
### B. B. HOTCHKISS.

## Breech-Loading Fire-Arm.

No. 99.898.

Patented Feb. 15, 1870.



WITNESSES: MESSey-

b. Cevings

INVENTOR!

B. B. Holdhilles

# Anited States Patent Office.

# B. B. HOTCHKISS, OF NEW YORK, N. Y.

Letters Patent No. 99,898, dated February 15, 1870.

#### IMFROVEMENT IN BREECH-LOADING FIRE-ARMS.

The Schedule referred to in these Letters Patent and making part of the same

To all whom it may concern:

Be it known that I, B. B. HOTCHKISS, of the city, county, and State of New York, have invented certain new and useful Improvements in Breech-Loading Fire-Arms; and I do hereby declare that the following is a full and exact description thereof.

My invention may be applied to many or all varieties of fire-arms, but is more particularly intended for use on the small-arms employed in the military service.

I will first describe what I consider the best means of carrying out my invention, and will afterward designate the points which I believe to be new therein.

The accompanying drawings form a part of this specification.

Figure 1 is a central longitudinal section through the breech of the barrel, and through the parts ad-

jacent thereto;
Figure 2 is a plan view; and

Figure 3 is a cross-section on the line S S in fig. 1; all these figures represent the parts in the position ready for firing.

Figure 4 is a side elevation, partly in section, showing the parts in the condition ready to receive a fresh cartridge.

Similar letters of reference indicate like parts in all the figures.

A is the barrel of a rifled musket or shoulder-arm. a is a portion of the stock.

A' is an extension, connected in the ordinary manner, by strong screw-threads, and forming an immovable connection, and in effect, a single piece with the barrel A. The part A' is open at the top and side, as indicated, and is chambered through in line with the bore of the barrel.

B is a sliding bolt, having a stout handle B', and adapted to move forward and backward in the extension A', and to be secured in its proper position by being turned a quarter of a revolution.

C is a piece connected in the rear of and capable of moving axially with the part B.

D is a spring-catch, secured to the under side of the extension A', as represented, and adapted to hold back the part O

E is a trigger, which will draw down the catch D, and allow the part C to move forward by the action of the spring G, when it is desired to fire the piece.

My invention may be used with many varieties of cartridge.

I have represented it as intended for a center-firing percussion-cartridge, of which, what is known as the Boxer cartridge may be considered a good speci-

men.

My invention may be used with any of the varieties of needle-cartridge, but it is better adapted for

those cartridges which are to be fired by a simple blow against the rear.

One of the difficulties attending the employment of cartridges of this character, in bolt-arms, is due to the liability of the cartridge to be exploded by the sudden shock which results from the vigorious movement forward of the bolt into its front position.

As such arms have been heretofore constructed, there have been two distinctly separate movements required; one to carry forward the bolt into its extreme forward position, against or in close proximity to the rear of the cartridge, and another motion to partially turn, and thereby lock the bolt in its forward position.

My bolt, B, is moved forward, and is turned and locked, but the movement is changed gradually from the forward to the turning motion. It does not, as is the case with the corresponding part in ordinary bolt-arms, first move forward to its extreme front position, and there come to rest momentarily, and then commence to turn. The movement is changed gradually from the forward motion to the turning motion. It moves forward until near its extreme forward position, say, within a quarter of an inch. It then commences its turning motion, and for a while both of these motions proceed simultaneously. It by degrees attains its extreme forward position, and its last motion is or may be exclusively a turning motion.

This gradual checking of the forward motion, and the gradual changing of the forward progressing or axial motion into a turning motion, avoids any concussion of the bolt against the rear of the cartridge. It may press with any required degree of force against the rear of the cartridge, without subjecting the cartridge to concussion.

The details of the construction, in which this and the several other peculiarities of my invention are involved, are very clearly shown in the drawings. Tints are used merely to distinguish parts, and do not imply differences of material. The material of the metallic parts may be iron and steel.

A pin c, which is formed as a part of or is firmly connected to the rear part C, extends through the hollow interior of the bolt B, in the line of the axis, and forms the exploding pin, to act on the cartridge. It is provided with a collar  $c^1$ , which receives the force of a stout spiral spring m, which abuts against a piece b, fitted in the rear of the bolt B, as represented.

The spring m tends to carry the pin c and its connections into their extreme forward position, in which position the part C is close to, and partly lapping upon the bolt B, and the front end of the firing-pin c protrudes a little from the front of the bolt B. This which is the position of all the parts when the piece

is fired, will be readily understood by those familiar with this class of arms.

The part of C which laps over upon the bolt B is

designated C<sup>1</sup>.

An internal projection c2, extending downward from this overlapping face, stands in a groove in the bolt B, as shown in the figures, marked n  $n^1$ , &c.

It will be understood that the part C does not turn, but is capable simply of a forward and backward mo-

tion.

On pulling the trigger E, and depressing the catch D, so as to liberate the piece C and its connections, the pin c moves forward with all the force due to the tension of the spring m, and fires the cartridge.

In effecting this movement, the projection c2 traverses forward in the straight portion of the groove re-

ferred to.

In preparing to reload the piece, the first operation is to turn the handle B' into an upright position. This turns the bolt B one-fourth of a revolution, and in this movement the internal projection c3, on the part C<sup>1</sup>, is traversed along in the curved portion n<sup>1</sup> of the groove aforesaid.

