

(No Model.)

C. M. DODSON. ROAD GRADING MACHINE.

No. 456,986.

Patented Aug. 4, 1891.

United States Patent Office.

CHARLES M. DODSON, OF DES MOINES, IOWA.

ROAD-GRADING MACHINE.

SPECIFICATION forming part of Letters Patent No. 456,986, dated August 4, 1891.

Application filed July 25, 1890. Serial No. 359,956. (No model.)

To all whom it may concern:

Be it known that I, CHARLES M. DODSON, a citizen of the United States, and a resident of Des Moines, in the county of Polk and State of Iowa, have invented an Improved Road-Grading Machine, of which the following is a specification.

My object is to facilitate the adjustment of a scraper as required to move ground in dif10 ferent directions at different times, to move the scraper laterally relative to the line of advance of the carriage, to regulate its depth in the ground, and to carry it elevated and inoperative.

My invention consists in the construction and combination with a carriage of mechanism for reversing the scraper, mechanism for raising and lowering the scraper, and mechanism for regulating the space between parallel mating traction-wheels, as hereinafter set forth, pointed out in my claims, and illustrated in the accompanying drawings, in which—

Figure 1 is a side view, and Fig. 2 a top view, of the machine. Fig. 3 is a top view of the mechanism for adjusting the rear traction-wheels of the carriage relative to the scraper, and Fig. 4 is an end view of the same. Fig. 5 is a detail view of the locking device for retaining the scraper at different points of elevation at different times. Fig. 6 is a detail view of the device for moving the scraper laterally and retaining it in different positions relative to the center of the carriage.

A represents a carriage-frame that is arched at its central and front portion and connected with a front and rear axle in such a manner that it will serve as a reach and also as a support for the scraper suspended therefrom, and also as the base of a platform in rear of the scraper.

A² are levers of the second order, pivoted to the front ends of the sides of the frame in such a manner that the levers will extend rearward and move vertically.

A³ are bridles on the rear ends of the levers.

A⁴ are mutilated gear-wheels journaled to the sides of the frame A. The outer ends of their axles extend through the bridles A³, and 5° studs A⁴, projecting laterally from the rims of the wheels, extend through the same bridles in such a manner that the levers will be on-

erated by the motions of the wheel as required to raise and lower the scraper connected with the central portions of the levers. 55

B is a beam pivoted to the center of the front carriage-axle. The front portion of the beam is arched to allow the wheels on the front carriage-axle to run under the beam in making short turns.

B² is a re-enforcing arched bar fixed on top of the front part of the beam by means of clips, to project at right angles from the flat face of the beam.

B³ is a flat bar, bent upward at its ends and 65 fixed to the under side of the straight and rear portion of the beam.

B⁴ is a gear-wheel on the under side of the beam and pivoted thereto to rotate horizon-tally in reverse ways.

B⁵ is a flat bar, bent double at its ends and fixed across the top of the beam and the wheel B⁴ in such a manner that its doubled ends will serve as bearings and guides for the wheel. Braces B⁶, formed by forking the rear 75 end of the bar B², extend from the arch of the beam to the cross-bar.

. B⁷ are links depending from the levers A² and connected with the ends of the bar B⁵ in such a manner that the beam and wheel B⁴ 80 will be jointly suspended from the levers.

C are elbow-shaped standards pivoted to the wheel B⁴ and flexibly connected with a scraper C² of common form in such a manner that the scraper will move horizontally and vertitable scally with the wheel and beam. By thus pivoting the standards C to the wheel B⁴ the scraper can be moved longitudinally and laterally relative to the line of advance while the wheel B² remains stationary. Adjustable 90 braces may be pivotally connected with the scraper and the rear portion of the beam B, as indicated in Fig. 1, to aid in supporting the scraper.

