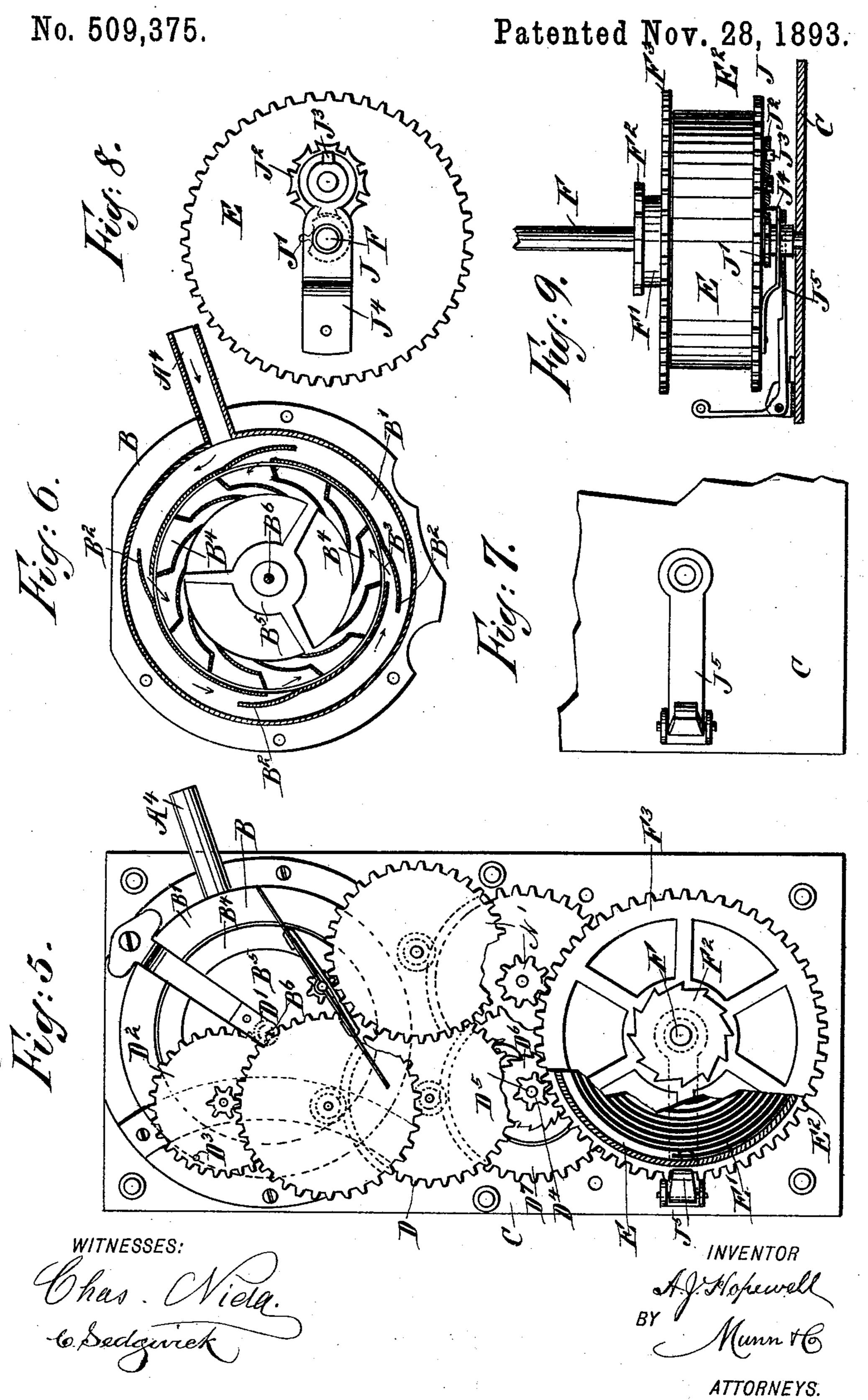

ATTORNEYS.

