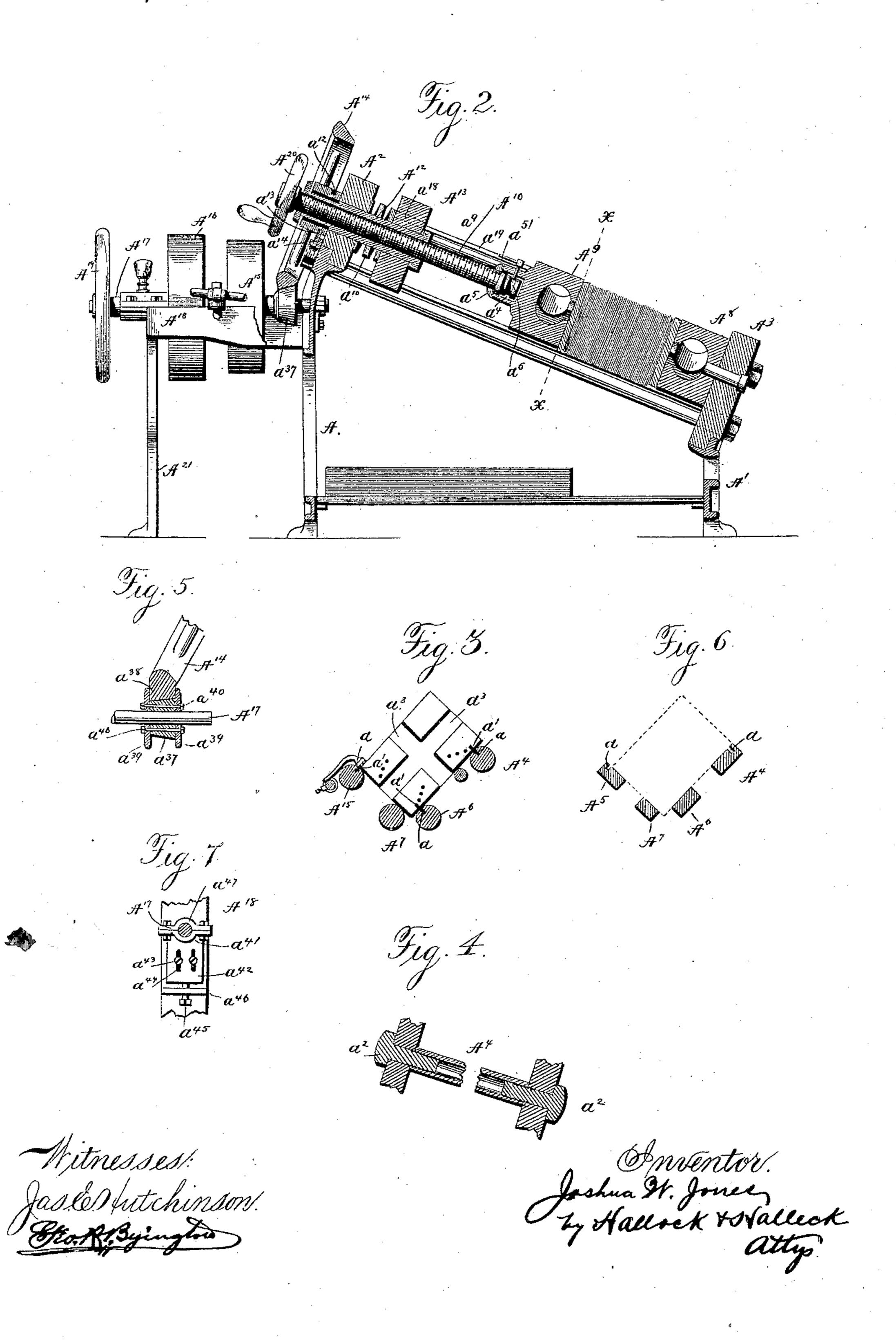

J. W. JONES.

DRY PRESSING, SHEET TYING, SMASHING, AND TABLETING MACHINE.

No. 452,898.

