E. A. SPERRY. ELECTRIC ARC LAMP. # E. A. SPERRY. ELECTRIC ARC LAMP. No. 405,440. Patented June 18, 1889. ### United States Patent Office. ### ELMER A. SPERRY, OF CHICAGO, ILLINOIS. #### ELECTRIC-ARC LAMP. SPECIFICATION forming part of Letters Patent No. 405,440, dated June 18, 1889. Application filed October 22, 1888. Serial No. 288,813. (No model.) To all whom it may concern: Be it known that I, ELMER A. SPERRY, residing at Chicago, in the county of Cook and State of Illinois, have invented a new and useful Arc Lamp, of which the following is a specification. My invention relates to arc lamps, and has for its object to provide a cheap, simple, and effective lamp. My invention is illustrated in the accompa- nying drawings, wherein— Figure 1 is a vertical section. Fig. 2 is a vertical section at right angles to the other. Fig. 3 is a horizontal section. Fig. 4 is a detail of the cut-out magnet. Fig. 5 is a detail of the carbon-clamp. Like parts are indicated by the same letter in all the figures. A is the top of the case, B B the sides, and C the bottom. On the case A A are the thimbles A' A', into which are secured the carbontubes A² A². C' is a sheet of insulation on the bottom of the case, and upon which is placed the base C². D D are standards on the base C², and projecting from them are the springs D' D', which support the frame D². In the top and bottom of this frame are apertures for the free passage of the carbon rods D³ D³. Secured to the upper part of the frame D² is the electro-magnet or solenoid D⁴, which is in the main circuit from binding-post D⁵ to binding-post D⁶, the connection being made from binding-post D⁵ to magnet D⁴ by the connector D⁷, and from such magnet to the frame and carbon rods. D⁸ is a pivoted armature for the magnet or solenoid D⁴, and to it is connected by the link D⁹ the carbon-clamp D¹⁰, which surrounds the carbon rod, and as its angle is changed clamps or releases the same. Secured to the same armature is the trip D¹¹, which engages the lower end of the pivoted variable stop E. This stop is adjustably supported on the standard E' and carries a weight E² at its upper end, which causes it to normally incline away from the lug E³ on the clamp D¹⁰. E⁴ is a spring, which opposes the action of the magnet or solenoid on the clamp D¹⁰ when the same is arrested by the variable stop. Where two carbon rods are used there are two clamps D^{10} . F is a link from the extended end of the armature D⁸ to the piston F' in the dash-pot F², which is secured to the upper portion of 55 the frame D² and contains the stop F³. G is a derived or short circuit magnet or solenoid supported on the base-plate C² and connected with the poles D⁵ and D⁶ by the connectors G' and G². It contains a movable 60 core G³, pivoted to the lever G⁴. This latter lever is pivoted to the standard D at one end and at its other end carries the dash-pot G⁵, which reciprocates over the plunger G⁶, and is upwardly drawn by the spring G⁷, which is 65 secured to the adjustable lever G⁸, so the tension of the spring may be varied. In the form of the device as shown there are two shunt-magnets or solenoids, their cores being connected by the armature G⁹, and there are 70 two levers G⁴, each pivoted to one of the stand,ards D and both connected at their ends. From the vertical sides of the frame D² project the arms H H, each of which rests upon one of the rollers J J on the levers G⁴. 75 These levers are connected together near their pivotal points by the cross-rod K. On one of the levers G⁴ is the arm L, which finds a stop when the lever G⁴ is greatly depressed against the insulator L' on the spring-actuated piv- 80 oted lever L². This lever L², when it finds a rest against the piece L³, serves to make a connection between the connectors L^4 and L^5 , which lead to the binding-post, and thus a current is formed through the electro-magnet 85 L⁶. The same is wound with a small quantity of heavy wire, so that the entire lamp is cut out. M is a lever pivoted to the pendant M', upwardly held by the spring M², and having at 90 one end the stop M³ in the line of the descent of the cap M⁴ on the carbon rod D³, and at its other end the carbon-rod-sustaining clamp M⁵. N N are the bars which support the lower portion of the lamp N', a conductor leading 95 to the binding-post D⁶; and N² and N³, the linewires. O is the base of the lamp, to which is secured the carbon-protecting tube O', one for each carbon, and to these tubes is secured by 10c the set-screw O² the bottom O³, on which rests the globe O⁴. Connector N', emerging below from the rod, passes through the insulator N⁴, and thence to the plate N⁵, which is provided with apertures N^6 for the clamping-piece N^7 . This clamping-piece has secured to its lower end the annulus N⁸, and is pivoted at N⁹ to the arm N^{10} . One end of this arm rests on the 5 plate N⁵. The other end is pivoted at the point N¹¹ to the clamping-piece N¹², which is bellcrank-lever-shaped. N^{13} is a set-screw passing through the end of this latter clamping-piece and resting upon 10 the plate N⁵. Duplicate parts wherever necessary will be supplied to make the lamp operate with two carbons, as the elements described are equally operating with one or more carbons. P is the lower carbon. I have called the stop E² a "variable" stop because it varies in the position which it occupies, and hence in the effect which it produces upon the clamp or clamps D^{10} . The use and operation of my