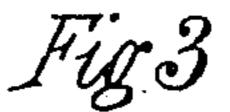

J. RYLE.

WARPING MACHINE.

No. 317,472.

Patented May 5, 1885.



J. RYLE.

WARPING MACHINE.

No. 317,472.

Patented May 5, 1885.

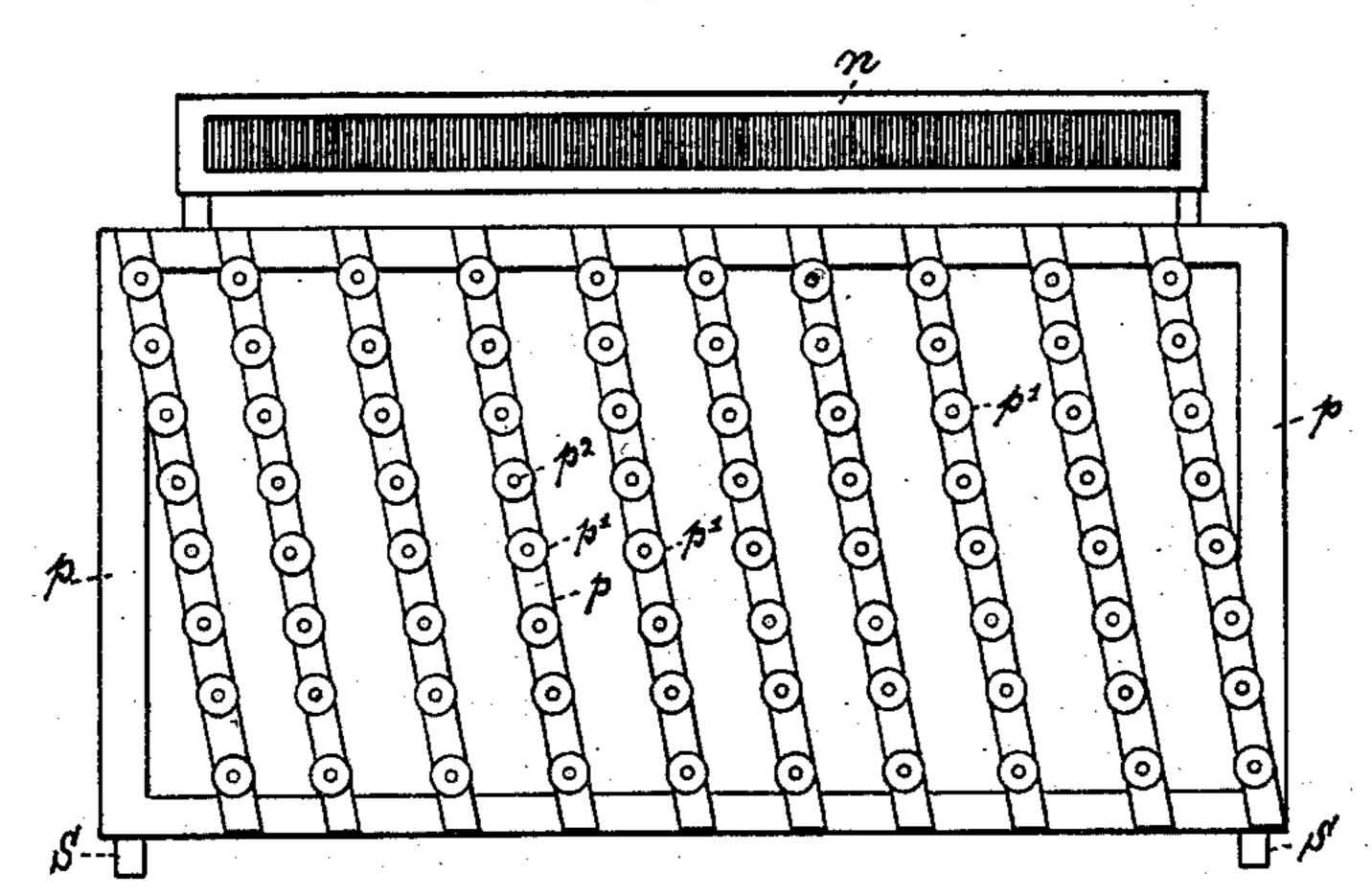
