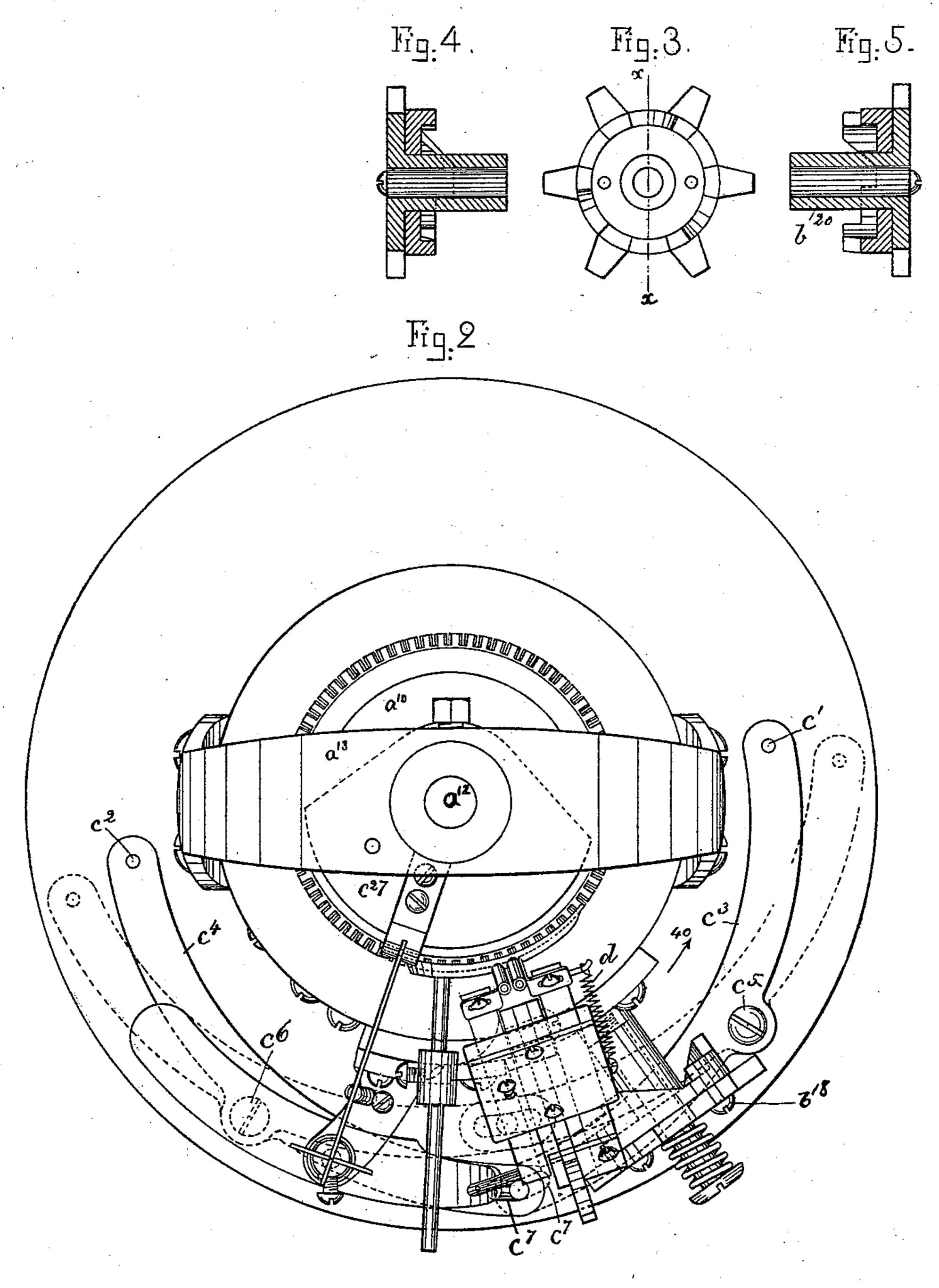

L. C. HUSE.

FEEDING MECHANISM FOR CIRCULAR KNITTING MACHINES.