invention are as follows: The current passes in through the conductor N³ into the binding-post D⁵, through conductor D7 to main-circuit magnet or solen-25 oid D4, thence to the metallic parts of the inner frame, thence to the carbon rods, through the carbons, through conductor N' to binding-post D⁶, thence on to line-wire N². This operation takes place when first a current is 30 turned into the line. The immediate effect thereof is to draw up the armature D^s from its normally-depressed position, thus raising the link F and piston F' in the dash-pot F² from the stop F³, at the same time lifting the 35 clamp D¹⁰ bodily and separating the carbons to establish the arc, and then, finally, by the action of the arm D¹¹ against the lower end of the stop E, throwing the latter into the upright position, where its end engages the lug E³ 40 rather than the main body of the clamp D^{10} . In short, the immediate action of such current is to bring the parts into the position shown in Fig. 1, whereby the arc is established. Now a portion of the current begins to flow from bind-45 ing-post D5, through conductor G', to the derived-current electro-magnets or solenoids G G, thence through conductor G2 to binding-post D⁶. The quantity of current passing through the magnets G G varies, of course, with the 50 variation of the resistance in the main circuit within the lamp, and thus by the movement of the cores G³ G³ in opposition to the spring G⁷ the levers Gare jointly rocked, thus imparting the reciprocating motion to the frame which 5 supports the main-circuit electro-magnet or solenoid and clamps, and which I have denominated the "carbon-separating device." The motion of this device feeds the carbons, the clamp D^{10} being caused to operate by the stop E' receiving the lug E³ thereon. The spring-frame will have an approximately parallel movement. The stop must be variable, as indicated, for the clamp must operate in different planes and at different positions 65 along the line of the movement of the carbon rod. Thus when the clamp is raised in the first instance to separate the carbons it | must clamp the rod at a position nearer the base of the case than when it clamps the rod for feeding purposes; or, in other words, the 70 point at which the clamp releases the rod during the process of feeding is higher up than the point at which it clamps the rod for separating the carbons, and if the stop remain constant in its inclined position, engaging the 75 clamp on its main surface and not on its lug, the carbon rod would instantly clamp, and the feeding could not be accomplished; hence the arrangement of the variable stop. The carbon-rod clamp when out of action normally 80 rests its main surface upon the end of the inclined or tilting stop. The armature D⁸ is supported at a distance from its core by the stop F³, and the carbon rod can freely move vertically. As soon as the magnet or solen- 85 oid D⁴ is energized, the armature is drawn up and the clamp seizes the rod at such a distance from the base-plate C² as would permit the separation of the carbons by the continued motion of the armature D⁸ toward its 9c magnet. The clamp is lifted bodily, so that, in order to release the carbon rod as necessary in the process of feeding, it must have a new or elevated stop. When the levers G⁴ are caused to descend greatly, as would be 95 the case in the event of an abnormal resistance in the main circuit within the lamp, the arm L would cause the switch or pivoted piece L² to close the circuit through conductors L⁴ and L5, and thus cut out the entire lamp. 100 When the lower carbon is being placed in position, it is inserted through the clampingpiece N⁷ and the parts brought into the position shown in Fig. 5. If, now, the thumbscrew N¹³ be rotated, it will have the effect of 105 raising the end of the arm N^{10} , thus bringing the two clamping-pieces N⁷ and N¹² together to clamp the carbon, and at the same time forcing the plate N⁸ against the plate N⁵ and securely locking the carbon in the position in 110 which it is placed. The stop above described as a "variable" stop may also be called a "double-acting" stop. The entire device consisting of the parallel moving frame supported on elastic 115 bars and containing the main-circuit electromagnet or solenoid and carbon-rod clamp is described as a carbon-separating device, since its office is to seize and separate the carbons in the first instance. The entire frame is 120 then bodily moved by means of the derivedcircuit electro-magnet or solenoid for the purpose of feeding the carbons. Having thus described my invention, what I claim, and desire to secure by Letters Pat- 125 ent, is as follows: 1. In an arc lamp, the combination of a main-circuit electro-magnet or solenoid with a moving frame on which it is supported, a carbon-rod-clamping device moved by said 130 electro-magnet or solenoid, and a shunt-magnet or solenoid adapted to move said frame. 2. In an arc lamp, the combination of a main-circuit electro-magnet or solenoid with 405,440 a moving frame on which it is supported, a carbon-rod-clamping device moved by said electro-magnet or solenoid, and a shunt-magnet or solenoid adapted to move said frame, said moving frame suspended on spring-bars. 3. In an arc lamp, the combination of a main-circuit electro-magnet or solenoid with a moving frame on which it is supported, a carbon-rod-controlling device moved by said electro-magnet or solenoid, and a derived-circuit electro-magnet or solenoid adapted to move said frame. 