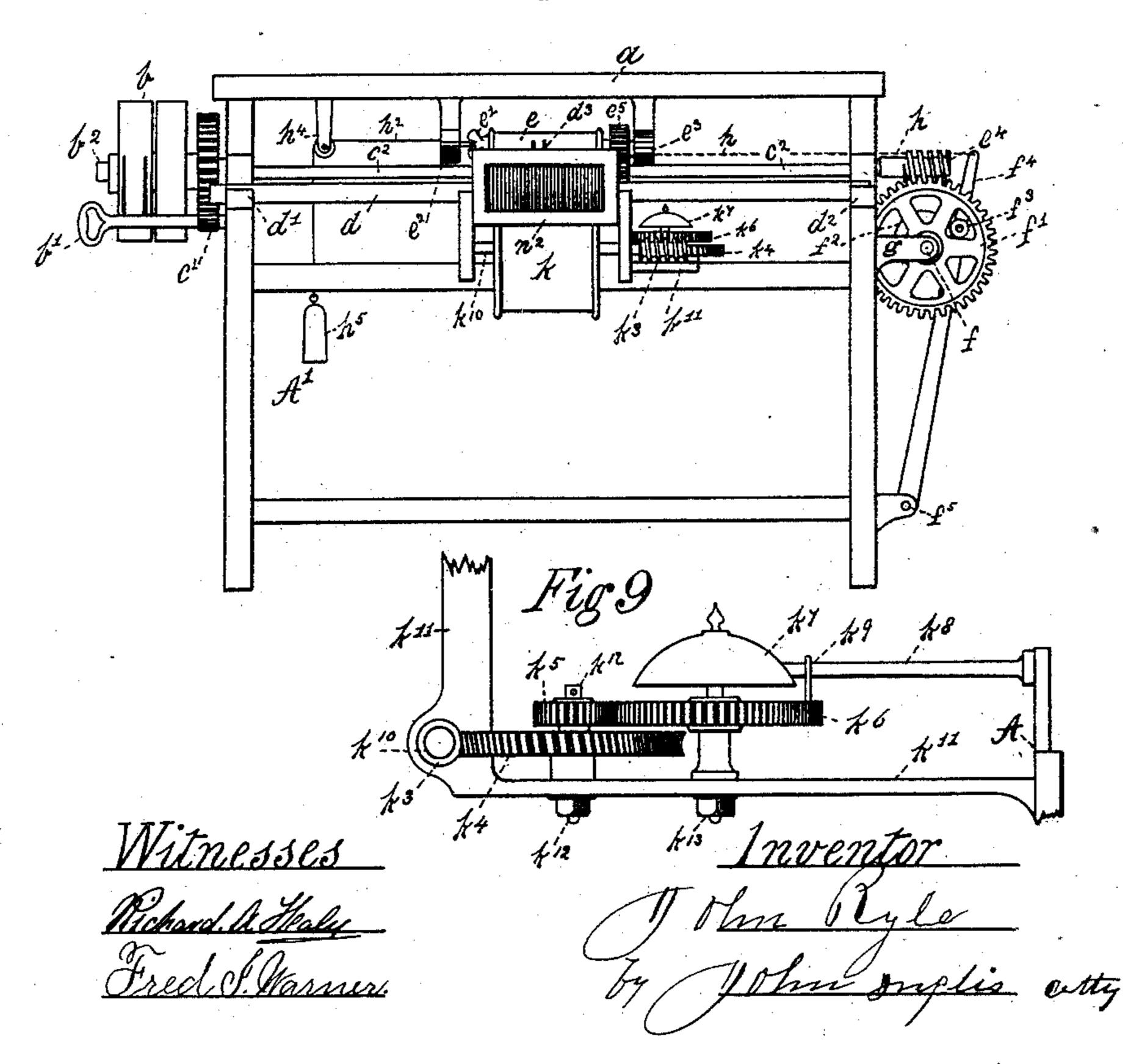
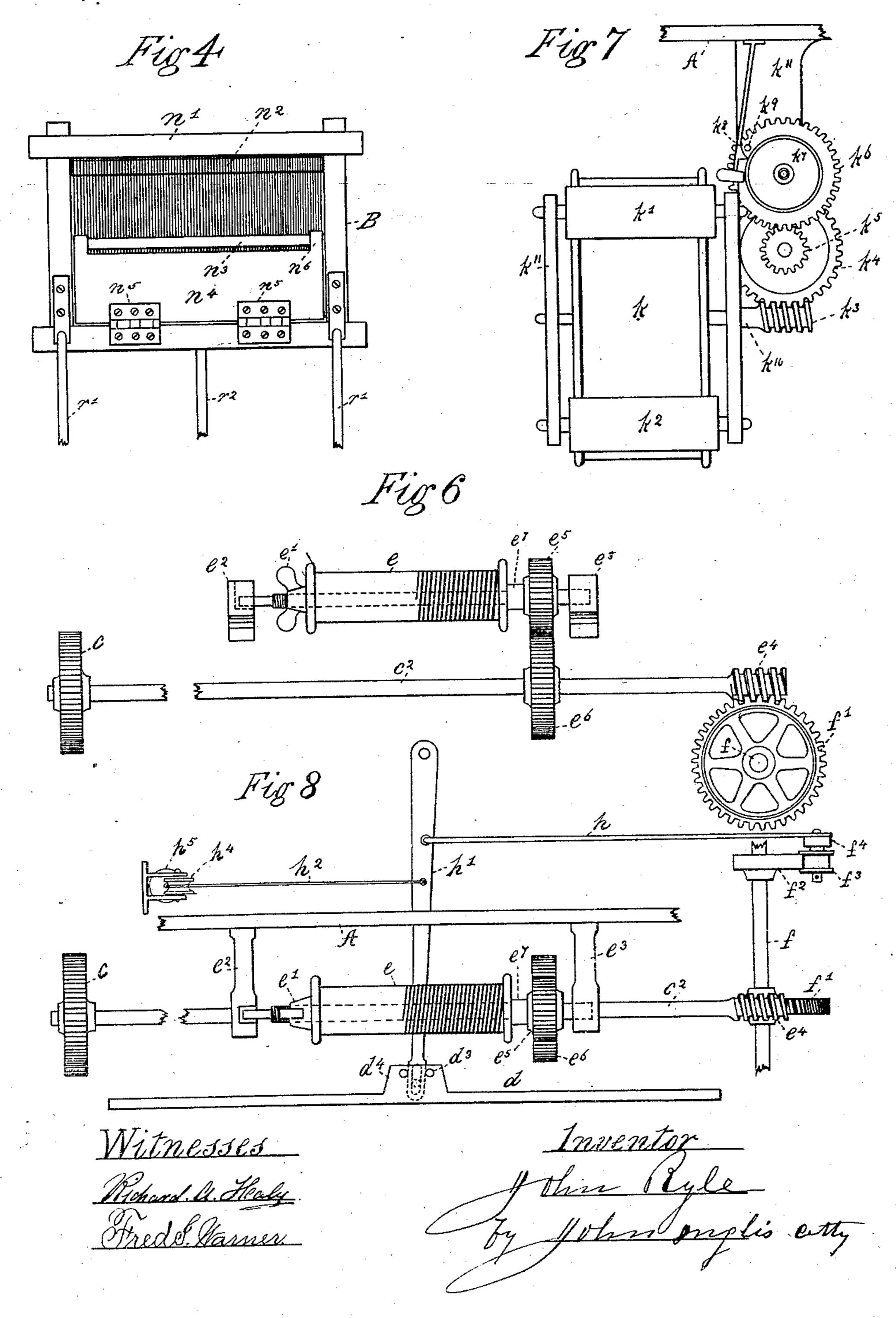