Patented May 26, 1891


Witnesses: Jasle Hutchinson Brok Bying

Joshua H Jones, by Hallock & Hallock attyp

J. W. JONES.

DRY PRESSING, SHEET TYING, SMASHING, AND TABLETING MACHINE.
No. 452,898.

Patented May 26, 1891.

United States Patent Office.

JOSHUA W. JONES, OF HARRISBURG, PENNSYLVANIA.

DRY-PRESSING, SHEET-TYING, SMASHING, AND TABLETING MACHINE.

SPECIFICATION forming part of Letters Patent No. 452,898, dated May 26, 1891.

Original application filed July 25, 1889, Serial No. 318,605. Divided and this application filed November 25, 1889, Serial No. 331,521. (No model.)

To all whom it may concern:

Be it known that I, Joshua W. Jones, a citizen of the United States, residing at Harrisburg, in the county of Dauphin and State 5 of Pennsylvania, have invented certain new and useful Improvements in Book-Binders' and Printers' Dry-Pressing, Sheet-Tying, Smashing, and Tableting Machines; and Ido hereby declare the following to be a full, clear, 10 and exact description of the invention, such as will enable others skilled in the art to which it appertains to make and use the same.

My invention relates to that class of bookbinders' and printers' dry-pressing, sheet-ty-15 ing, smashing, and tableting machines shown in my application, Serial No. 318,605, and filed July 25, 1889, and of which this application is a division.

The invention in this application relates 20 particularly to the construction of the trough, to the combination of the trough with the heads, and to minor details.

The invention therefore consists of constructions and combinations, all as will here-25 inafter be described in the specification, and pointed out in the claims, reference being had to the accompanying drawings, in which—

Figure 1 represents a perspective view; Fig. 2, a longitudinal section; and Fig. 3, a trans-30 verse section on the line x x, Fig. 2. Figs. 4 and 6 are modifications of the form of the trough; Fig. 5, a modification of the frictiongear, and Fig. 7 a detail of a modification.

A A' represent the standards; A² A³, the 35 head and foot plates, of heavy metal and secured to the standards A and A', and A4, A5, and A⁶ rods for securing the head and foot plates together and for forming the trough or bed. These rods are arranged in a rectangu-40 lar position, as shown in Figs. 3 and 6, on an inclined plane, so that the foot of the machine will be lower than the head. By this means the sheets find an easier lodging and are not as liable to tilt or fall over while the 45 trough is being filled, as they incline two ways toward the foot or lower part of the press. If desired, an additional rod A⁷ may be provided to act as a bottom or rest for the sheets.

The rods A⁴ and A⁵ and, if desired, the rod 50 A^6 are provided with longitudinal grooves afor the gibs a' on the compressing-heads A' strain on those parts to the minimum. The

and A⁹. The rods shown in Figs. 1, 2, 3, and 6 are shown solid. In Fig. 4 I show as a substitute for the solid rods a tube secured to the heads by bolts a^2 instead of by nuts, as 55shown in the other figures. When tubes are used, the machine can be much lighter and at less cost than when the round rods are used. The heads are provided with crossways a^3 for the insertion of the tying devices, 60 and the movable head A^9 has a pocket a^4 for the lower end of the pressure-screw A¹⁰, by which it is moved up or down. The screw is held in place by a flange a^5 , secured to the head A^9 , and against which the collar a^5 rests. The 65 screw is provided with an annular depression a^6 for a set-screw a^7 , which rigidily connects the head and screw together when screwed down, and does not interfere with the rotary motion of the screw when not screwed down. 70 This screw carries the nut or sleeve A^{12} , provided with a movable plate A¹³, which rests against or upon an anti-friction roller a^8 on the flange a^9 . A spring a^{10} , interposed between the head-plate A² and movable plate 75 A¹³, and the beveled friction-wheel A¹⁴, having annular groove a^{12} , in which the ends a^{13} of the clips a^{14} , screwed to the plate A^2 , project to prevent the gear-wheel from moving back and forth with the nut when the latter 80 is moved by the screw. The movable plate A^{13} is provided with an opening a^{13} for a guide-rod a^{19} , secured to the frame and with shoulders a^{20} , which rest against the framerods, and an arm a^{22} , having a pin a^{21} , which 85 passes through an elongated slot a^{23} in one end of the lever a^{24} , fulcrumed on arm a^{25} , secured to the head A². This lever projects beyond the frame and is arranged to engage with the shifting collar a^{26} on the sliding rod 90 a^{27} . This rod is provided with safety-collars a^{28} , a^{29} , and a^{30} and a shifting collar a^{31} , which is operated upon by the finger a^{32} on the head A⁹. The rod is held in place by keepers a^{33} , to one of which may be secured the scale a^{34} . 95 A shifting rod a^{35} connects the rod a^{27} with the clutch mechanism placed between the friction-pulleys A^{15} and A^{16} . The shifting collar a^{26} may be provided with

