
(No Model.)

G. E. REINHARDT.

TOOL HOLDER OSCILLATING DEVICE FOR PLANING MACHINES.

No. 339,212.

Patented Apr. 6, 1886.

United States Patent Office.

GUSTAV EDMUND REINHARDT, OF LEIPSIC, GERMANY.

TOOL-HOLDER-OSCILLATING DEVICE FOR PLANING-MACHINES.

GPECIFICATION forming part of Letters Patent No. 339,212, dated April 6, 1886.

Application filed July 22, 1885. Serial No. 172,264. (No model.)

To all whom it may concern:

Be it known that I, Gustav Edmund Rein-Hardt, a citizen of Germany, residing at Leipsic, in the Empire of Germany, have intented a new and useful Improvement in Tool-Holder-Oscillating Devices for Planing-Machines, of which the following is a full and exact specification.

This invention relates to improvements on planing - machines; and it consists in novel mechanism whereby a swinging motion is communicated to the tool-holder. This will enable a double-edged cutter to cut or plane during the forward as well as during the back
15 ward motion of the machine.

In the accompanying drawings, Figure 1 is a front view of a support of a planing-machine. Fig. 2 is a cross-section of the same. Fig. 3 is a back view of the carriage, partly in section; 20 and Figs. 4, 5, and 6 are details referred to in

the following specification. The cross-slide A is fitted upon the vertical $|r'r^2|$, on the carriage t. slide B, attached to the upright frame of the machine (not shown in the drawings.) This 25 cross-slide A receives sidewise motion by means of the screw C, operated by the pawls $b'b^2$, arranged on the levers $c'c^2$. These levers are connected to the rod a, which receives motion in the usual manner. The arm c^2 is 30 elongated and connected by rod d with a lever, e, placed upon a shaft, f, so as to be capable of turning freely upon the same. This shaft f is supported parallel to the feed-screw c, by brackets f'f', attached to the vertical slide B. 35 Close to the lever e there is firmly attached to the shaft f a disk, g. This disk g is provided with studs h' h^2 , capable of being regulated and against which the lever e is made to strike, and to thus communicate the desired 40 motion to the shaft f. Upon the shaft fthe bevel-gear i² is arranged, capable of sliding in a groove on said shaft and meshing into a corresponding bevel-gear, i', connected to a wheel, k'. (See Figs. 4 and 5.) One end | 45 of this bevel-gear i' is supported in a frame f^3 , that slides on the shaft f and straddles the bevel-gear i^2 . The other ends or hubs of the wheels i' and k' are supported in a lever, v,

turning on a bolt, v', attached to the carriage

meshes into the wheel k'. The wheel k^2 is fast-

ened upon the bolt v' by means of the set-1

50 D. This bolt v' supports a wheel, k^2 , that

screw w, Fig. 3, to regulate its exact position. The carriage D is provided with a spindle, o^2 , having a fixed collar or hub, m, and a second 55 collar, n, working on the threaded part of said spindle o^2 . The fixed collar or hub m is connected with the gear-wheel k^2 by a rod, l, and the hub or collar n is provided with a convex projection, n', engaging a corresponding sock- 60 et, p', at the back of the tool-holder p. This rod l forms the connecting-rod between the wheel k^2 and the hub m, which is firmly attached to the spindle o^2 , as above described, and converts the rotary motion of the wheel 65 k^2 into a reciprocating motion of the hub m or spindle o^2 . The hub n is held fast on the threaded part of the spindle o^2 , and thus receives the reciprocating motion from its spindle o^2 By means of the threaded part of the spin- 70 dle o^2 , the hub n can be raised or lowered to correspond with the position of the tool-holder p. The tool-holder p turns in side bearings,

The operation of the above described mech- 75 anism is as follows: The cross-slide A, with carriages D t, and tool-holder p, receives sidewise motion on the vertical slide B by the screw C, operated by rod a in the usual manner. The motion of this rod a is com- 80 municated by arm c^2 and rod d to lever e, which latter (by coming in contact with one or the other of the studs $h'(h^2)$ gives an oscillating motion to the shaft f. This motion given to the shaft f is communicated by bevel- 85gear i^2 i' and wheel k', to the wheel k^2 , and from the latter by the connecting-rod l to the spindle o^2 , thus producing a reciprocating motion of the spindle. This motion is again communicated by projection n' to the tool- 90 holder p, turning on the bearings r' r^2 , thus producing an oscillating motion of said toolholder. In this way either the one or the other side or cutting-edge of the tool q is brought into action, according to the direction of the 95 motion of the planing-table.

In the carriage D there is placed a second screw-spindle, o', on the side of the spindle o^2 , and connected with the same by gearing u' u^2 . These gear-wheels u' u^2 turn in the upper part 100 of the carriage D, and the spindles o' o^2 pass through the same and are connected thereto by suitable feathers.

The spindle o' has for its object to regulate

the position of the carriage t, by passing through a boss, o^3 , attached to the carriage t, while the spindle o^2 produces the oscillation of the tool-holder p, in the manner above described.

Instead of a double-edged cutter q, two regular cutters placed side by side, with their cutting-edges in opposite directions, at about one hundred and eighty degrees to each other, may be employed for the purpose.

What I claim as my invention, and desire

to secure by Letters Patent, is—

1. In a planing-machine, the combination of reciprocating spindle o^2 with hub n, having projection n', and with tool-holder p, having socket p', and with rod l and collar m, substantially as and for the purpose described.

2. The combination of cross-slide A, oper-

ated by feed-screw C, with the spindle o^2 , bevelgear i^2 , wheels k' k^2 , rod l, and shaft f, the 20 shaft f and screw C receiving motion from rod a by means of intermediate gearing, substantially as specified.

3. The combination of tool-holder p, oscillating on centers r' r^2 , with reciprocating 25 spindle o^2 , rod l, collars m n, and with screw o' and wheels u' u^2 , as and for the purpose set

forth.

In testimony whereof I have signed my name to this specification in the presence of two 30 subscribing witnesses.

GUSTAV EDMUND REINHARDT.

Witnesses:

EDMUND BACH, OTTO GUNTHER.