Fig.5



J. RYLE.

WARPING MACHINE.

No. 317,472.

Patented May 5, 1885.

United States Patent Office.

JOHN RYLE, OF PATERSON, NEW JERSEY.

WARPING-MACHINE.

SPECIFICATION forming part of Letters Patent No. 317,472, dated May 5, 1885.

Application filed January 29, 1884. (No model.)

To all whom it may concern:

Be it known that I, John Ryle, a citizen of the United States, residing at Paterson, Passaic county, State of New Jersey, have invented a new and useful Improvement in Warping-Machines, of which the following is a specification, reference being had to the accompanying drawings, forming a part thereof.

The invention consists of the devices and combination of devices illustrated in the drawings, which will be hereinafter fully explained.

Figure 1 of the drawings is a side elevation of a machine embodying my invention. Fig. 2 is a plan view thereof. Fig. 3 is a front view of some of the parts shown in Fig. 1. Fig. 4 is also a front view of some of the parts shown in Fig. 1. Fig. 5 shows the front of the machine in elevation. Fig. 6 shows a part of the driving mechanism in elevation. Fig. 7 is a plan of measuring mechanism. Fig. 8 is a part plan of traverse mechanism; and Fig. 9 is an enlarged view of some of the parts shown in Figs. 1 and 5.

A represents a power warping-machine hav-25 ing a frame, A', on and to which frame are arranged and secured various devices and driving mechanism, as follows: Suitably located on the upper part of the machine and secured to the frame A' there is a stud, b^2 , on 30 which stud there are journaled pulleys b, one of which—the outer one—is loose, and the inner one—the main driving-pulley—is provided with a sleeve which carries a pinion, c, that meshes with a gear-wheel, c'. This wheel 35 is arranged on and secured to one end of a shaft, c^2 . This shaft is journaled in bearings in the frame A', and has at its other end a worm, e4, fast on said shaft, which meshes with a worm-wheel, f', fast on a transverse shaft, 40 f, which is journaled in bracket-bearings g g, secured to the frame A'.

More centrally located on and secured to the shaft f there is a cam, f^2 , which cam engages with a roller, f^3 . Said roller is journaled on a stud that is suitably secured to a lever, f^4 , which lever is pivoted at its lower end to a bracket on a pivot, f^5 ; the lever f^4 connects by a link, h, to a lever, h'. Said lever is suitably arranged in a bracket that is suitably secured to a transverse bar, d, which bar is horizontally arranged in brackets d' d^2 , that

are secured to the frame A'.

The bracket d^4 is provided with glass guides d^3 . The cord h^2 , provided with a weight, h^5 , passes over a grooved pulley, h^4 , and is secured to the lever h'. The pulley h^4 is journaled in a depending arm that is secured to the top or

table a.

On laterally-projecting arms k^{11} , secured to the frame of the machine, there are journaled 60 in bracket E, secured to said projecting arms k^{11} , rollers k' k^2 , and in the arms k^{11} a measuring-wheel, k, having a shaft, k^{10} , on which shaft there is arranged and secured a worm, k^3 , that meshes with a gear wheel, k^4 , having 65 a pinion, k^5 , that meshes with a gear-wheel, k^6 , which wheel is provided with a stud, k^9 , that engages with a hammer, k^{8} . This hammer is secured to the frame A', and is so arranged as to strike the gong k^7 . The wheel 70 k^4 and its pinion k^5 are arranged on a stud, k^{12} , and the wheel k^{6} and gong k^{7} are arranged and journaled on a stud, k^{13} , as shown in Fig. 9. Suitably secured to the frame A' are arms l² l³, in which arms is journaled a horizontal 75 spindle, l⁷, provided with a bobbin, l, gearwheel l^5 , and screw l', as shown in Fig. 6. Located at some distance from the machine proper there is a movable frame, B, having arranged and secured thereon a reed, n', and 80 glass rod n^3 . Said rod is arranged in brackets n^6 secured to flap n^4 . The frame is provided with a flap, n^4 . Said flap is provided with hinges n^5 . The frame B is supported on standards r' r^2 , Fig. 4. More remote from the 85 machine A' there is arranged a creel-frame, p, which frame is supported by standards s, and is provided with a reed, n, having dents r and pins p^2 , and supply-spools p', as shown in Figs. 1, 2, and 3. The machine is provided 90 with the ordinary belt-guide b'.

