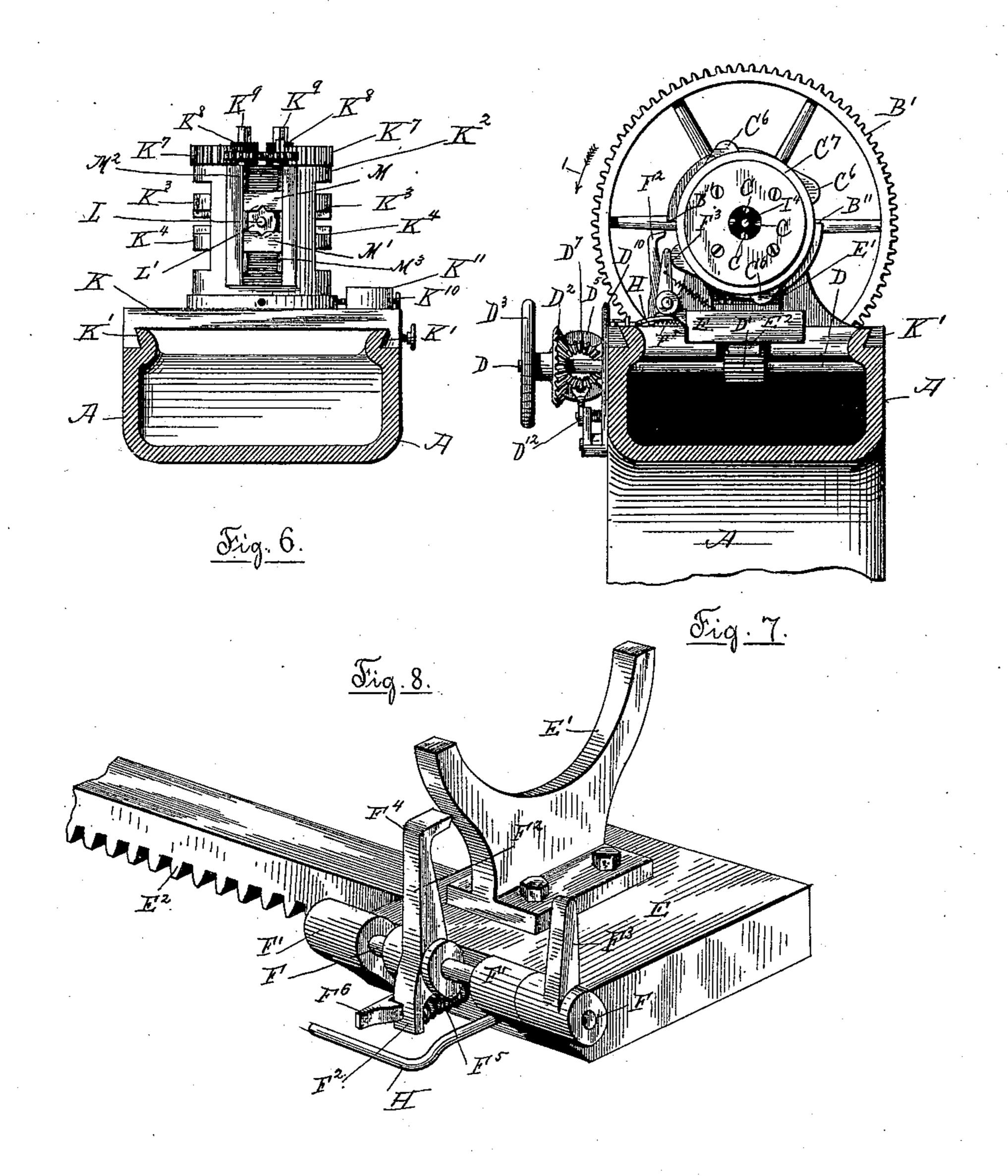

A. W00D.

A. W00D. BOLT THREADING MACHINE.

No. 405,236.

Patented June 11, 1889.

Witnesses


Chas. F. Schmelz.

Ouvin 22000,

A. WOOD. BOLT THREADING MACHINE.

No. 405,236.

Patented June 11, 1889.