A. J. HOPEWELL. CLOCK WINDING MECHANISM.

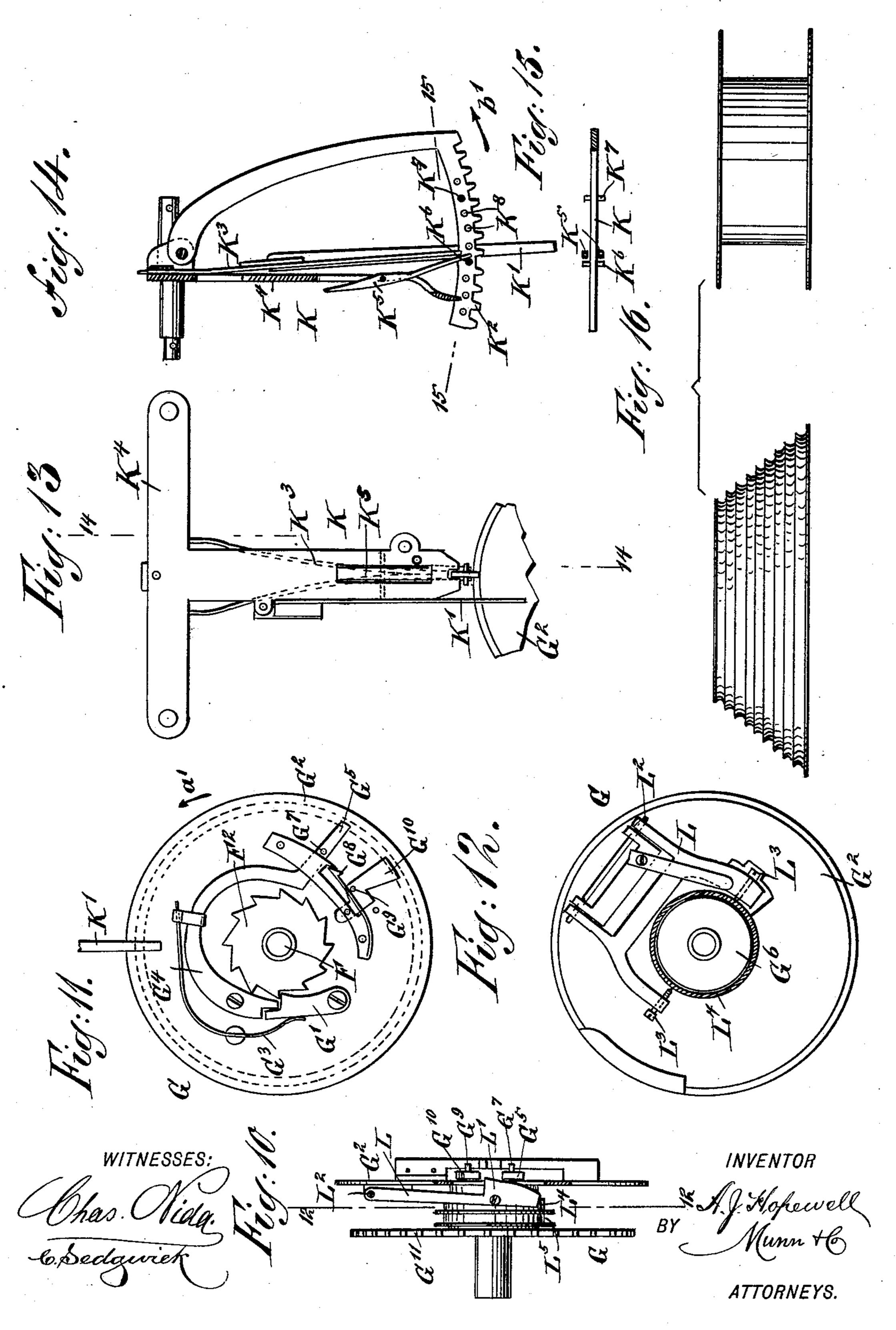


THE NATIONAL LITHOGRAPHING COMPANY, WASHINGTON, D. C.


A. J. HOPEWELL. CLOCK WINDING MECHANISM.

No. 509,375.

Patented Nov. 28, 1893.


A. J. HOPEWELL. CLOCK WINDING MECHANISM.

A. J. HOPEWELL. CLOCK WINDING MECHANISM.

No. 509,375.

Patented Nov. 28, 1893.

THE NATIONAL LITHOGRAPHING COMPANY, WASHINGTON, D. C.

United States Patent Office.

ANDREW JACKSON HOPEWELL, OF EDINBURG, VIRGINIA.

CLOCK WINDING MECHANISM.

SPECIFICATION forming part of Letters Patent No. 509,375, dated November 28, 1893.