The operation of the machine is as follows: Motion is given to the pulleys b by the ordinary means employed therefor, which motion, by means of pinion c and gear-wheel c', ro 95 tates the shaft c^2 , and by means of gear-wheels l^6 l^5 , worm l^4 , and worm-wheel f', rotates the spindle l^7 , its bobbin l, and shaft f, which shaft in turn, by means of cam f^2 and roller f^3 , reciprocates the lever f^4 . This lever, by means 100 of link h, cord h^2 , pulley h^4 , and weight h^5 , imparts a reciprocating motion to the lever h'. pivoted to the frame at h^3 , which lever, in its connection with traverse-bar d, gives a hori-

zontal reciprocating motion to said bar. The parts mentioned having been put in motion in the manner stated, the several strands are taken from the spools p' upward through the 5 reed n and between the dents r, and through the reed n' forward to and through the reed n², which last-mentioned reed is arranged as illustrated in the drawings. After the strands D have been taken through the reeds 10 $n n' n^2$ in the usual and well-known way, the warp end is passed over the top of the roller k^2 , down under and around the wheel k, upward and over the roller k', forward to the bobbin l and between the guides 15 d^3 , and is secured to the bobbin l in the usual way. The bobbin I, which is secured to the spindle l^7 by means of screw e', being in rotation, draws the strands D which compose the warp from the spools p' through 20 the reeds over rollers and measuring-wheel in the manner stated, and the warp thus formed and drawn by the bobbin l is laid evenly on and distributed over the same by the bar d, which bar is reciprocated by the 25 traverse mechanism. The measuring-wheel k, having been put in rotation by the draft on the warp-strands D, caused by the rotation of the bobbin l by means of the worm k^3 , rotates the worm-wheel k^4 , the pinion k^5 ro-30 tates the wheel k^6 , which by means of stud k^9 actuates the hammer k^8 . Said hammer in its action strikes the gong k^7 , and thus indicates the number of yards measured and wound on the bobbin l, by which means the warps are 35 and can be made of even length, as follows: The wheel k having a measuring capacity of one yard at each revolution of the same, and termediates k^4 k^5 to have one revolution to 40 every sixty revolutions of the wheel k, it then follows that every action of the hammer k^8 on the gong k^7 will indicate sixty yards measured by the wheel k and laid on the bobbin l, and if the length of the warp is fixed 45 at one hundred and eighty yards the wheel |

k would make as many revolutions, and the wheel k^6 would have made but three revolutions, and would have so indicated by its action on the gong k^7 by means of the stud k^9 and hammer k^8 .

It will be understood that by changing the intermediates a greater or less number of yards may be indicated at every revolution of the wheel k^6 . The tension on the warpstrands D is regulated as follows: The reed 55 n being more elevated than the reed n^2 , as illustrated in Fig. 1, causes the tension or strain on the strands D to be increased as the frame B is moved nearer to the reed n^2 , and, vice versa, when the frame B is placed nearer 60 to the reed n, the tension or strain on the strands D is made less.

When it is desired to remove the tension and slacken the warp-strands, the hinged flap n^4 , that carries the rod n^3 , may be let down, 65 which action will allow the warp-strands to fall and thus remove all strain from the same.

Having described my improved warpingmachine and its operations, I claim and desire to secure by Letters Patent—

1. The frame B, having a vertically-movable flap and a bar attached thereto, over which the warp-threads pass, in combination with the devices for supplying and winding the yarn, substantially as set forth.

2. The hinged flap n^4 , in combination with a frame to which is attached a glass bar attached to said flap, over which the warp-threads pass, and the devices for supplying and winding the yarn, substantially as set 80 forth.

one yard at each revolution of the same, and the wheel k^6 having been arranged by intermediates k^4 k^5 to have one revolution to every sixty revolutions of the wheel k, it then follows that every action of the hammer of the same, and n^3 , in combination with the frame B, to which it is attached, and the yarn-supplying and yarn-winding devices, substantially as set 85.

JOHN RYLE.

Witnesses:

•

GEORGE BENZ, JOHN G. MCCOLLOM.