Witnesses Chas. S. Schmelz. H. M. FowlerInventor Aurin Moss

By his attorney Avolusie

United States Patent Office.

AURIN WOOD, OF WORCESTER, MASSACHUSETTS, ASSIGNOR TO CORNELIUS GRAY, OF SAME PLACE.

BOLT-THREADING MACHINE.

SPECIFICATION forming part of Letters Patent No. 405,236, dated June 11, 1889.

Application filed January 21, 1888. Serial No. 261,540. (No model.)

To all whom it may concern:

Be it known that I, Aurin Wood, a citizen of the United States, residing at Worcester, in the county of Worcester and State of Mas-5 sachusetts, have invented a new and useful Improvement in Bolt-Cutters, of which the following is a specification, reference being had to the accompanying drawings, illustrating a bolt-cutting machine embodying my in-

10 vention, and in which—

Figure 1 represents a side view of the machine. Fig. 2 is a top view of the rotating tail-stock, partly in section, on line YY, Fig. 1. Fig. 3 is a plan view of the machine. Fig. 4 is a longitudinal sectional view of the revolving spindle, carrying the head in which the dies are held. Fig. 5 is a detached view of one of the cutting-dies. Fig. 6 is a transverse sectional view on line X X, Fig. 1, in the di-20 rection of arrow 1. Fig. 7 is a transverse sectional view on line X X, Fig. 1, in the direction of arrow 2; and Fig. 8 is a perspective view of the toothed sliding plate by which the head is operated, also showing the con-25 nected latching mechanism for opening and closing the dies.

Similar letters refer to similar parts in the

several views.

My invention relates to a machine for cut-30 ting the screw-threads on bolts; and it consists in the construction and arrangement of the several parts, as hereinafter set forth, and specifically named in the annexed claims.

A A denote the supporting-stand upon 35 which the operating parts of the machine are mounted. Journaled in bearings upon the stand A is a spindle B, driven through the gear-wheels B' B² from the cone-pulley B³. Within the spindle B, which is a hollow sleeve, 4c is placed another hollow spindle B4, capable of sliding within the hollow spindle B, and having a spline-connection with the spindle B, so its rotary motion is imparted to the spindle B4. A collar B5 is screwed upon the 45 screw-threaded portion a of the spindle B^4 , having an attached sleeve B6, provided with flanges, which inclose a neck B7 to receive a forked carrier, by which a longitudinal sliding motion is given to the spindle B4 through 50 connected operating mechanism, as hereinafter described.

B⁸ is a sleeve, having a cam-slot B⁹ and an annular chamber B¹⁰, which incloses a flange of the sleeve B6, preventing a longitudinal sliding motion of the sleeve B⁸ on the spindle 55 B4, at the same time allowing it to rotate on

the spindle.

The cutting-dies C C are held in radial ways in a block C', attached to the end of the sliding spindle B4, and the dies are moved 60 radially to open and close them by wedgeshaped pieces C² engaging the outer ends of the radially-sliding dies, as shown in Fig. 5. The wedge-shaped pieces are held in a block C3, having bars C4 carrying cam-rolls C5, 65 which are held in the cam-slot B9 of the sleeve B⁸. A sliding motion is thus imparted to the sliding block C³ and wedge-shaped pieces C² by means of the rotation of the sleeve B⁸ around the sliding spindle B4.

The construction and operation of that part of my present machine relating to the method of opening and closing the dies, as above described, are substantially the same as that employed in the bolt-cutter forming the subject 75 of Letters Patent No. 79,714, granted to me on the 7th day of July, 1868, to which reference may be had for a more full and detailed

description.

D is a shaft placed transversely to the sup- 80 porting-stand and at right angles to the spindle B, carrying a pinion D', bevel-gear D2, and hand-wheel D³. Power is applied to the transverse shaft D at will, or by the automatic action of the machine through the belt-pulleys ${
m D}^4$ 85 D⁵ and a belt-connection, shaft D⁶, journaled on the side of the stand A, bevel-gear D7, having its hub journaled in a bracket D⁸ on the side of the stand A, and a clutch-connection D9, the sliding half of the clutch having a spline- 90 connection with the shaft D6, whereby the rotation of the shaft D⁶ is imparted to the bevel-gear D7. The sliding half of the clutch D⁹ is operated by a lever D¹⁰, pivoted on the side of the stand A, with a bar D11, pivoted 95 to the lever at D^{12} , and sliding on a stud D^{13} in the stand, the sliding bar D¹¹ having a forked arm D¹⁴, engaging an annular groove D^{15} on the sliding half of the clutch \bar{D}^9 . A spring D¹⁶ serves to hold the bar D¹¹ to the 100 left, disengaging the clutch D⁹.