Application filed October 14, 1892. Serial No. 448,831. (No model.)

To all whom it may concern:

Be it known that I, Andrew Jackson HOPEWELL, of Edinburg, in the county of Shenandoah and State of Virginia, have in-5 vented a new and Improved Clock Winding Mechanism, of which the following is a full, clear, and exact description.

The object of the invention is to provide a new and improved winding mechanism ar-10 ranged for conveniently and automatically winding up spring or weight actuated clocks.

The invention consists of releasing and starting devices of especial construction, as hereinafter more fully described, and also of 15 various parts and details and combinations of the same, as will be hereinafter more fully set forth and pointed out in the claims.

Reference is to be had to the accompanying drawings forming a part of this specification, 20 in which similar letters of reference indicate

corresponding parts in all the figures.

Figure 1 is a side elevation of the improvement as applied and with parts in section. Fig. 2 is an enlarged side elevation of the 25 winding mechanism proper, parts being in section. Fig. 3 is a similar view of the same from the other side. Fig. 4 is a sectional face view of the same on the line 4—4 of Fig. 2. Fig. 5 is a rear face view of the same with the 30 rear plate removed and parts in section. Fig. 6 is a sectional face view of the pneumatic wheel. Fig. 7 is a front view of a lever forming part of the stopping mechanism for the pneumatic wheel. Fig. 8 is a face view of 35 part of the stopping mechanism for the pneumatic wheel. Fig. 9 is a plan view of the spring barrel part of the stopping device for the pneumatic wheel, and also of part of the transmitting mechanism. Fig. 10 is a side 40 elevation of the transmitting device and part of the stopping and starting mechanisms for the same. Fig. 11 is a face view of the same. Fig. 12 is a sectional face view of the same on the line 12—12 of Fig. 10. Fig. 13 is an en-45 larged front view of the timing mechanism. Fig. 14 is a transverse section of the same on the line 14—14 of Fig. 13. Fig. 15 is a sectional plan view of the same on the line 15—15 of Fig. 14; and Fig. 16 is a plan view of a 50 modified form of the transmitting mechanism.

The improved clock winding mechanism is provided with a wind wheel A, of any approved

construction and located outside of the building containing the clock to be wound. The shaft of the wind wheel A carries a crank arm 55 A', connected by pitmen A² with a pair of bellows A³ of any approved construction, so that the rotary motion of the wind wheel A actuates the said pair of bellows, which latter force a continuous blast of air into the outlet 6c pipe A⁴ of the said bellows, the said outlet pipe being connected with a pneumatic wheel Barranged in a suitable casing or frame-work C containing the especial device of the clockwinding mechanism, as hereinafter more fully 65 described. The pneumatic wheel B is actuated by the blast of air from the bellows A³, and is connected by a train of gear wheels D with a spring barrel E containing a spring E', fastened at its outer end to the rim of the 70 spring barrel, and at its inner end to the shaft F on which the spring barrel is loosely mounted, the said shaft being journaled in suitable

bearings on the frame or casing C. On the shaft F is secured a hub F' carrying 75

a ratchet wheel F² and a gear wheel F³, of which the former is connected by an especial mechanism G with a shaft H journaled in the casing C and connected by a line of shafting H² with the clock I to be wound. For this 80 purpose the line of shafting carries a bevel pinion H³ in mesh with a bevel gear wheel H⁴ secured on the winding shaft I' of the clock I. Thus, when the shaft is rotated in one direction the spring is wound up in the clock I, 85 and during the time the clock is running the wheel H⁴ travels in an opposite direction to

impart a rotary motion to the shaft H2 in an opposite direction, for the purpose of releasing the spring barrel in the casing C, to again 9c actuate the shaft H in a forward direction to again wind up the clock I, as hereinafter more

fully described.

The pneumatic wheel B, as illustrated in Fig. 6, is provided with an annular channel 95 B', into which discharges the pipe A4, the current of air traveling in the said channel in the direction of the arrows indicated in Fig. 6. Into the channel B' extend diverging arms B2 leading to openings B³ formed in the inner 100 wall of the channel, the said openings discharging into the buckets B4 of the wheel B5 secured on the shaft B6. The inner ends of the buckets are open so that the current of

509,375

air, after exerting its force on the buckets B to turn the wheel, can readily escape through the inner open ends of the buckets, which lead to the open web of the wheel opening to the outside.