4. In an arc lamp, the combination of a moving frame with a main-circuit electromagnet or solenoid supported on such frame, a carbon-rod clamp actuated thereby, and a lever pivoted at one end and attached toward its other end to an armature of the derived-circuit electro-magnet or solenoid and connected with such frame, so that the movement of the latter is affected by the derived-circuit electro-magnet or solenoid. 5. In an arc lamp, the combination of the moving frame with a main-circuit electromagnet or solenoid supported thereon, a carbon-rod clamp actuated thereby, and a lever fulcrumed on a rigid support attached to the armature of the derived-circuit electro-magnet or solenoid, and connected with such 3° frame, so that the motion of the frame is affected by the derived-circuit electro-magnet or solenoid. 6. In an arc lamp, the combination of a moving frame with a main-circuit electro-magnet or solenoid supported thereon, a carbon-rod clamp actuated thereby, and a lever fulcrumed at one end and attached toward its other end to the armature of the derived-circuit electro-magnet or solenoid, an elastic support for such lever opposing the derived-circuit electro-magnet or solenoid, said frame resting upon said lever. 7. In an arc lamp, the combination of a moving frame with a main-circuit electro-magnet or solenoid supported thereon, a carbon-rod clamp actuated thereby, and a derived-circuit electro-magnet or solenoid, a lever rigidly supported at one point and elastically supported at another and connected with the frame and the derived-circuit electro-magnet or solenoid, so that the latter affects the movement of the former. 8. In an arc lamp, the combination of a carbon-separating electro-magnet or solenoid with a carbon-clamp connected therewith and operated thereby, a derived-circuit electromagnet or solenoid, and an armature operated by the latter and connected with the former, so as to move the said carbon-sepa-60 rating magnet or solenoid. 9. In an arc lamp, the combination of a moving carbon-separating device containing a main-circuit electro-magnet or solenoid and a carbon-rod clamp controlled thereby to separate the carbons, with a derived-circuit electro-magnet or solenoid, and an armature con- nected therewith and operated thereby, and connected also with the moving carbon-separating device. 10. In an arc lamp, the combination of a mov- 70 ing main-circuit carbon-separating electromagnet or solenoid with a carbon-clamp connected therewith and operated thereby, a derived-circuit electro-magnet or solenoid, and a lever connected with said carbon-separating device and operated by the derived-circuit electro-magnet and solenoid, said lever supported fixedly at one end and elastically at the other. 11. In an arc lamp, the combination of a car-80 bon-separating device, consisting of a parallel moving frame, a main-circuit electromagnet or solenoid supported thereon, a carbon-rod clamp supported by such electromagnet or solenoid, with a derived-circuit 85 electro-magnet or solenoid, and an armature extending between the latter magnet and the frame, so that it affects the motion of said frame. 12. In an arc lamp, a moving carbon-sepa- 90 rating device containing the main-circuit electro-magnet or solenoid and the carbon-rod clamp, in combination with a double-acting stop for the clamp, both clamp and stop controlled by said magnet. 13. In an arc lamp, an electro-magnet mounted on a movable frame, in combination with a carbon-rod-clamping device and a double-acting stop for such clamp, both carbon-rod clamp and the stop therefor actuated 100 by said electro-magnet. 14. In an arc lamp, an electro-magnet mounted on a moving frame, a carbon-rod clamp, a double-acting stop for such carbon-clamp, and a derived-circuit electro-magnet, 105 an armature therefor connected with the clamp, both clamp and stop being actuated by the first-mentioned magnet or solenoid, and the clamp by the second-mentioned electro-magnet or solenoid. 15. In an arc lamp, an electro-magnet mounted on a movable frame, in combination with a carbon-rod-clamping device, a double-acting stop for such clamp, connections from the electro-magnet or solenoid to the clamp 115 and stop, and a derived-circuit electro-magnet or solenoid, and an armature actuated thereby and connected with the carbon-separating device. 16. In an arc lamp, the combination of a 120 moving elastically-supported carbon-separating device, which contains a main-circuit electro-magnet or solenoid and a carbon-rod clamp, a double-acting stop for said clamp, a derived-circuit electro-magnet or solenoid, 125 and an armature actuated by the last-mentioned electro-magnet or solenoid and connected with so as to move the carbon-separating device. 17. In a carbon-clamp for arc lamps, the 13c combination of two opposed carbon-clamping pieces, one shaped like a bell-crank lever, an arm on which both are pivoted, the one at its angle, and means for moving said latter piece to control the carbon. 18. In a carbon-clamp for arc lamps, the combination of two opposed carbon-clamping pieces, one shaped like a bell-crank lever, an arm on which both are pivoted, one at its angle, and means for simultaneously moving the pivoted end of said arm and swinging the angular piece on such pivot to cause the pieces to clamp or release the carbon. ELMER A. SPERRY. Witnesses: FRANCIS W. PARKER, CELESTE P. CHAPMAN.