L. C. HUSE.

FEEDING MECHANISM FOR CIRCULAR KNITTING MACHINES.

No. 455,018.

Patented June 30, 1891.

Wilgesses Fued. S. Gumlas Edward F. Allen. Inventor.

I eon C. Huse.

By lemby Sugary

atti

United States Patent Office.

LEON C. HUSE, OF LACONIA, NEW HAMPSHIRE, ASSIGNOR TO WARREN D. HUSE, OF SAME PLACE.

FEEDING MECHANISM FOR CIRCULAR-KNITTING MACHINES.

SPECIFICATION forming part of Letters Patent No. 455,018, dated June 30, 1891.

Application filed July 1, 1890. Serial No. 357,340. (No model.)

To all whom it may concern:

Be it known that I, Leon C. Huse, of Laconia, county of Belknap, State of New Hampshire, have invented an Improvement in Feeding Mechanism for Circular - Knitting Machines, of which the following description, in connection with the accompanying drawings, is a specification, like letters and figures on the drawings representing like parts.

This invention relates to circular-knitting machines, and has for its object to provide mechanism, as will be described, by which a second or independent thread may be knitted to form a double thickness of re-enforce for the garment at those parts or places most subjected to wear—as, for instance, at the knees

of stockings.

My invention in a circular-knitting machine therefore consists in the combination, with the needle-cylinder to contain needles, the cam-ring, a stationary thread-guide, a movable thread-guide and its carrier, of a disk pivoted to the cam-ring and provided with one or more cams, an actuating device for the movable carrier operated by the said cams to effect the movement of the movable thread-guide carrier, levers $c^3 c^4$, provided with posts to rotate the disk, a pattern-chain, and a pivoted rod connected to the said levers and acted upon by the pattern-chain to move the said levers, substantially as will be described.

Other features of my invention will be pointed out in the claims at the end of this

specification.

Figure 1 is a side elevation of a sufficient portion of a knitting-machine embodying my invention to enable it to be understood. Fig. 2 is a top view or plan of the machine shown in Fig. 1; Fig. 3, a detail in elevation of the operating-cam; Fig. 4, a sectional detail of the cam shown in Fig. 3 on line x x, looking toward the right; and Fig. 5, a section of the cam shown in Fig. 3 on line x x, looking toward the left.

The bed-plate a, having the depending bracket a', the pattern-ring a^2 , pivoted thereto and provided with the pattern-chain a^3 , the rachet-wheel a^4 to move said pattern ring and chain, the pawl a^5 and gears a^6 a^7 , rotated from the cam-ring a^8 to operate the said pawl, the cam cylinder or ring a^8 , carrying the cams for

operating the cylinder-needles, (not herein shown,) the bevel-gear a^9 , secured to the under side of the cam-ring, the dial-plate a^{10} , the spindle a^{12} , upon which the said plate 55 is mounted, and the yoke a^{13} , secured to the cam-ring a^8 , are and may be of usual construction, such as commonly employed on circular-

knitting machines.

In accordance with my invention the ma- 60 chine is provided with two thread-guides bb', shown in Fig. 1 as secured to two metal bars or carriers $b^2 b^3$, extended through suitable guideways between two plates b^4 b^5 , fastened together, as by screws b^6 , and supported by a 65 bracket b^{\times} , fastened to the cam ring or cylinder a^8 , as by a screw b^{20} , one of the said carriers, as b^2 , being stationary and the other movable in its guideway, as will be described. The carrier b^2 is fixed so that its thread-guide 70 b is in position to have its thread engaged by the cylinder-needles. The movable carrier b^3 has secured to it, as herein shown, a plate or bar b^{10} , provided with a slot or opening, through which is extended an actuating de- 75 vice (shown as a spring-actuated lever b^{12} , pivoted at its lower end, as at b^{13} , to a boss or projection b^{14} on the cam-ring a^{8} .) The springactuated lever b^{12} is provided with a stud or projecting arm or rod b^{15} , which is engaged 80 and acted upon by cams b^{16} , preferably forming part of a ring detachably secured on the inner face of a disk b^{17} , as shown, by screws b^{18} , diametrically opposite one another, (see Fig. 2,) the said screws being extended through 85 slots b^{19} in the said disks. The cam-ring b^{16} is mounted on a hollow hub b^{20} , secured to or forming part of the disk b^{17} , and the said disk and hub are loosely mounted on a bolt b^{21} , secured to the cam-ring a^8 , the said disk and 90 hub being frictionally held in proper or adjusted position by the spring b^{22} , encircling the rod b^{21} outside of the disk b^{17} .