On the shaft B⁶ is secured a pinion D', which forms part of the train of gear wheels D, the said pinion meshing into a gear wheel D² provided on one face with a lug D³ adapted to 10 be engaged by a lever J⁶ forming part of the stopping mechanism J for locking the said wheel, and consequently the pneumatic wheel B at the time the spring E' in the spring barrel has been completely wound up by the ac-15 tion of the pneumatic wheel. This stopping mechanism J is provided with a single-toothed wheel J' secured on the shaft F on one side of the spring barrel E. See Figs. 8 and 9. The tooth of the wheel J' is adapted to engage a 20 notched wheel J², mounted to turn on the rear face of the spring barrel E, so that, on further revolution of the spring barrel E the notched wheel J² is turned the distance of one tooth by the single-toothed wheel J' held on the 25 shaft F which remains stationary during the

winding up of the main spring E'. On the face of the notched wheel J² is secured a lug J³ adapted to engage the free end of a spring arm J⁴ secured on the spring bar-30 rel E. This spring arm J⁴ is adapted to impart a swinging motion to a bell-crank lever J⁵ fulcrumed on the casing C and arranged horizontally, as is plainly shown in Fig. 3. The bell-crank lever J⁵ is connected with the 35 lower end of a lever J⁶ fulcrumed at J⁷ on a bracket on the casing C. A spring J⁸ presses on the upper end of the said lever J⁶, so as to hold the bell-crank lever J⁵ always in contact with the spring arm J⁴. On the extreme up-40 per end of this lever J⁶ is formed a transversely-extending lug or projection J⁹, see Fig. 3, adapted to move into the path of the lug D³, so as to stop further rotation of the wheel D² and the pneumatic wheel B. It is understood 45 that when the projection J³ comes in contact

ing motion is given to the lever J⁶, so that its lug or arm J⁹ moves into the path of the lug D⁸ to stop the gear wheels D. The rotary motion of the latter then ceases, and consequently the train of gear wheels D remains at a stand-still, and a further revolving of the spring barrel E ceases. The spring barrel E remains in this locked position until the spring E' has run down in turning the shaft F, the latter then turning the single-toothed wheel J',

with the free end of the spring arm J⁴, then

the bell-crank lever J⁵ is actuated and a swing-

which actuates the notched wheel J², so as to move the lug J³ from under the spring arm J⁴, 60 whereby the latter swings inward and permits the bell-crank lever J⁵ and lever J⁶ to return to their normal positions by the action of the spring J⁸ on the said lever J⁶. The lug J⁹ of the said lever then moves out of the path of the lug

of D³, thus unlocking the wheel D², the train of gear wheels D, and the pneumatic wheel B, which will now again be started up by the

current of air actuating the wheel, as above described. It is understood that this takes place at the time the spring E' is unwound in 70 the spring barrel E, the latter then being again turned to wind up the spring, as above explained. The gear wheel E² on the spring barrel E is in mesh with a pinion D⁴ which forms part of the train of gear wheels D, the 75 said pinion being fastened on a shaft D5, which extends to one side of the casing and has a square end adapted to be engaged by a key for starting the spring barrel by hand when setting the device in action. The pinion D^4 80 is connected by a ratchet and pawl mechanism D⁶ (see Fig. 5), with the gear wheel D⁷, mounted loosely on the shaft D⁵ and connected with the pinion of the train of gear wheels D.