A sliding plate E (shown in perspective

view in Fig. 8) is placed in ways in the supporting-stand Λ , directly beneath the revolving spindle B, having a forked spindle-carrier E' attached to its upper side, and with teeth 5 E² upon the under side forming a rack which is engaged by the pinion D' on the transverse shaft D. The forked carrier enters the neck B⁷ on the sleeve B⁶, the spindle B⁴ being thus caused to slide within the hollow spindle B 10 by means of the rotation of the transverse shaft D, either by the hand - wheel D³ or through the clutch-connection D⁹. The sliding plate also carries mechanism by which the dies C C are opened or closed, consisting 15 of a spindle F, journaled in lugs F' on the plate E. To the spindle F, I attach the levers F² and F³, with the lever F² placed opposite a series of ratchet - shaped teeth B¹¹ on the sleeve B⁸, and the lever F³ opposite a series of 20 wing-shaped projections C⁶ on a sleeve C⁷, inclosing and attached to the block C3. The lever is bent at right angles at F4, and a spring F⁵ is placed between its lower end and the side of the sliding block or plate E, by which 25 the lever F² is carried toward the ratchetteeth B¹¹, unless held away by a spring-latch F⁶, as shown in Fig. 8. Whenever the springlatch F⁶ is withdrawn, releasing the lever F², the tension of the spring F⁵ will carry the up-30 per end of the lever F2 forward, so the bent end F⁴ will engage one of the ratchet-shaped teeth B¹¹ as the sleeve B⁸ revolves in the direction of the arrow 1, Fig. 7, thereby dogging the sleeve B⁸, while the continued rota-35 tion of the spindle B, carrying the die-holding block C' and sleeve C7, will move the camrolls C⁵ along the cam-slot B⁹, causing the sleeve C⁷ and wedge-shaped blocks C² to be drawn to the left and moving the dies C C 40 radially outward, in the same manner as is fully described in Patent No. 79,714, already referred to.

A bent latch G is pivoted upon the upper surface of the stand A, which bent latch is $_{45}$ carried past the lever $\mathrm{D^{10}}$ as the lever is moved to the right by means of a spring G', so applied to the latch as to carry it against the stop-pin G², bringing the latch against the lever D¹⁰ and retaining it against the ten-50 sion of the spring D¹⁶, holding the clutch D⁹ in engagement, and causing the transverse shaft D to be driven by power from the pulley D⁴ through the connecting mechanism already described, turning the shaft D⁶ in the 55 direction of the arrow 2, Fig. 3, and moving the spindle B4 to the left, or into the hollow spindle B, until the bent rod H, extending from the side of the sliding plate E, is brought. in contact with the latch G, compressing the 60 spring G' and withdrawing the latch from the lever D¹⁰, and allowing the spring D¹⁶ to move the sliding bar D¹¹ and throw the clutch D⁹ out of engagement, thereby disconnecting the shaft D from the driving-power and 65 checking the movement of the sliding spindle B^4 .

Within the sliding spindle B4 is a core I, I

fitting concentrically in the spindle B⁴ and held from any longitudinal movement by a tube I', connecting the concentric core I with 70 a collar I² in the end of the spindle B, and through the core, tube, and collar is an opening I³, through which a rod may be passed upon which a screw-thread is to be cut; or a center I⁴, Fig. 4, may be inserted and held 75 concentrically with the cutting-dies C C, for

the purpose hereinafter set forth.