The disk b^{17} is provided on its periphery with a series of projections c, which are 95 adapted, as herein shown, to strike two studs or uprights c' c^2 on levers c^3 c^4 , pivoted, as at c^5 c^6 , to the bed-plate a, the said levers being joined together, as herein shown, by a pivoted rod, bar, or lever c^8 , extended up through the 100 bed-plate and through slots c^7 in the overlapping ends of the said levers, as clearly shown

in Figs. 1 and 2. The rod or bar c^8 is pivoted, as at c^9 , to an arm or projection c^{10} on the bracket a', the lower end of the said rod being adapted to be acted upon by one or more 5 cams c^{12} on the pattern-chain a^3 . The camring a^8 has secured to it, as by screw c^{14} , a bracket c^{15} , extended outward from the camring, and having secured to or forming part of it an upright sleeve c^{16} , provided with a 10 vertical slot c^{17} , into which is extended a pin c^{18} on a rod c^{19} , extended through and movable in the said sleeve. The rod c^{19} has secured to or forming part of it at its lower end a shoe c^{20} , upwardly bent at one end, 15 as at 3, and at its upper end the said rod, as herein shown, has secured to it, as by · screw c^{21} , a cap c^{22} , provided with a cross piece or bar c^{23} , upon which rests one arm 4 of a lever c^{24} , pivoted, as at c^{25} , to an upright 20 c^{26} , secured to the dial-cap c^{27} , the other arm 5 of the said lever being extended down and normally kept pressed against the circumference or edge of the dial-cap by a spring c^{40} , secured to the lever c^{24} and to the bracket c^{15} , 25 the said arm 5 acting as a catch or nipper to hold the re-enforcing thread while it is not being knitted, the arm 5 of the said lever releasing the re-enforcing thread when the rod c^{19} is raised, as will be described.

In the normal operation of the machine plain knitting is produced, and at such time the highest portion of the cam b^{16} acts on the rod b^{15} and forces the spring-actuated lever b^{12} in toward the cam-ring, thereby carrying the 35 thread-guide in toward the center of the ma-

chine within the needle-cylinder.

To re-enforce the garment at certain points—as, for instance, at the knee of a stocking-I have provided the pattern-chain with 40 a cam or lump c^{12} , so placed as at the proper time to act upon the lower end of the lever c^8 , pivoted at c^{10} . This cam or lump c^{12} is so located that when the re-enforcing is to take place it will in the movement of the chain 45 contact against one side of the lower end of the lever c^8 , as represented in Fig. 1, thus throwing the upper end of the said lever inward, thereby moving the levers $c^3 c^4$ from their full into their dotted line positions, thus 50 placing the studs or posts c' c^2 in the path of movement of the disk b^{17} , so that on the next revolution of the cam-ring a^8 in the direction indicated by arrow 40, Figs. 1 and 2, one of the projections c (marked 10 in Fig. 1) strikes 55 the post c' and the disk b^{17} is rotated in the direction indicated by arrow 41, bringing the narrowest or smallest portion of the cam b^{16} into engagement with the arm or rod b^{15} . thereby permitting the lever b^{12} to be moved 60 outward by the spring d and carry the threadguide carrier b^3 from the center of the machine outward a sufficient distance to place the thread-guide b' outside of the cylinderneedles, thus drawing the thread across the 65 said cylinder-needles and into position to be engaged by them. Immediately after the disk \bar{b}^{17} has passed by the post c' the shoe c^{20}