a friction-roller a^{36} for the lever a^{24} , which is 100

in contact with and reduces the wear and

pulleys are mounted on a shaft A¹⁷, journaled in the frame A¹⁸, and provided at one end with a beveled friction-wheel a³⁷, which is in contact with the friction-wheel A¹⁴, and at the other end with a hand-wheel A¹⁹, by which motion can be imparted to the shaft when the pulleys are not used. The screw A¹⁰ is also provided with a hand-wheel A²⁰, by which it can be revolved when the set-screw at the other end is loosened.

The pulleys are made of different sizes, as shown, so that one will have greater leverage than the other. The pulley A¹⁵ is the smaller and drives the screw in such manner as to force the head A⁹ toward the head A⁸. The pulley A¹⁶ is made longer, so that when the movement of the screw is reversed it will readily withdraw the head A⁹ from contact

with the matter between it and the head A⁸. The frame A¹⁸ may be supported by an upright A21, which is secured thereto in any suitable manner. The wheel A^{14} is provided with a flange a^{38} and the friction-wheel a^{37} with disk or plates a^{39} , which embrace the flange 25 a^{38} , as shown in Fig. 5. These flanges are secured to the friction-wheel by means of bolts a^{40} . The shaft A^{17} is mounted upon adjustable bearings, as shown in Fig. 7. In this figure the shaft is shown resting upon a half-30 box a^{41} , provided with a plate a^{42} , which is secured to the frame by bolts a^{43} , passing through slots a^{44} in said plate to permit of the box being raised when either or both of the wheels A^{14} a^{37} become worn from use, and thus take 35 up the wear. To make the adjustment positive, a set-screw a^{45} is screwed through a table or ledge a^{46} , projecting from the frame, until it comes in contact with the under side of the

plate a^{42} . The half-box a^{41} is covered by a sec-

40 and half-box a^{47} and secured thereto, as shown.

What I claim as new is—

1. In a machine of the kind described, the combination of the head and foot plates and the rods or tubes connecting said head and foot plates and serving as a trough for holding the matter to be compressed and having spaces between the rods for the insertion of the ties.

2. In a machine of the kind described, the combination of the head and foot plates, the 50 trough formed of rods or tubes, having the longitudinal grooves and the space between the rods for the purpose set forth, and the movable compression-block having gibs inserted in said grooves, substantially as set forth.

3. In a machine of the kind described, the combination of the sleeve, the movable plate on the sleeve and having the arm, the lever fulcrumed on the frame and having the elongated slot for the pin or said arm, and the 60 shifting mechanism, substantially as described.

4. The combination of the sleeve, the movable head or plate on the sleeve and having the arm, the lever fulcrumed on the frame and 65 having the elongated slot for said arm, and the shifting mechanism having the shifting collar a^{26} , provided with the friction-roller, substantially as described.

5. In a press of the kind described, the com- 7° bination of the pressure-heads and the friction-pulleys of different diameters and geared

to the movable pressure-head.

In testimony whereof I affix my signature in presence of two witnesses.

JOSHUA W. JONES.

Witnesses:
John B. Dunkle,
D. C. Maurer.