The cam-slot B⁹ is a continuous slot around the sleeve B⁸, and is so shaped that a quarter-revolution of the spindle B, when the 80 sleeve B⁸ is held from turning, will cause the dies C C to be opened or closed. The sleeve C⁷ is provided with four equidistant wings C⁶, so that whenever the lever F² is made to engage one of the ratchet-shaped teeth B¹¹ on 85 the sleeve B⁸ one of the wings C⁶ will throw the lever F² out of engagement within a quarter-revolution, the spring-latch F⁶ retaining the lever F² and allowing the sleeve B⁸ to * continue to rotate with the spindle B and the 90 cutting-dies to remain at rest either opened or closed, according to the position of the cam-slot D⁹ relatively to the cam-rolls C⁵. The lever F² is automatically thrown into engagement with the ratchet-teeth B11 at the 95 end of the movement of the sliding spindle B4 to the right by means of a screw J, adjustably attached to the frame of the machine, which is placed in the path of the springlatch F⁶, causing it to be disengaged from the 100 lever F² and allowing the spring F⁵ to carry the bent end F⁴ into the path of the ratchetteeth B¹¹, checking the rotation of the camslotted sleeve B⁸ and opening the dies C C. The lever D¹⁰ is then brought to the right, 105 engaging the clutch D9 and causing the spindle B4 to be moved to the left by power until it has reached the limit of its reverse movement, when the bent rod H is brought in contact with the bent latch G, releasing the lever 110 D¹⁰ and permitting the spring D¹⁶ to disengage the clutch D^9 .

Upon the supporting-stand A, I place a sliding plate K, capable of being moved along ways K' and attached to the stand, so the 115 distance between the sliding plate K and the sliding spindle B4 may be varied, and upon the sliding plate K is mounted a turret K^2 , capable of rotating about a vertical axis lying in the same plane as the axis of the spin- 120 dle B4. The turret K2 forms a supportingframe for two pairs of jaws K³ K⁴, actuated by two pairs of screws provided with a right and left hand screw-thread K⁵ K⁶ and a gearwheel K7, the gear-wheels of each pair of 125 screws being in mesh with an actuating-pinion K⁸, attached to a spindle journaled in the top of the turret and provided with a shank K⁹, to which a crank or wrench is applied in order to rotate the screws and open or close 130 the jaws K³ K⁴. Either pair of jaws may be brought opposite the end of the sliding spindle ${
m B}^4$ at will by rotating the turret ${
m K}^2$, which is held from turning in the desired position

by means of a spring-actuated bolt K¹⁰, sliding in a stud K11, projecting from the upper side of the sliding plate K. The two jaws K³ K4 are placed upon the right and left hand 5 screws, so they will hold a rod or bolt coincident with the axis of the revolving spindle B4. Whenever it is required to cut a screwthread upon what are known as "finished bolts," or those which have been turned to a 10 true cylindrical form, it is necessary to hold them upon centers, in order that the screwthread may be formed concentrically with the | lever D10 is then moved to the right, engaging axial line of the bolt. This is accomplished in my improved bolt-cutter by placing a cen-15 ter I⁴ in the opening I³, to hold the end of the bolt to receive the screw-thread, while the opposite end of the bolt is held upon the center L, held in a sliding block L', sliding in ways L^2 in the turret K^2 .

The block L' has a screw-threaded bolt L³ extending across the turret and having a hand-nut L4 held from longitudinal movement by means of a groove or neck L⁵ inclosed in the turret. The center L is thereby adjusted 25 in a line coincident with the center I4 and

with the axis of the spindle B4.

Above and below the center L are the jaws M M', having a sliding motion in ways M2 and actuated by the right and left hand screws 30 M³ M⁴, which are geared together at the top and operated by applying a crank or wrenchto the squared section M5, and bringing the jaws M M' upon the bolt-head, so as to hold the bolt from turning. Holes are placed in 35 the base of the turret in proper position to receive the spring-bolt K¹⁰ and hold the turret in either of the positions, with one of the pairs of jaws K³ K⁴ in position to present a bolt held therein to the action of the cutting-40 dies or with the center L in position to receive the bolt, as described. The cam-slot B9 is so formed that the throw of the slot or movement of the cam-rolls C⁵ to the right is sufficient to close the dies and the movement to the left 45 to open the dies; but at that part of the camslot at which the cam-rolls are carried to the extreme left, thereby opening the dies, I form the pockets N, one of which is shown in Fig. 3, in order to allow the sleeve C⁷, attached 50 block C³, and wedge-shaped pieces C², carried therein, to be moved still farther to the left, thereby withdrawing the wedge-shaped pieces entirely from the dies, and permit the dies to be withdrawn.