The ratchet wheel F² secured on the shaft 85 F, as previously mentioned, is adapted to be engaged by a pawl G' pivoted on a spiral cam wheel G² mounted to rotate loosely on the shaft F. A spring G³ held on the said cam wheel presses on the pawl G' and also presses 90 on a lever G⁴, likewise fulcrumed on the said cam wheel G², as is plainly illustrated in Fig. 11. The lever G⁴ engages the free end of the pawl G', to move the latter out of contact with the ratchet wheel F², or to permit the spring 95 G³ to return said pawl into mesh with the said ratchet wheel. The lever G4 is provided at one end with an arm G⁵ adapted to be engaged by a spring K' forming part of a timing mechanism K which serves to stop or start the roc winding mechanism proper, according to the time during which the clock I is running without requiring rewinding. The arm G⁵ is adapted to engage a wedge-shaped lug or incline L' formed on a lever L pivoted at L² on the 105 face of the cam wheel G² opposite the face carrying the lever G4, as will be readily understood by reference to Figs. 10 and 12. The wedge L' extends through an opening in the web of the cam wheel G², so as to be engaged 110 by the arm G⁵ of the lever G⁴, as above described. The lever L is held against the face of the cam wheel G² by a suitable spring, and the free end of the said lever carries pointed set screws L³ engaging a sleeve L⁴ mounted 115 to slide loosely on the hub G⁶ of the cam wheel G². This sleeve L⁴ is provided with an annular groove L⁵ engaged by the forked end L⁶ of a lever L⁷ on the arm K⁴, see Figs. 2 and 4, and provided with an arm L⁸ adapted to en- 120 gage a fly wheel N journaled in the casing C and connected by a train of gear wheels N' with the gear wheel F³ previously mentioned, so that the rotary motion of the latter actuates the said fly wheel N at the time the arm 125 L⁸ is disengaged from the said fly wheel and the shaft F is rotated by the action of the main spring E'.

On the arm G⁵ of the lever G⁴ is secured a pin G⁷, adapted to engage the hook end G⁸ of 130 a spring fastened on the face of the cam wheel G² carrying the lever G⁴, as will be readily understood by reference to Fig. 11. This hook G⁸ is adapted to lock the arm G⁵

509,375

in place until the said hook is disengaged from the pin G⁷ by means of a pin G⁹ acting on the spring of the said hook, and secured on a lever G¹⁰ fulcrumed on the cam wheel 5 G². This lever G¹⁰ is arranged in line with the arm G⁵, so as to be engaged by the free end of the spring K' of the timing mechanism K at the time the cam wheel G² travels in an

opposite direction.

10 It is understood that when the cam wheel G^2 travels in the direction of the arrow a', the arm G⁵ is engaged by the spring K', so that a swinging motion is imparted to the lever G4, whereby the pawl G' is thrown out 15 of mesh with the ratchet wheel F², and at the same time the pin G⁷ of the said arm G⁵ is engaged with the hook G⁸ to lock the said lever G⁴ in place to hold the pawl G' out of contact with the ratchet wheel F². When 20 the cam wheel G² travels in the inverse direction of the arrow a' as hereinafter more fully described, the lever G¹⁰ is finally engaged by the said spring K' and receives a swinging motion from the latter so as to press 25 the spring carrying the hook G⁸ inward, to release the pin G⁷ from the hook G⁸. The spring G³, acting on the lever G⁴ and the pawl G', returns the said lever and pawl to their former normal positions, illustrated in 30 Fig. 11; that is, the pawl G' again engages the ratchet wheel F².

On the hub G⁶ of the cam wheel G² is secured a gear wheel G¹¹ in mesh with the pinion H' secured on the shaft H connected with 35 the clock I. The spirally arranged periphery of the cam wheel G² engages a toothed segment K², which forms part of the timing mechanism K above referred to and presently to be described. The spring arm K' is se-40 cured on a second spring arm K⁸, mounted to swing transversely, that is in an opposite direction to the arm K'. This spring arm K³ is secured on a T-shaped arm K⁴ forming part of the casing or frame C, the vertical 45 portion of the arm carrying a tripping lever K⁵ adapted to be engaged at its lower end by pins K⁶ and K⁷, inserted in apertures of a series of apertures K⁸ formed in the segment K², as will be readily understood by reference 50 to Figs. 13, 14, and 15. The segment K² is mounted to swing transversely, and is guided in the forked lower end of the arm K⁴ and the spring arm K³, it being understood that the lower end of the lever K⁵ is preferably 55 forked so as to be engaged by the pins K⁶ and K⁷ at the two forked arms on opposite sides of the segment K².