C³ is a hand-wheel journaled to the rear end of the beam and provided with a pinion on its lower end in such a manner that the pinion will engage the cogs of the wheel B⁴ to rotate that wheel as required to reverse the position of the scraper, or to change the deroo gree of its angle relative to the line of advance when in operation.

the wheels, extend through the same bridles | D is a sliding bar in bearings formed on or in such a manner that the levers will be op- | fixed to the sides of the frame A. It is con-

nected with the rear end of the beam B by

means of chains D^2 .

D³ is a drum and hand-wheel combined and journaled to a bearing formed on or fixed to the center of the sliding bar in such a manner that the chains can be alternately lengthened and shortened by rotating the drum, as required to move the bar longitudinally, and thereby move the beam and scraper from one side of the center of the carriage to the other at pleasure. A pin inserted in the sliding bar, as shown in Fig. 6, or in one of the series of perforations in the flange at the bottom of the drum and a coinciding perforation in the bearing under the drum locks the drum and sliding bar in a fixed position.

F are hand-wheels on rotating axles mounted in bearings fixed to the frame A in such a manner that gear-wheels F² on their outer ends will engage the wheels A⁴, as required to rotate said wheels, and to thereby actuate the levers A² to raise and lower the scraper.

F³ are toothed wheels fixed to the same

axles.

F⁴ are spring-actuated bars that have treadles projecting at right angles from their lower ends. They are connected with posts that support the axles, as shown in Fig. 5, in such a manner that they can be depressed by foot-pressure to withdraw the tops of the bars from the toothed wheels by the person that seizes the hand-wheels F². When the foot-pressure is relaxed, the bars will lock the wheels F² as required to retain the wheels A⁴ stationary and to keep the scraper suspended at different points of elevation at different times at the pleasure of a person on

the platform at the rear end of the frame A.

G is an axle-support that has bearings G²,

40 adapted to receive sliding axles H, that are
toothed at their inner ends. It is fixed to the
side bars of the frame A and serves as a crosspiece at the rear end of the frame. There are
pinions on the rotating shafts J², supported

45 in the bearings G² in such a manner that the
pinions will engage the teeth of the axle, as
required to move the axles longitudinally
when the shafts are rotated by means of handwheels on their top ends for the purpose of

videning the base of the rear end of the carriage to prevent the wheels from being lifted or moved laterally when the scraper is swung out and operated at one side of the longitudinal center of the carriage.

From the foregoing description of the construction and functions of each element and sub-combination the unitary actions of all the parts and the practical operations of the complete machine will be readily understood by persons familiar with the art to which the invention pertains.

I claim as my invention—

1. A reach for the carriage of a road-grading machine, composed of a flat bar having an arch at its front end and a re-enforcing 65 bar fitted on top of the arch to project vertically from the center of the flat top face of the arched part and forked at its rear end, in combination with a cross-bar, substantially as shown and described.

2. The combination of the beam B, the sliding bar D, the wheel B⁴, pivoted to the under side of the said beam, the elbow-shaped standard pivoted to the under side of the wheel B⁴ and pivotally connected with a scraper, the 75 cross-bar B⁵, and the levers A² and links B⁷, to elevate the scraper and also to permit movement of the scraper laterally in the manner set forth, for the purpose stated.

3. The wheel B⁴, pivoted to the underside 80 of the beam B, the elbow-shaped standards C, pivoted to the wheel B⁴ and pivotally connected with a scraper, and a scraper of common form, arranged and combined in the manner shown and described, for the purposes 85

stated.

4. The levers A², having bridles A³, the wheels A⁴, and means for rotating said wheels, in combination with the frame A and the reach B, substantially as shown and described, 9°

for the purposes stated.

5. An axle-support having parallel grooves and axle-bearings at the outer ends of said grooves to retain two horizontally-movable axles in parallel position, axles in said bear-95 ings having toothed sections, and pinions and hand-wheels for moving said axles longitudinally in the manner set forth, for the purposes stated.

6. The axle-support G, having bearings G², 100 the axles H, having teeth at their inner end portions, and pinions J on shafts J², in combination with a carriage-frame, for the purposes stated.

CHARLES M. DODSON.

Witnesses:
M. P. SMITH,
THOMAS G. ORWIG.