The operation of cutting a screw-thread upon a bolt is as follows: The bolt is seized by one pair of the jaws K³ K⁴ and the turret turned to present the bolt to the cutting-dies, which are advanced upon the bolt by means 60 of the hand-wheel D³, when the movement of the cutting-dies will be continued by reason of their cutting action upon the bolt until the spring-latch F⁶ is brought in contact with the screw J on the stand A, thereby releasing 65 the lever F², which is carried forward by the action of the spring F⁵ to engage one of the ratchet-shaped teeth B¹¹, dogging the sleeve

B⁸ and permitting the cam-rolls C⁵ to move along in the cam-slot B9 and draw the sleeve C⁷ and wedge-shaped pieces C² toward the 70 left, thereby moving the cutting-dies radially outward and releasing them from the bolt. As soon as this is accomplished, the motion of the lever F² is reversed by the action of one of the wing projections C⁶ on the sleeve 75 C⁷, allowing the cam-slotted sleeve B⁸ to again revolve with the spindle B4 and checking the further withdrawal of the sleeve C7. The the clutch D⁹ and applying power to cause the 80 reverse motion of the spindle B4, as already described, the lever D¹⁰ being held in position to hold the clutch D⁹ in engagement by the bent latch G until the spindle has reached the limit of its reverse movement, when the bent 85 rod H is brought in contact with the latch G, releasing the lever D¹⁰ and allowing the spring D¹⁶ to disengage the clutch D⁹. While the operation of cutting a screw-thread upon one bolt is being carried on, a second bolt is placed 90 in the jaws K³ K⁴ upon the opposite side of the turret, and when the operation has been completed upon one bolt the turret is turned one-half a revolution and the second bolt presented to the action of the cutting-dies.

Whenever what are known as "finished" bolts are to be cut, the turret is rotated to bring the center L in line and in opposition to the spindle, and a center I4 placed in the core I, as shown in Fig. 4, and the operation 100 carried on of cutting the screw-thread, as already described with reference to unfinished

or rough bolts.

The dies are constructed in two pieces, as shown in Fig. 5, in which b denotes a block 105 having a radially-sliding motion, and being provided with a lip c at its outer end engaging a similar lip d in the wedge-shaped piece C². To the inner end of the block b, I attach the screw-thread-cutting plates e by means of 110 the screws f f, thereby enabling the plates eto be replaced when worn without incurring the expense of entire new blocks b.

What I claim as of my invention, and desire

to secure by Letters Patent, is—

1. The combination, with a hollow revolving spindle and a die-carrying spindle held concentrically in said hollow spindle, of a rack having a sliding motion, and so connected with said die-carrying spindle as to impart a 120 longitudinal sliding motion thereto, a shaft journaled transversely to said sliding rack, a pinion on said transverse shaft engaging said rack, a rotating driving-shaft and connections and clutching mechanism, substantially as 125 described, whereby the transverse shaft and the rotating driving-shaft are connected and disconnected at will, as and for the purpose set forth.

2. The combination, with a hollow revolv- 130 ing spindle, a die-carrying spindle held concentrically within said hollow spindle, a transverse shaft carrying a pinion and a bevelgear, and a sliding rack engaged by the pin-

ion on said transverse shaft, said rack being so connected with said die-carrying spindle as to impart a sliding motion thereto, of a bevel-gear journaled by its hub and engaging 5 the bevel-gear on said transverse shaft, a shaft passing loosely through the journaled hub of said bevel-gear, and a clutching device by which said shaft is connected or disconnected with the hub of said bevel-gear, substantially

10 as described.

3. The combination, with a sliding plate connected with the die-holding mechanism and provided with a toothed rack, and a transverse shaft having a pinion engaging said 15 toothed rack, of a driving-shaft connected with said transverse shaft through a clutchconnection, a lever pivoted on the frame of the machine, a sliding bar carrying a forked arm and connected with said pivoted lever, 20 and a retractile spring applied to said sliding bar to disengage said clutch-connection, sub-

stantially as described.