When the several parts are in the position shown in Fig. 14, and the segment K² swings 60 in the direction of the arrow b', this being caused by the spiral periphery of the cam wheel G² rotating in one direction, then the pin K⁶ engaging the forked end of the lever K5, brings the lower end of the said lever in 65 contact with the spring arm K³, so as to move the latter outward in the direction of the arrow b', whereby the spring K' is moved into I

the path of the levers G⁴ and G¹⁰. When the segment K² swings in the inverse direction of the arrow b' then the pin K^7 engages the 70 forked lower end of the lever K⁵ and imparts a swinging motion to the latter, so that the upper end of said lever K⁵ finally comes in contact with the spring arm K³ and moves the same outward in the direction of the arrow 75 b'. Thus, it will be understood that the movement of the segment K² in either direction causes the spring arm K³ to swing outward to move the arm K' into the path of the levers G⁴ and G¹⁰. The apertures K⁸ in the 80 segment K² correspond to the number of teeth in the latter, so that one revolution of the cam wheel G⁸ shifts the segment K² the distance between two teeth which corresponds to the distance between two apertures K^8 . 85 Now, by setting the pins K⁶ and K⁷ nearer together or farther apart the entire mechanism is arranged for a clock requiring frequent winding or winding at longer periods. Thus, the mechanism can be set to suit a one-day 90 clock or an eight-day clock, or a clock having any other period of winding, it being understood that the pins K⁶ and K⁷ are set correspondingly closer together or farther apart.

The operation is as follows: The main 95 spring E' in the spring barrel E is wound up by the action of the pneumatic wheel B actuated by a blast of air from the wind-wheel A, as before explained, and when the spring is wound up the pneumatic wheel is locked 100 by the locking mechanism J, also fully described above. When the clock I is about run down the connection of the shaft I' with the shaft H has turned the latter so that the pinion H' meshing in the gear wheel G¹¹ has ro- 105 tated the cam wheel G², so that the latter has shifted the segment K² to cause the pin K⁶ to actuate the tripping lever K⁵, so as to change the position of the arm K', the latter then moving into the path of the lever G¹⁰. 110 As the latter is carried around with its cam wheel G², by the action of the shaft H geared with the wheel G¹¹ as above described, the said lever G¹⁰ engages the arm K' and is thrown forward to unlock the pin G⁹ from 115 the spring hook G⁸, so that the pawl G' is thrown in engagement with the wheel F². At the same time the return movement of the lever G⁴ permits the lever L to swing transversely, to move the sleeve L4 in a like direc- 120 tion so as to impart a swinging motion to the lever L⁷ to move the arm L⁸ out of the path of the fly wheel N. As the latter is now unlocked the main spring E' will impart a rotary motion to the shaft F, the motion of which is trans- 125 mitted by the ratchet wheel F² and the pawl G' to the cam wheel G² and, as the latter carries on its hub the gear wheel G11, a rotary motion is given to the pinion H', and consequently to the shaft H connected with the 130 winding shaft I' of the clock I. The latter is now wound up, and during the winding the cam wheel G² again shifts the segment K² in the inverse direction of the arrow b', so that

the other pin K⁷ finally acts on the tripping I lever K⁵, whereby the upper end of the latter throws the spring arm K³ outward to move the spring arm K' into the path of the arm G⁵ 5 of the lever G4. As the cam wheel G2 rotates in the direction of the arrow a', see Fig. 11, the said arm G⁵ engages the arm K', whereby the said lever G⁴ is locked by the pin G⁷ engaging the hook G⁸, and at the same time the said ro lever throws the pawl G'out of mesh with the ratchet wheel F². The movement of the arm G⁵ of the lever G⁴ causes an outward swinging of the lever L, as the said arm travels up the incline or wedge L' of the arm. An out-15 ward swinging motion is thus given to the sleeve L', whereby the position of the shifting lever L'is changed and its arm L'is moved into the path of the fly wheel N, the motion of which is thus interrupted, and further 20 winding of the clock ceases.

It will be seen that the mechanism described for winding up the clock I is wholly independent in its workings of the mechanism used for winding up the spring E' in the main spring 25 barrel E. It will also be seen that the force of the spring E' after once being wound up, will be sufficient to accomplish one, two or more windings of the clock I before it will be necessary for the pneumatic wheel B to wind 30 up the spring B. It is also understood that during the time the clock I is running the shaft H is rotated by the clock mechanism so as to rotate the cam wheel G2, which latter, at every revolution shifts the segment K2 the 35 distance between two teeth until finally the respective pin K⁷ comes in contact with the tripping lever K⁵ for the purpose above mentioned; that is, to release the shaft F by releasing the fly wheel N as above described, to 40 rewind the clock, the shaft H then turning