This movement, by reason of the curvature of the groove  $n^1$ , draws back the projection  $c^2$ , and conse-

quently the entire piece C and its connections.

The curvature of this portion of the groove is such that the portions B C and their connections are drawn back to a sufficient extent to draw the front of the firing-pin c just within the front end of the bolt B.

Now by drawing directly backward on the handle B', all the parts, that is to say, the bolt B, and also the part C and its several connections, the firing-pin  $c^1$ , &c., are drawn backward to the extent shown in

fig. 4. The limit to which this bolt and its attachments are capable of moving is controlled by a screw-pin H, tapped through the side of the part A', and standing in a longitudinal groove in the side of the bolt B, being in this respect precisely similar to that in other ap-

proved forms of bolt-arms.

Any approved method may be adopted for remov-

ing the remains of a cartridge after firing.

In order to introduce a fresh cartridge, it is necessary simply to drop or otherwise deposit the cartridge in the ample space provided by the drawing back of the bolt, and now on pressing forward the handle B', results occur which are worthy of close attention.

First, the bolt B and the connected parts CC, &c., move forward together without turning, and without any motion relatively to each other. This condition obtains until the further forward motion of the rear piece C and its connections is arrested by the catch

or spring-stop D.

In this condition the rear part C C1, with the firing-pin c  $c^1$ , &c., becomes entirely motionless. The bolt B continuing to move forward by the forcible action of the hand against the handle B', the spring m is compressed, and in this movement the force is accumulated in this spring which is afterward to be

available in the act of firing.

The bolt B and handle B' move forward without turning, until the root of the handle B' strikes the curve P, and commences thereby to be turned. It is not important that this curved surface P be located in the position here represented. It is simply necessary that there shall be a provision, of which this is the best form known to me, for transferring or changing the impetus of the hand of the operator, and of the several parts, so that the forward motion of the bolt B shall be changed to a turning motion of the same part and its connections.

As the movement progresses, the operator of course assisting the turning motion to some extent, it will result that the forward pregressing motion becomes gradually and ultimately completely changed into a turning motion without progress, as above described.

The movement to obtain this condition is, in fact,

but a single movement. It commences with a direct forward motion, which changes gradually, being for a time partly of the forward and partly of the turning motion, but terminating with a motion which is exclusively a turning motion.

During this single yet compound motion, the projection  $c^2$ , which has been several times referred to, traverses a recess or rebate  $n^2$ , on the surface of the

bolt B.

This, it will be observed, has a form and position corresponding to the motion of the bolt B, relatively to the bolt O; that is to say, the rebate  $n^2$  extends, first, directly backward, then changes gradually by curving into a lateral direction, and at the end of the motion the projection c stands in the junction of the groove n, with the rebate or groove  $n^2$  ready to move forward freely when the trigger is pulled.

A notch  $n^3$  is provided, as represented in the front face of the rebate n2, in which the projection c2 may be allowed to take when it is desired that the gun

shall remain at "half-cock."

.In order to effect this it will be understood that the piece C is held back by the thumb applied on the part C2, and the trigger being pulled to depress the catch D, the forward motion of the bolt C and its connections is restrained while the handle B' is turned into a position intermediate between the horizontal and the upright. In this position the part C is allowed to move forward until the projection c2 rests in the notch  $n^3$ . In this condition the gun cannot be fired by any violence, and when it is desired to "fullcock" the piece from its half-cocked condition, it is only necessary to draw back the piece C into the fullcock condition, and to turn the handle B' down.

The curvature of the groove  $n^1$  promotes safety. It effects this in three ways, and performs three dis-

tinct functions.

The firing-pin cannot strike the cartridge until the bolt B is fully turned, and the handle B' is horizontal. It thus acts as a stop to prevent firing with the bolt B not fully turned, and this is one function.

Another function is to hold the part B firmly over and prevent its turning back again into a false position under the concussion and recoil of the firing.

Still a third is to insure that that the firing-pin c shall be drawn back with the bolt B, in the act of preparing to introduce a cartridge, and shall be held back there when the new cartridge is struck in the act of being pushed forward into the barrel.

If the groove  $n^1$  were not curved, the pin c would protrude at the front of B during the first portion of the motion of pushing in the cartridge, and it would be possible to explode the cartridge by using the hand with great energy in the act of merely commencing to push the cartridge home.

I do not claim gradually closing the breech by sliding back and turning the barrel, there being obvious disadvantages attending such movement of the entire

barrel, which my invention avoids; but

What I claim, is as follows;

1. The bolt B, adapted to both slide forward and backward, and turn or partially rotate relatively to the barrel, in combination with a guide having a rounded corner, so as to change the end motion of such bolt into a turning motion, by a continuous movement, and thus relieve the cartridge from shock, substantially as and for purposes herein set forth.

2. The curved groove  $n^1$ , arranged and operating as specified, relatively to the projection  $c^2$ , so that the turning up of the handle B' draws back the firing-pin c, substantially as and for the purposes herein speci-

fied.

In testimony whereof, I have hereunto set my name in presence of two subscribing witnesses. B. B. HOTCHKISS.

Witnesses:

THOMAS D. STETSON, C. C. LIVINGS.