
(No Model.)

F. W. COLE.
SIGNAL BOX.

No. 447,869.

Patented Mar. 10, 1891.

Witnesses. Edward Fillen. Edgar a. Goddin Inventor.
Frederick W. Cole
by lenosty Ingory
Attys.

United States Patent Office.

FREDERICK W. COLE, OF NEWTON, MASSACHUSETTS.

SIGNAL-BOX.

SPECIFICATION forming part of Letters Patent No. 447,869, dated March 10, 1891.

Application filed December 23, 1890. Serial No. 375,553. (No model.)

To all whom it may concern:

Be it known that I, FREDERICK W. COLE, of Newton, county of Middlesex, State of Massachusetts, have invented an Improvement in Signal-Boxes, of which the following description, in connection with the accompanying drawing, is a specification, like letters on the

drawing representing like parts.

In another application, filed October 10, 10 1889, Serial No. 326,607, a non-interference signal-box is shown containing, among other prominent features, two switches, one of which is arranged to shunt out the non-interference magnet and circuit-wheel and the other to cut 15 out the said non-interference-magnet and circuit-wheel, said switches being operated in succession, thereby constituting an absolute cut-out for the box. This feature has been found to be a very important one in connec-20 tion with signal-boxes other than non-interference signal-boxes, and by this application it is intended to generically claim this absolute cut-out, in combination with the signaltransmitting mechanism, as will be hereinafter 25 pointed out at the end of this specification.

The drawing shows in front elevation a signal-transmitter provided with an absolute cutout embodying this invention. The signalingtrain consists of the winding-shaft a, on which 30 is secured a ratchet-wheel a', (see dotted lines,) which is engaged by a pawl a^2 , borne by a toothed wheel a^3 , mounted on said windingshaft, which toothed wheel engages a pinion a^4 , (see dotted lines,) secured to the shaft a^5 , 35 to which shaft is secured a toothed wheel a^6 , which engages a pinion a^7 , secured to a shaft a^{s} , carrying the escape-wheel a^{s} , with which co-operates a suitable pallet a^{10} . The signalwheel b is mounted on the shaft a^5 and is 40 adapted to be rotated synchronously with the toothed wheel a^6 . The winding-arm c is attached to the winding-shaft a, which is adapted \cdot to be engaged and operated by any suitable pull, as c', for instance.

The absolute cut-out consists of a pen 2, secured to a block 4 of insulation and a conducting block or stud 3 on said block 4 beneath the pen 2, and on the winding-arm c a conducting-block 7 is secured. The leading-in wire 9 is connected to the contact-pen 2, a wire 5 connects the stud 2 with the signaling

wire 5 connects the stud 3 with the signalingpens, and the leading-in wire 8 is also con-

nected to said pens. Another wire 10 also connects the wire 8 with part 7. The conducting-block 7 on the winding-arm c is lo- 55 cated beneath the outer end of the contactpen 2 and is made high enough to engage and lift said pen free from contact with the conducting block or stud 3 when the windingarm c is in its normal position, as shown in 60 Fig. 1. With the parts in this position the circuit is maintained over the wire 8, wire 10, block 7, contact-pen 2, and wire 9. It will be seen that with the parts in this position the wires leading to the signal-wheel are discon- 65 nected from the circuit at the conductingblock 3. As the winding-arm c is depressed the conducting-block 7 allows the contact-pen 2 to engage with the conducting-block 3, and thereafter said conducting-block 7 is discon- 7c nected from the contact-pen 2, leaving said pen bearing firmly on the conducting-block With the parts in this position the circuit is maintained over the wire 9, contact-pen 2, conducting-block 3, wire 5, including the sig- 75 naling-pens, and wire 9. With the parts in this position the signal may be transmitted. As the winding-arm c is restored to its normal position the conducting-block 7 first engages the contact-pen 2 and forms a shunt 80 for the box by wire 10, and immediately thereafter the contact-pen 2 is lifted away from the stud 3 and the box is absolutely cut out, yet the continuity of the main circuit is maintained. The conducting-block 7, co-operating 85 with the contact-pen 2 when the latter is bearing on the conducting-block 3, serves as a shunt-switch for the signaling mechanism, and when the said pen 2 is freed from contact with the block or stud 3 the said conducting- 90 block 7 and the contact-pen 2 serve to maintain the continuity of the line and cut out the signaling mechanism.

This absolute cut-out is a very important feature in signal-boxes, as it completely dis- 95 connects the box from the signaling-circuit when not in operation, and high-tension current could not pass through the signaling mechanism in the box should a high-tension wire come in contact with the signaling-cir- 100

cuit.

In lieu of the particular form of signalingtrain herein shown any well-known form could be employed, and also in lieu of the specific form of absolute cut-out herein shown any equivalent form may be employed, whereby the same results are accomplished.

I claim—

In a signal-box, a train and signal-wheel, combined with a switch for shunting out the said signal-wheel and another switch for cutting out the said signal-wheel, said switches being operated in succession to first shunt

out and thereafter cut out the said signal- 10 wheel, substantially as described.

In testimony whereof I have signed my name to this specification in the presence of two subscribing witnesses.

FREDERICK W. COLE.

Witnesses:

AUGUSTA E. DEAN, EDWARD F. ALLEN.