The connection of the shaft H with the shaft I' can be made from either end of the shaft H, so that the mechanism is readily adapted to any clock whether it winds right or left handed. By the use of the connecting shaft H² the mechanism can be applied to wind any clock, but in certain cases and under certain circumstances it may be desirable to employ a cord to connect with the winding shaft of the clock, and in this case a grooved cone-

in the opposite direction.

shaped, or other form of pulley such, for instance, as is illustrated in Fig. 16, may be mounted on the hub G⁶ instead of the gear wheel G¹¹ the said cord extending to and winding on a flanged pulley secured on the winding shaft I' of the clock. In this case the gear wheel G¹¹, the pinion H', the pinion H³, and the beveled gear wheel H⁴, as well as the shaft H², are entirely dispensed with.

For clocks that have specially large cases, like the greater number of weight clocks, the mechanism can be fixed in position inside of the casing, and for smaller clocks the mechanism can be fixed either on the top or on one side of the casing, but generally it would be

preferable to fix it underneath the clock casing and also within the base of the clock casing, or in a separate base on which the clock is set.

When desired, the power imparted to the pneumatic wheel B, can be transmitted over the train of gear wheels D and connected directly with the springs or weights of a clock so as to avoid the use of the main spring 75 E' in the mechanism as above described and also to curtail the other machinery. By this method a clock would not be wound at regular intervals as explained, but at any time there might be a breeze, until fully wound up, 30 at which time the pneumatic wheel would be locked by the lever J⁶ as above described. By this method of winding clocks automatically only a portion of the mechanism described would be employed, to wit: the wind wheel, 85 bellows, the air tube to carry the air into the pneumatic wheel, the latter, and the train of gearing D,—which connects directly with the main springs or weights of the clock. The air channel of the pneumatic wheel as well 90 as the latter and the train of gear wheels, can be fixed in a separate frame consisting of two plates and posts or pillars to support them, though generally it would be more convenient to extend and arrange the frame of the 95 clock movement so as to receive these parts.

For striking clocks, one winding mechanism can generally be put in position so as to wind both the running and striking parts, but it will be preferable to apply a mechanism such 100 as above described to each part, in which case it will be necessary to divide the air tube so as to form two branches, each of which actuates a separate pneumatic wheel.

Having thus described my invention, what 105 I claim as new, and desire to secure by Letters

Patent, is—

1. A clock winding mechanism comprising a wind wheel, an air forcing device operated thereby, a pneumatic wheel having buckets or the blades, a pipe leading from the air forcing device and discharging into or against said buckets or blades, and mechanism for operating the winding shaft of a clock from said pneumatic wheel, substantially as set forth.

2. A clock winding mechanism comprising a wind wheel, bellows operated by said wheel, a pneumatic wheel having buckets or blades, a casing within which the latter wheel rotates and having passages delivering thereto, a 120 pipe leading from the bellows to said casing and mechanism for operating the winding shaft of a clock from the pneumatic wheel, substantially as set forth.

3. In a clock winding mechanism, the combination with the main spring, a shaft connected with the inner end of the said spring, mechanism for connecting said shaft with the winding shaft of a clock, and a spring barrel connected with the outer end of the said spring, 130 and loose upon said shaft, of a single-toothed wheel secured on the said shaft, a notched

wheel mounted to turn on the face of the said spring barrel adapted to be actuated by the said toothed wheel, a projection held on the face of the said notched wheel, a spring arm 5 adapted to be engaged by the said projection, and a bell-crank lever adapted to be moved in one direction by the said spring arm, substantially as shown and described.

4. In a clock winding mechanism, the comto bination with the main spring, a shaft connected with the inner end of the said spring, mechanism for connecting said shaft with the winding shaft of a clock, and a spring barrel connected with the outer end of the 15 said spring, and loose upon said shaft of a single-toothed wheel secured on the said shaft, a notched wheel mounted to turn on the face of the said spring barrel adapted to be engaged by the said toothed wheel, a projection held 20 on the face of the said notched wheel, a spring arm adapted to be engaged by the said projection, a bell-crank lever adapted to be moved in one direction by the said spring arm, and a spring-pressed lever connected with the 25 said bell crank lever and adapted to lock the train of gear wheels connected with the said spring barrel, substantially as shown and described.