rides up over the said post, thereby raising the rod c^{19} and lifting the arm 4 of the lever c^{24} , turning the said lever on its pivot and mov- 70 ing the arm 5 out away from the dial-cap, thus releasing the thread passing through the guide b'and leaving it free to be engaged by the cylinder-needles and knitted to form the re-enforce. The machine will knit with both threads until 75 in the revolution of the cam-ring a second projection c (marked 12) on the disk $b^{\scriptscriptstyle 17}$ strikes the post c^2 on the opposite side of the machine. When the projection c (marked 12) strikes the post c^2 , the said disk is turned still farther 80 in the direction of arrow 41 and the raised or highest portion of the cam $b^{\scriptscriptstyle 16}$ brought into engagement with the arm b^{15} of the springactuated lever, thereby forcing the said lever in toward the cam-ring and moving the car- 85 rier b^3 in toward the center of the machine to place its thread-guide b' inside of the cylinder-needles. Immediately after the disk b^{17} has passed by the post c^2 the shoe c^{19} rides over the said post and opens the thread-nip- 90 per—that is, the arm 5 of the lever c^{24} is moved away from the dial-cap—and as soon as the shoe has passed beyond the post c^2 the lever c^{24} is brought against the dial-cap and firmly nips the thread, and on the continued move- 95 ment of the cam-ring a^8 in the direction of arrow 40 the thread between the nipper and cylinder-needles is broken off from the knitted goods, the said thread being still held between the nipper and the thread-guide. In 100 this manner a re-enforcing course is knitted and the machine will continue to thus knit as long as the cam c^{12} remains in engagement with the lever c^8 . The cam c^{12} is made of suitable length to engage the lever c^8 until the ros desired or required amount of re-enforce is knitted, and, as herein represented, the said cam is made of a length sufficient to enable only a small re-enforce to be knitted, and if a long re-enforce is to be knitted the cam c^{12} 110 will be made longer than shown. The camring b^{16} , as herein shown, is provided with three steps or cams; but in practice only two of said steps are employed—viz., the highest and lowest.

I claim—

1. In a circular-knitting machine, the combination, with the needle-cylinder, the cam-ring a⁸, a stationary thread-guide, and a movable thread-guide and its carrier, of a disk b^{17} , piv- 120 oted to the cam-ring a⁸ and provided with one or more cams, an actuating device for the movable carrier operated by the said cams to effect the movement of the movable threadguide carrier, levers c^3 c^4 , provided with posts 125 c' c^2 to rotate the disk b^{17} , a pattern-chain, and a lever c^8 , connected to the levers $c^3 c^4$ and acted upon by the pattern-chain to move the said levers, substantially as described.

115

2. In a circular-knitting machine, the combi- 130 nation, with the needle-cylinder to carry needles, the cam-ring a^8 , the stationary threadguide, the movable thread-guide and its carrier, and an actuating device for said movable carrier, of a disk b^{17} , provided with studs or projections, a cam b^{16} , attached to the said disk to operate the actuating device for said movable carrier, levers c^3 c^4 , pivoted to the 5 bed-plate and provided with posts, the lever c^8 , extended through the bed-plate and connected to the levers c^3 c^4 , and a pattern-chain provided with a cam or cams to act on the lever c^8 , substantially as described.

3. In a circular-knitting machine, the combination, with the needle-cylinder to carry needles, the cam-ring a^8 , the stationary threadguide, and the movable thread-guide and its carrier, of a spring-actuated lever b^{12} , connected to the said movable carrier and pro-

vided with an arm b^{15} and a disk b^{17} , pivoted to the cam-ring and provided with one or more cams to act on the arm b^{15} , levers $c^3 c^4$, provided with posts $c' c^2$, a lever c^8 , connected to the levers $c^3 c^4$ to move the same, and a pattern-chain 20 to operate the lever c^8 , substantially as described.

In testimony whereof I have signed my name to this specification in the presence of two subscribing witnesses.

LEON C. HUSE.

Witnesses:

S. F. GALLAGHER,

L. FLORENCE LEAVITT.