4. The combination, with a sliding rack connected with the die-holding mechanism, a 25 transverse shaft carrying a pinion engaging said rack and connected with the drivingpower through a clutch-connection, and a clutch-operating mechanism consisting of the lever D^{10} , bar D^{11} , forkeå arm D^{14} , and retract-30 ile spring D¹⁶, of the bent latch G, arranged to engage said lever D¹⁰ and hold it against the tension of the retractile spring, spring G', and bent rod H, attached to the sliding rack, whereby the sliding motion of the rack is 35 limited in one direction by disengaging the clutch-connection of the transverse shaft, substantially as described.

5. The combination, with the radially-moving die-blocks C C, wedge-shaped actuating-40 blocks C2, bars C4, carrying cam-rolls C5, and sleeve B⁸, having a cam-slot B⁹, of the pockets N, as and for the purpose set forth.

6. The combination, with the radially-moving die-blocks and connected operating mechanism, substantially as described, of the detachable screw-cutting plates e, attached to and inserted in the sides of said die-blocks, and attaching-screws f, substantially as described.

7. The combination of a hollow revolving 50 spindle, a sliding spindle held concentrically in said hollow spindle and receiving rotary motion therefrom, and a hollow core held concentrically in said sliding spindle and so attached to said outer hollow revolving spindle 55 as to be held from longitudinal movement, substantially as described.

8. The combination of hollow spindle B, sliding spindle B4, hollow core I, collar I2, attached to the spindle B, and connecting-tube

60 I3, as and for the purpose set forth.

9. The combination of screw-cutting dies inclosed within a sleeve C7, having wingshaped projections, sleeve B⁸, having a camslot B9 and provided with ratchet-shaped teeth.

B¹¹, said cam-slot actuating said sleeve C⁷ to 65 open and close the cutting-dies, substantially as described, spindle F, levers ${\bf F}^2$ and ${\bf F}^3$, spring F⁵, and latch F⁶, all arranged and operating

as and for the purpose set forth.

10. The combination, with the die-holding 7° mechanism having a longitudinal sliding movement, whereby the cutting-dies are fed to the work, and with mechanism for opening and closing said cutting-dies, substantially as described, of a spring by which said opening 75 and closing mechanism is set in operation, a spring-latch for retaining the opening and closing mechanism, and a stop attached to the frame-work of the machine in the path of said retaining-latch, whereby said opening 80 and closing mechanism is set in operation to open the dies, substantially as described.

11. The combination, with mechanism for rotating the screw-cutting dies and for imparting a longitudinal feeding motion to said 85 dies, substantially as described, of the plate K, adjustably attached to the stand A, rotatable turret mounted on said plate and carrying the three sets of bolt-gripping jaws K³, K⁴, and M M', and a sliding center L, substan- 9°

tially as described.

12. The combination, with mechanism for rotating the screw-cutting dies and for imparting a longitudinal feeding motion to said dies, substantially as described, of a rotata- 95 ble turret carrying a center and devices for dogging the bolt and preventing its rotation,

substantially as described.

13. The combination, with mechanism for rotating the screw-cutting dies and for im- 100 parting a longitudinal feeding motion to said dies, substantially as described, of a rotatable turret, a pair of jaws for gripping the bolt, and a center which is adjustable with reference to said cutting-dies, substantially as de- 105 scribed.

14. The combination of plate K, rotatable turret K², jaws K³ K⁴, spindles having right and left hand screw-threads K⁵ K⁶, and gears K⁷, and intermediate actuating-pinions K⁸, 110

substantially as described.

15. The combination, with screw-cutting dies and with the mechanism for rotating the same and imparting a longitudinal feeding motion to said dies, substantially as described, 115 of the plate K, capable of being adjustably attached to the supporting-stand A, rotatable turret K2, jaws K3 K4, spindles having right and left hand screw-threads K⁵ K⁶, gears K⁷, intermediate actuating-pinions K⁸, and a 120 spring-actuated bolt K¹⁰, by which said turret is held from rotation, substantially as described.

AURIN WOOD. .

Witnesses: RUFUS B. FOWLER, CHAS. F. SCHMELZ.