5. A clock winding mechanism provided 30 with a cam wheel adapted to be rotated in either direction, a segment adapted to be engaged by the said cam wheel and provided with pins adapted to be set closely together or farther apart, and a tripping mechanism 35 adapted to be actuated by the said pins, sub-

stantially as shown and described.

6. A clock winding mechanism provided with a cam wheel adapted to be rotated in either direction, a segment adapted to be en-40 gaged by the said cam wheel and provided with pins adapted to be set closely together or farther apart, a tripping mechanism adapted to be actuated by the said pins, and means, substantially as described, for imparting a 45 rotary motion to the said cam wheel in one direction by the running down of the clock, as set forth.

7. A clock winding mechanism provided with a cam wheel adapted to be rotated in 50 either direction, a segment adapted to be engaged by the said cam wheel and provided with pins adapted to be set closer together or farther apart, a tripping mechanism adapted to be actuated by the said pins, and means, 55 substantially as described, for imparting a rotary motion to the said cam wheel by the mechanism winding up the clock, as set forth.

8. In a clock winding mechanism, the combination with a main spring shaft carrying a 60 ratchet wheel, and mechanism for connecting said shaft with the winding shaft of a clock to wind the same and to reversely rotate the said main spring shaft from the winding shaft as the clock runs down, substantially as set 65 forth, of a pawl adapted to engage the said ratchet wheel, a cam wheel carrying the said shown and described.

pawl, and a lever for throwing the said pawl into and out of mesh with the ratchet wheel, substantially as shown and described.

9. In a clock winding mechanism, the com- 70 bination with a main spring shaft carrying a ratchet wheel, of a pawl adapted to engage the said ratchet wheel, a cam wheel carrying the said pawl, a lever for throwing the said pawl into and out of mesh with the ratchet wheel, and 75 a locking device for the said lever, to hold the latter in position at the time the pawl is disengaged from the ratchet wheel, as set forth.

10. In a clock winding mechanism, the combination with a main spring shaft carrying a 80 ratchet wheel, of a pawl adapted to engage the said ratchet wheel, a cam wheel carrying the said pawl, a lever for throwing the said pawl into and out of mesh with the ratchet wheel, a locking device for the said lever, to 85 hold the latter in position at the time the pawl is disengaged from the ratchet wheel, and a lever for unlocking the said first named lever, substantially as shown and described.

11. In a clock winding mechanism, the com- 90 bination with a main-spring shaft carrying a ratchet wheel, of a pawl adapted to engage the said ratchet wheel, a cam wheel carrying the said pawl, a lever for throwing the said pawl into and out of mesh with the ratchet 95 wheel, and a tripping mechanism, substantially as described, and actuated by the said cam wheel to actuate the said lever to move the pawl out of contact with the ratchet wheel or into contact therewith as set forth.

100

12. In a clock winding mechanism, the combination with a main spring shaft carrying a gear wheel and a ratchet wheel, of a fly wheel connected by a train of gear wheels with the said shaft gear wheel, a cam wheel mounted ros to rotate loosely on the said shaft and carrying a pawl adapted to engage the said ratchet wheel, a tripping device for actuating the said pawl to move the latter into or out of mesh with its ratchet wheel, and a shifting 110 device actuated in connection with the said tripping device to lock the said fly wheel as set forth.

13. In a clock winding mechanism, the combination with a segment mounted to swing in 115 either direction, and provided with a series of apertures and pins adapted to be inserted in the said apertures, of a tripping lever adapted to be alternately engaged by the said pins, and a spring arm adapted to be engaged by 120 either end of the said tripping lever, to be moved in either direction, substantially as shown and described.

14. In a clock winding mechanism, the combination with a wind wheel geared with the 125 main spring shaft, of a lever for locking the said wind wheel, a sleeve engaging the said lever for shifting the latter, a lever provided with a wedge for shifting the said sleeve, and a third lever engaging the said wedge or in- 130 cline to shift the said sleeve, substantially as

15. In a clock winding mechanism, the combination with a fly wheel geared with the main spring shaft, of a lever for locking the said fly wheel, a sleeve engaging the said lever for shifting the latter, a lever provided with a wedge for shifting the said sleeve, a third lever engaging the said wedge or incline

to shift the said sleeve, and a tripping mechanism, substantially as described, for actuating the said third lever, as set forth.

ANDREW JACKSON HOPEWELL.

Witnesses:

BENJ. F. HISEY, F. M. HISEY.